mirror of https://github.com/abinit/abinit.git
700 lines
30 KiB
Plaintext
700 lines
30 KiB
Plaintext
|
|
.Version 3.0 of PHONONS
|
|
.Copyright (C) 1998-2025 ABINIT group (FB,JB).
|
|
ABINIT comes with ABSOLUTELY NO WARRANTY.
|
|
It is free software, and you are welcome to redistribute it
|
|
under certain conditions (GNU General Public License,
|
|
see ~abinit/COPYING or http://www.gnu.org/copyleft/gpl.txt).
|
|
|
|
ABINIT is a project of the Universite Catholique de Louvain,
|
|
Corning Inc. and other collaborators, see
|
|
~abinit/doc/developers/contributors.txt .
|
|
Please read https://docs.abinit.org/theory/acknowledgments for suggested
|
|
acknowledgments of the ABINIT effort.
|
|
For more information, see http://www.abinit.org .
|
|
|
|
.Starting date : 13 Sep 2024.
|
|
|
|
#############################################################################
|
|
######################### ECHO OF INPUT FILE ################################
|
|
#############################################################################
|
|
======================= Define the unitcell =================================
|
|
brav 7 -3
|
|
natom_unitcell 1
|
|
xred_unitcell
|
|
0.0000000000 0.0000000000 0.0000000000
|
|
typat_unitcell 1
|
|
ntypat 1
|
|
amu 26.9815390000
|
|
======================= Define the supercell ================================
|
|
rprimd
|
|
22.9089998000 0.0000000000 0.0000000000
|
|
0.0000000000 22.9089998000 0.0000000000
|
|
0.0000000000 0.0000000000 22.9089998000
|
|
multiplicity
|
|
-3.0000000000 3.0000000000 3.0000000000
|
|
3.0000000000 -3.0000000000 3.0000000000
|
|
3.0000000000 3.0000000000 -3.0000000000
|
|
natom 108
|
|
typat
|
|
1 1 1 1 1 1 1 1 1 1
|
|
1 1 1 1 1 1 1 1 1 1
|
|
1 1 1 1 1 1 1 1 1 1
|
|
1 1 1 1 1 1 1 1 1 1
|
|
1 1 1 1 1 1 1 1 1 1
|
|
1 1 1 1 1 1 1 1 1 1
|
|
1 1 1 1 1 1 1 1 1 1
|
|
1 1 1 1 1 1 1 1 1 1
|
|
1 1 1 1 1 1 1 1 1 1
|
|
1 1 1 1 1 1 1 1 1 1
|
|
1 1 1 1 1 1 1 1
|
|
temperature 900.0000000000
|
|
======================= Define computational details ========================
|
|
nstep_max 20
|
|
nstep_min 1
|
|
rcut 11.4500000000
|
|
======================= Optional input variables ============================
|
|
enunit 3 (Phonon frequencies in THz)
|
|
USE AVERAGE POSITIONS TO COMPUTE SPECTRUM
|
|
-Number of processors 1 1
|
|
|
|
All quantities are computed from nstep_min= 1
|
|
to nstep_max= 20
|
|
So, the real number of time steps is nstep= 20
|
|
|
|
The positions, forces and energies are extracted from the ASCII files: xred.dat, fcart.dat & etot.dat
|
|
|
|
#############################################################################
|
|
########################## Computed quantities ##############################
|
|
#############################################################################
|
|
acell_unitcell= 7.6363332667 7.6363332667 7.6363332667
|
|
rprimd_md= 22.9089998000 0.0000000000 0.0000000000
|
|
rprimd_md= 0.0000000000 22.9089998000 0.0000000000
|
|
rprimd_md= 0.0000000000 0.0000000000 22.9089998000
|
|
bravais= 7 -3 1 -1 0 1 0 1 0 -1 1
|
|
See the sym.dat file
|
|
|
|
#############################################################################
|
|
########################## Q points generation #############################
|
|
#############################################################################
|
|
Generate the BZ path using the Q points defined by default
|
|
See the qpt.dat file
|
|
|
|
#############################################################################
|
|
###### Find the matching between ideal and average positions ###############
|
|
#############################################################################
|
|
Determine ideal positions and distances...
|
|
Compute average positions...
|
|
Search the unitcell basis of atoms in the MD trajectory...
|
|
Compare ideal and average positions using PBC...
|
|
Write the xred_average.xyz file with ideal and average positions...
