abinit/tests/tutoparal/Input/tdmft_2.abi

117 lines
4.6 KiB
Plaintext

# SrVO3, a simple archetypal correlated material
#
# In this test, we compute the DFT electronic structure of SrVO3 in the first
# dataset and then run a DFT+DMFT calculation from the DFT one.
#
# DATASET 1: DFT
# DATASET 2: DFT+DMFT
# Multi-dataset parameters
ndtset 2
jdtset 1 2
getwfk -1
#Definition of the unit cell
acell 3*7.2605 # Cubic cell with
rprim 1.0 0.0 0.0 # real space primitive translation vectors
0.0 1.0 0.0
0.0 0.0 1.0
#Definition of the atom types and pseudopotentials
natom 5 # Five atoms
ntypat 3 # Three types
znucl 23 38 8 # First atom type should be the correlated on V
# then, we have Sr and O.
typat 1 2 3 3 3 # V Sr O3
xred 0.00 0.00 0.00 # This keyword indicates that the location of the atoms
# will follow, one triplet of number for each atom.
# We use relative distance, along the translational
# lattice vectors.
0.50 0.50 0.50
0.50 0.00 0.00
0.00 0.50 0.00
0.00 0.00 0.50
pp_dirpath "$ABI_PSPDIR" # This is the path to the directory where
# pseudopotentials for tests are stored
pseudos "Psdj_paw_pw_std/V.xml, Psdj_paw_pw_std/Sr.xml, Psdj_paw_pw_std/O.xml" # Name and location of the pseudopotentials
#Planewave basis set, number of bands and occupations
ecut 12.0 # Maximal plane-wave kinetic energy cut-off, in Hartree
pawecutdg 20.0 # PAW: Energy Cutoff for the Double Grid
nband 30 # Number of bands
occopt 3 # Occupation option for metal
tsmear 1200 K # Temperature of smearing
pawprtvol 3 # Printing additional information
prtvol 4
#First dataset specific parameters
nstep1 30 # Number of iterations for the DFT convergence
nline1 5 # Number of line minimisations
nnsclo1 5 # Number of non-self consistent loops
tolvrs 1.0d-7
#K point grid
ngkpt 3 3 3 # Reciprocal space vectors are built from
# the rprim parameters. This is the size of the
# reciprocal k-points.
nshiftk 4 # Convergence of the density with regular shifts.
shiftk 1/2 1/2 1/2
1/2 0.0 0.0
0.0 1/2 0.0
0.0 0.0 1/2
istwfk *1
#DFT alone
usedmft1 0
#Second dataset specific parameters
nstep2 10 # Number of iterations for the DFT+DMFT convergence
nline2 10 # Number of line minimisations
nnsclo2 10 # Number of non-self consistent loops
#DFT+DMFT
usedmft2 1 # Active DMFT
dmftbandi 21 # First band included in the projection. Initial
dmftbandf 23 # and final bands.
dmft_nwlo 100 # Logarythmic frequency mesh
dmft_nwli 100000 # Linear freqeuncy mesh
dmft_iter 1 # Number of iterations of the DMFT part.
# We often use single-shot, since anyway the charge density
# changes through the DFT+DMFT anyway.
dmftcheck 0
dmft_rslf 1 # Read self-energy, if nothing (like here) initialize.
dmft_mxsf 0.7 # Mixing of the old and new self-energy at every iterations.
dmft_dc 1 # Double counting type. 1 is Fully Localized Limit (FLL)
dmft_t2g 1 # Special value for t2g only calculation.
#CTQMC
dmft_solv 5 # Choice of solver: Internal CT-SEG.
dmftqmc_l 50 # Number of time slices for G(tau).
dmftqmc_n 3.d6 # Number of QMC sweeps
dmftqmc_therm 10000 # Thermalization
dmftctqmc_gmove 0 # Global move occurence in QMC
dmftctqmc_order 50 # Perturbation order
#DFT+U
usepawu1 1
usepawu 10
dmatpuopt 1 # The density matrix: the simplest expression.
lpawu 2 -1 -1 # Angular momentum for the projected Hamiltonian
f4of2_sla3 0.0 0.0 0.0
upawu1 0.00 0.0 0.0 eV
upawu2 3.1333333333333333 0.0 0.0 eV # Values of U for each angular momentum
jpawu2 0.7583333333333333 0.0 0.0 eV # Values of J
##############################################################
## This section is used only for regression testing of ABINIT #
###############################################################
#%%<BEGIN TEST_INFO>
#%% [setup]
#%% executable = abinit
#%% [files]
#%% [paral_info]
#%% max_nprocs = 24
#%% nprocs_to_test = 24
#%% [NCPU_24]
#%% files_to_test = tdmft_2_MPI24.abo, tolnlines =1, tolabs =5.0e-07, tolrel = 2.0e-03, fld_options=-medium ;
#%% [extra_info]
#%% authors = B. Amadon, O. Gingras
#%% keywords = DMFT, CTQMC
#%% description = Tutorial DFT+DMFT on SrVO3
#%%<END TEST_INFO>