|
|
Compute cartesian coordinates and forces...
|
|
|
|
#############################################################################
|
|
###################### Find the symetry operations ##########################
|
|
#################### (connecting the atoms together) ########################
|
|
#############################################################################
|
|
Search the matrix transformation going from (k) to (i)...
|
|
Search the matrix transformation going from (k,l) to (i,j)...
|
|
See the Indsym*.dat files (if debug)
|
|
|
|
#############################################################################
|
|
####### FIRST ORDER : find the number of coefficients #######################
|
|
#############################################################################
|
|
Build the ref1at and Isym1at tables...
|
|
Build the Shell1at datatype...
|
|
Number of shells= 1
|
|
============================================================================
|
|
Shell number: 1
|
|
For atom 1:
|
|
Number of independant coefficients in this shell= 0
|
|
Number of interactions in this shell= 0
|
|
============================================================================
|
|
>>>>>> Total number of coefficients at the first order= 0
|
|
|
|
#############################################################################
|
|
###### SECOND ORDER : find the number of coefficients #######################
|
|
#############################################################################
|
|
Build the ref2at and Isym2at tables...
|
|
Build the Shell2at datatype...
|
|
Number of shells= 5
|
|
============================================================================
|
|
Shell number: 1
|
|
Between atom 1 and 1 the distance is= 0.0000000000
|
|
Number of independant coefficients in this shell= 0
|
|
Number of interactions in this shell= 1
|
|
============================================================================
|
|
Shell number: 2
|
|
Between atom 1 and 2 the distance is= 5.3997030363
|
|
Number of independant coefficients in this shell= 3
|
|
Number of interactions in this shell= 12
|
|
============================================================================
|
|
Shell number: 3
|
|
Between atom 1 and 4 the distance is= 7.6363332667
|
|
Number of independant coefficients in this shell= 2
|
|
Number of interactions in this shell= 6
|
|
============================================================================
|
|
Shell number: 4
|
|
Between atom 1 and 10 the distance is= 9.3525600046
|
|
Number of independant coefficients in this shell= 4
|
|
Number of interactions in this shell= 24
|
|
============================================================================
|
|
Shell number: 5
|
|
Between atom 1 and 16 the distance is= 10.7994060725
|
|
Number of independant coefficients in this shell= 3
|
|
Number of interactions in this shell= 12
|
|
============================================================================
|
|
>>>>>> Total number of coefficients at the second order= 12
|
|
|
|
#############################################################################
|
|
############## Fill the matrices used in the pseudo-inverse #################
|
|
#############################################################################
|
|
Compute the coefficients (at the 1st order) used in the Moore-Penrose...
|
|
------- achieved
|
|
Compute the coefficients (at the 2nd order) used in the Moore-Penrose...
|
|
------- achieved
|
|
|
|
#############################################################################
|
|
###################### Compute the constraints ##############################
|
|
########################## At the 1st order #################################
|
|
########################## At the 2nd order #################################
|
|
################## Reduce the number of constraints #########################
|
|
############### (Solve simultaneously all the orders) #######################
|
|
################### And compute the pseudo-inverse ##########################
|
|
#############################################################################
|
|
The problem is solved
|
|
|
|
|
|
#############################################################################
|
|
#### For each shell, list of coefficients (IFC), number of neighbours... ####
|
|
#############################################################################
|
|
############# List of (first order) IFC for the reference atom= 1
|
|
0.000000 0.000000 0.000000
|
|
|
|
|
|
#############################################################################
|
|
#### For each shell, list of coefficients (IFC), number of neighbours... ####
|
|
#############################################################################
|
|
############# List of (second order) IFC for the reference atom= 1
|
|
======== NEW SHELL (ishell= 1): There are 1 atoms on this shell at distance= 0.000000
|
|
For jatom= 1 ,with type= 1
|
|
0.044568 0.000000 0.000000
|
|
0.000000 0.044568 0.000000
|
|
0.000000 0.000000 0.044568
|
|
The components of the vector are: 0.000000 0.000000 0.000000
|
|
Trace= 0.133703
|
|
|
|
======== NEW SHELL (ishell= 2): There are 12 atoms on this shell at distance= 5.399703
|
|
For jatom= 2 ,with type= 1
|
|
-0.006188 -0.007055 0.000000
|
|
-0.007055 -0.006188 0.000000
|
|
0.000000 0.000000 0.001595
|
|
The components of the vector are: 3.818167 3.818167 0.000000
|
|
Trace= -0.010781
|
|
|
|
For jatom= 3 ,with type= 1
|
|
-0.006188 0.000000 -0.007055
|
|
0.000000 0.001595 0.000000
|
|
-0.007055 0.000000 -0.006188
|
|
The components of the vector are: 3.818167 0.000000 3.818167
|
|
Trace= -0.010781
|
|
|
|
For jatom= 5 ,with type= 1
|
|
-0.006188 0.007055 0.000000
|
|
0.007055 -0.006188 0.000000
|
|
0.000000 0.000000 0.001595
|
|
The components of the vector are: -3.818167 3.818167 0.000000
|
|
Trace= -0.010781
|
|
|
|
For jatom= 8 ,with type= 1
|
|
-0.006188 0.000000 0.007055
|
|
0.000000 0.001595 0.000000
|
|
0.007055 0.000000 -0.006188
|
|
The components of the vector are: -3.818167 0.000000 3.818167
|
|
Trace= -0.010781
|
|
|
|
For jatom= 9 ,with type= 1
|
|
0.001595 0.000000 0.000000
|
|
0.000000 -0.006188 -0.007055
|
|
0.000000 -0.007055 -0.006188
|
|
The components of the vector are: 0.000000 3.818167 3.818167
|
|
Trace= -0.010781
|
|
|
|
For jatom= 19 ,with type= 1
|
|
-0.006188 0.007055 0.000000
|
|
0.007055 -0.006188 0.000000
|
|
0.000000 0.000000 0.001595
|
|
The components of the vector are: 3.818167 -3.818167 0.000000
|
|
Trace= -0.010781
|
|
|
|
For jatom= 34 ,with type= 1
|
|
-0.006188 0.000000 0.007055
|
|
0.000000 0.001595 0.000000
|
|
0.007055 0.000000 -0.006188
|
|
The components of the vector are: 3.818167 0.000000 -3.818167
|
|
Trace= -0.010781
|
|
|
|
For jatom= 38 ,with type= 1
|
|
-0.006188 -0.007055 0.000000
|
|
-0.007055 -0.006188 0.000000
|
|
0.000000 0.000000 0.001595
|
|
The components of the vector are: -3.818167 -3.818167 0.000000
|
|
Trace= -0.010781
|
|
|
|
For jatom= 43 ,with type= 1
|
|
0.001595 0.000000 0.000000
|
|
0.000000 -0.006188 0.007055
|
|
0.000000 0.007055 -0.006188
|
|
The components of the vector are: 0.000000 -3.818167 3.818167
|
|
Trace= -0.010781
|
|
|
|
For jatom= 59 ,with type= 1
|
|
-0.006188 0.000000 -0.007055
|
|
0.000000 0.001595 0.000000
|
|
-0.007055 0.000000 -0.006188
|
|
The components of the vector are: -3.818167 0.000000 -3.818167
|
|
Trace= -0.010781
|
|
|
|
For jatom= 60 ,with type= 1
|
|
0.001595 0.000000 0.000000
|
|
0.000000 -0.006188 0.007055
|
|
0.000000 0.007055 -0.006188
|
|
The components of the vector are: 0.000000 3.818167 -3.818167
|
|
Trace= -0.010781
|
|
|
|
For jatom= 101 ,with type= 1
|
|
0.001595 0.000000 0.000000
|
|
0.000000 -0.006188 -0.007055
|
|
0.000000 -0.007055 -0.006188
|
|
The components of the vector are: 0.000000 -3.818167 -3.818167
|
|
Trace= -0.010781
|
|
|
|
======== NEW SHELL (ishell= 3): There are 6 atoms on this shell at distance= 7.636333
|
|
For jatom= 4 ,with type= 1
|
|
-0.000579 0.000000 0.000000
|
|
0.000000 0.000955 0.000000
|
|
0.000000 0.000000 0.000955
|
|
The components of the vector are: -7.636333 0.000000 0.000000
|
|
Trace= 0.001331
|
|
|
|
For jatom= 6 ,with type= 1
|
|
0.000955 0.000000 0.000000
|
|
0.000000 -0.000579 0.000000
|
|
0.000000 0.000000 0.000955
|
|
The components of the vector are: 0.000000 7.636333 0.000000
|
|
Trace= 0.001331
|
|
|
|
For jatom= 11 ,with type= 1
|
|
0.000955 0.000000 0.000000
|
|
0.000000 0.000955 0.000000
|
|
0.000000 0.000000 -0.000579
|
|
The components of the vector are: 0.000000 0.000000 7.636333
|
|
Trace= 0.001331
|
|
|
|
For jatom= 14 ,with type= 1
|
|
-0.000579 0.000000 0.000000
|
|
0.000000 0.000955 0.000000
|
|
0.000000 0.000000 0.000955
|
|
The components of the vector are: 7.636333 0.000000 0.000000
|
|
Trace= 0.001331
|
|
|
|
For jatom= 18 ,with type= 1
|
|
0.000955 0.000000 0.000000
|
|
0.000000 -0.000579 0.000000
|
|
0.000000 0.000000 0.000955
|
|
The components of the vector are: 0.000000 -7.636333 0.000000
|
|
Trace= 0.001331
|
|
|
|
For jatom= 32 ,with type= 1
|
|
0.000955 0.000000 0.000000
|
|
0.000000 0.000955 0.000000
|
|
0.000000 0.000000 -0.000579
|
|
The components of the vector are: 0.000000 0.000000 -7.636333
|
|
Trace= 0.001331
|
|
|
|
======== NEW SHELL (ishell= 4): There are 24 atoms on this shell at distance= 9.352560
|
|
For jatom= 10 ,with type= 1
|
|
-0.000306 0.000038 -0.000026
|
|
0.000038 0.000006 0.000038
|
|
-0.000026 0.000038 -0.000306
|
|
The components of the vector are: 3.818167 7.636333 3.818167
|
|
Trace= -0.000606
|
|
|
|
For jatom= 12 ,with type= 1
|
|
-0.000306 -0.000026 0.000038
|
|
-0.000026 -0.000306 0.000038
|
|
0.000038 0.000038 0.000006
|
|
The components of the vector are: 3.818167 3.818167 7.636333
|
|
Trace= -0.000606
|
|
|
|
For jatom= 21 ,with type= 1
|
|
0.000006 -0.000038 -0.000038
|
|
-0.000038 -0.000306 -0.000026
|
|
-0.000038 -0.000026 -0.000306
|
|
The components of the vector are: -7.636333 3.818167 3.818167
|
|
Trace= -0.000606
|
|
|
|
For jatom= 22 ,with type= 1
|
|
-0.000306 -0.000038 0.000026
|
|
-0.000038 0.000006 0.000038
|
|
0.000026 0.000038 -0.000306
|
|
The components of the vector are: -3.818167 7.636333 3.818167
|
|
Trace= -0.000606
|
|
|
|
For jatom= 24 ,with type= 1
|
|
-0.000306 -0.000038 -0.000026
|
|
-0.000038 0.000006 -0.000038
|
|
-0.000026 -0.000038 -0.000306
|
|
The components of the vector are: 3.818167 -7.636333 3.818167
|
|
Trace= -0.000606
|
|
|
|
For jatom= 26 ,with type= 1
|
|
-0.000306 0.000026 -0.000038
|
|
0.000026 -0.000306 0.000038
|
|
-0.000038 0.000038 0.000006
|
|
The components of the vector are: -3.818167 3.818167 7.636333
|
|
Trace= -0.000606
|
|
|
|
For jatom= 33 ,with type= 1
|
|
-0.000306 -0.000026 -0.000038
|
|
-0.000026 -0.000306 -0.000038
|
|
-0.000038 -0.000038 0.000006
|
|
The components of the vector are: 3.818167 3.818167 -7.636333
|
|
Trace= -0.000606
|
|
|
|
For jatom= 39 ,with type= 1
|
|
0.000006 0.000038 0.000038
|
|
0.000038 -0.000306 -0.000026
|
|
0.000038 -0.000026 -0.000306
|
|
The components of the vector are: 7.636333 3.818167 3.818167
|
|
Trace= -0.000606
|
|
|
|
For jatom= 42 ,with type= 1
|
|
-0.000306 0.000038 0.000026
|
|
0.000038 0.000006 -0.000038
|
|
0.000026 -0.000038 -0.000306
|
|
The components of the vector are: -3.818167 -7.636333 3.818167
|
|
Trace= -0.000606
|
|
|
|
For jatom= 49 ,with type= 1
|
|
-0.000306 0.000026 0.000038
|
|
0.000026 -0.000306 -0.000038
|
|
0.000038 -0.000038 0.000006
|
|
The components of the vector are: 3.818167 -3.818167 7.636333
|
|
Trace= -0.000606
|
|
|
|
For jatom= 56 ,with type= 1
|
|
-0.000306 0.000026 0.000038
|
|
0.000026 -0.000306 -0.000038
|
|
0.000038 -0.000038 0.000006
|
|
The components of the vector are: -3.818167 3.818167 -7.636333
|
|
Trace= -0.000606
|
|
|
|
For jatom= 61 ,with type= 1
|
|
-0.000306 0.000038 0.000026
|
|
0.000038 0.000006 -0.000038
|
|
0.000026 -0.000038 -0.000306
|
|
The components of the vector are: 3.818167 7.636333 -3.818167
|
|
Trace= -0.000606
|
|
|
|
For jatom= 66 ,with type= 1
|
|
0.000006 0.000038 -0.000038
|
|
0.000038 -0.000306 0.000026
|
|
-0.000038 0.000026 -0.000306
|
|
The components of the vector are: -7.636333 -3.818167 3.818167
|
|
Trace= -0.000606
|
|
|
|
For jatom= 70 ,with type= 1
|
|
-0.000306 -0.000026 -0.000038
|
|
-0.000026 -0.000306 -0.000038
|
|
-0.000038 -0.000038 0.000006
|
|
The components of the vector are: -3.818167 -3.818167 7.636333
|
|
Trace= -0.000606
|
|
|
|
For jatom= 81 ,with type= 1
|
|
-0.000306 0.000026 -0.000038
|
|
0.000026 -0.000306 0.000038
|
|
-0.000038 0.000038 0.000006
|
|
The components of the vector are: 3.818167 -3.818167 -7.636333
|
|
Trace= -0.000606
|
|
|
|
For jatom= 83 ,with type= 1
|
|
0.000006 -0.000038 0.000038
|
|
-0.000038 -0.000306 0.000026
|
|
0.000038 0.000026 -0.000306
|
|
The components of the vector are: -7.636333 3.818167 -3.818167
|
|
Trace= -0.000606
|
|
|
|
For jatom= 84 ,with type= 1
|
|
-0.000306 -0.000038 -0.000026
|
|
-0.000038 0.000006 -0.000038
|
|
-0.000026 -0.000038 -0.000306
|
|
The components of the vector are: -3.818167 7.636333 -3.818167
|
|
Trace= -0.000606
|
|
|
|
For jatom= 86 ,with type= 1
|
|
-0.000306 -0.000038 0.000026
|
|
-0.000038 0.000006 0.000038
|
|
0.000026 0.000038 -0.000306
|
|
The components of the vector are: 3.818167 -7.636333 -3.818167
|
|
Trace= -0.000606
|
|
|
|
For jatom= 87 ,with type= 1
|
|
0.000006 -0.000038 0.000038
|
|
-0.000038 -0.000306 0.000026
|
|
0.000038 0.000026 -0.000306
|
|
The components of the vector are: 7.636333 -3.818167 3.818167
|
|
Trace= -0.000606
|
|
|
|
For jatom= 96 ,with type= 1
|
|
-0.000306 -0.000026 0.000038
|
|
-0.000026 -0.000306 0.000038
|
|
0.000038 0.000038 0.000006
|
|
The components of the vector are: -3.818167 -3.818167 -7.636333
|
|
Trace= -0.000606
|
|
|
|
For jatom= 97 ,with type= 1
|
|
0.000006 0.000038 -0.000038
|
|
0.000038 -0.000306 0.000026
|
|
-0.000038 0.000026 -0.000306
|
|
The components of the vector are: 7.636333 3.818167 -3.818167
|
|
Trace= -0.000606
|
|
|
|
For jatom= 100 ,with type= 1
|
|
-0.000306 0.000038 -0.000026
|
|
0.000038 0.000006 0.000038
|
|
-0.000026 0.000038 -0.000306
|
|
The components of the vector are: -3.818167 -7.636333 -3.818167
|
|
Trace= -0.000606
|
|
|
|
For jatom= 107 ,with type= 1
|
|
0.000006 0.000038 0.000038
|
|
0.000038 -0.000306 -0.000026
|
|
0.000038 -0.000026 -0.000306
|
|
The components of the vector are: -7.636333 -3.818167 -3.818167
|
|
Trace= -0.000606
|
|
|
|
For jatom= 108 ,with type= 1
|
|
0.000006 -0.000038 -0.000038
|
|
-0.000038 -0.000306 -0.000026
|
|
-0.000038 -0.000026 -0.000306
|
|
The components of the vector are: 7.636333 -3.818167 -3.818167
|
|
Trace= -0.000606
|
|
|
|
======== NEW SHELL (ishell= 5): There are 12 atoms on this shell at distance=10.799406
|
|
For jatom= 16 ,with type= 1
|
|
-0.000007 -0.000080 0.000000
|
|
-0.000080 -0.000007 0.000000
|
|
0.000000 0.000000 0.000199
|
|
The components of the vector are: -7.636333 7.636333 0.000000
|
|
Trace= 0.000185
|
|
|
|
For jatom= 25 ,with type= 1
|
|
-0.000007 0.000000 -0.000080
|
|
0.000000 0.000199 0.000000
|
|
-0.000080 0.000000 -0.000007
|
|
The components of the vector are: -7.636333 0.000000 7.636333
|
|
Trace= 0.000185
|
|
|
|
For jatom= 27 ,with type= 1
|
|
0.000199 0.000000 0.000000
|
|
0.000000 -0.000007 0.000080
|
|
0.000000 0.000080 -0.000007
|
|
The components of the vector are: 0.000000 7.636333 7.636333
|
|
Trace= 0.000185
|
|
|
|
For jatom= 35 ,with type= 1
|
|
-0.000007 0.000080 0.000000
|
|
0.000080 -0.000007 0.000000
|
|
0.000000 0.000000 0.000199
|
|
The components of the vector are: 7.636333 7.636333 0.000000
|
|
Trace= 0.000185
|
|
|
|
For jatom= 37 ,with type= 1
|
|
-0.000007 0.000080 0.000000
|
|
0.000080 -0.000007 0.000000
|
|
0.000000 0.000000 0.000199
|
|
The components of the vector are: -7.636333 -7.636333 0.000000
|
|
Trace= 0.000185
|
|
|
|
For jatom= 44 ,with type= 1
|
|
-0.000007 0.000000 0.000080
|
|
0.000000 0.000199 0.000000
|
|
0.000080 0.000000 -0.000007
|
|
The components of the vector are: 7.636333 0.000000 7.636333
|
|
Trace= 0.000185
|
|
|
|
For jatom= 48 ,with type= 1
|
|
0.000199 0.000000 0.000000
|
|
0.000000 -0.000007 -0.000080
|
|
0.000000 -0.000080 -0.000007
|
|
The components of the vector are: 0.000000 -7.636333 7.636333
|
|
Trace= 0.000185
|
|
|
|
For jatom= 55 ,with type= 1
|
|
-0.000007 0.000000 0.000080
|
|
0.000000 0.000199 0.000000
|
|
0.000080 0.000000 -0.000007
|
|
The components of the vector are: -7.636333 0.000000 -7.636333
|
|
Trace= 0.000185
|
|
|
|
For jatom= 57 ,with type= 1
|
|
0.000199 0.000000 0.000000
|
|
0.000000 -0.000007 -0.000080
|
|
0.000000 -0.000080 -0.000007
|
|
The components of the vector are: 0.000000 7.636333 -7.636333
|
|
Trace= 0.000185
|
|
|
|
For jatom= 62 ,with type= 1
|
|
-0.000007 -0.000080 0.000000
|
|
-0.000080 -0.000007 0.000000
|
|
0.000000 0.000000 0.000199
|
|
The components of the vector are: 7.636333 -7.636333 0.000000
|
|
Trace= 0.000185
|
|
|
|
For jatom= 76 ,with type= 1
|
|
-0.000007 0.000000 -0.000080
|
|
0.000000 0.000199 0.000000
|
|
-0.000080 0.000000 -0.000007
|
|
The components of the vector are: 7.636333 0.000000 -7.636333
|
|
Trace= 0.000185
|
|
|
|
For jatom= 80 ,with type= 1
|
|
0.000199 0.000000 0.000000
|
|
0.000000 -0.000007 0.000080
|
|
0.000000 0.000080 -0.000007
|
|
The components of the vector are: 0.000000 -7.636333 -7.636333
|
|
Trace= 0.000185
|
|
|
|
|
|
#############################################################################
|
|
############## Compute the phonon spectrum, the DOS, ########################
|
|
############## the dynamical matrix and write them ########################
|
|
#############################################################################
|
|
|
|
#############################################################################
|
|
################### vibrational Density OF States (vDOS) ####################
|
|
#############################################################################
|
|
See the vdos.dat and TDEP_PHDOS* files
|
|
Write the IFC of TDEP in ifc_out.dat (and ifc_out.nc)
|
|
------- achieved
|
|
Compute the vDOS
|
|
------- achieved
|
|
(Please, pay attention to convergency wrt the BZ mesh : the ngqpt2 input variable)
|
|
See the dij.dat, omega.dat and eigenvectors files
|
|
See also the DDB file
|
|
|
|
#############################################################################
|
|
######################### Elastic constants #################################
|
|
################ Bulk and Shear modulus--Sound velocities ###################
|
|
#############################################################################
|
|
|
|
========== Using the formulation proposed by Wallace (using the IFC) =========
|
|
Cijkl [in GPa]=
|
|
| C11 C12 C13 C14 C15 C16 | 113.760 61.649 61.649 0.000 0.000 0.000
|
|
| C21 C22 C23 C24 C25 C26 | 61.649 113.760 61.649 0.000 0.000 0.000
|
|
| C31 C32 C33 C34 C35 C36 | 61.649 61.649 113.760 0.000 0.000 0.000
|
|
| C41 C42 C43 C44 C45 C46 | = 0.000 0.000 0.000 38.243 0.000 0.000
|
|
| C51 C52 C53 C54 C55 C56 | 0.000 0.000 0.000 0.000 38.243 0.000
|
|
| C61 C62 C63 C64 C65 C66 | 0.000 0.000 0.000 0.000 0.000 38.243
|
|
|
|
========== For an Anisotropic Material =======================================
|
|
Sijkl [in GPa-1]=
|
|
| S11 S12 S13 S14 S15 S16 | 0.014 -0.005 -0.005 0.000 0.000 -0.000
|
|
| S21 S22 S23 S24 S25 S26 | -0.005 0.014 -0.005 0.000 0.000 -0.000
|
|
| S31 S32 S33 S34 S35 S36 | -0.005 -0.005 0.014 0.000 0.000 -0.000
|
|
| S41 S42 S43 S44 S45 S46 | = 0.000 0.000 0.000 0.026 0.000 -0.000
|
|
| S51 S52 S53 S54 S55 S56 | 0.000 0.000 0.000 0.000 0.026 -0.000
|
|
| S61 S62 S63 S64 S65 S66 | 0.000 0.000 0.000 0.000 0.000 0.026
|
|
|
|
========== For an Orthotropic Material (see B. M. Lempriere (1968)) ==========
|
|
Young modulus E1, E2 and E3 [in GPa]= 70.427 70.427 70.427
|
|
Poisson ratio Nu21, Nu31, Nu23, Nu12, Nu13 and Nu32= 0.351 0.351 0.351 0.351 0.351 0.351
|
|
Shear modulus G23, G13 and G12 [in GPa]= 38.243 38.243 38.243
|
|
Sijkl [in GPa-1]=
|
|
| S11 S12 S13 S14 S15 S16 | 0.014 -0.005 -0.005 0.000 0.000 0.000
|
|
| S21 S22 S23 S24 S25 S26 | -0.005 0.014 -0.005 0.000 0.000 0.000
|
|
| S31 S32 S33 S34 S35 S36 | -0.005 -0.005 0.014 0.000 0.000 0.000
|
|
| S41 S42 S43 S44 S45 S46 | = 0.000 0.000 0.000 0.026 0.000 0.000
|
|
| S51 S52 S53 S54 S55 S56 | 0.000 0.000 0.000 0.000 0.026 0.000
|
|
| S61 S62 S63 S64 S65 S66 | 0.000 0.000 0.000 0.000 0.000 0.026
|
|
For density rho [in kg.m-3]= 2715.988
|
|
|
|
========================= Voigt average (constant strain) ===================
|
|
ISOTHERMAL modulus [in GPa]: Bulk Kt= 79.019 and Shear G= 33.368
|
|
Average of Young modulus E [in GPa]= 87.752 Lame modulus Lambda [in GPa]= 56.774 and Poisson ratio Nu= 0.315
|
|
Velocities [in m.s-1]: compressional Vp= 6743.529 shear Vs= 3505.115 and bulk Vphi= 5393.893
|
|
Debye velocity [in m.s-1]= 3922.618 and temperature [in K]= 458.761
|
|
|
|
========================= Reuss average (constant stress) ===================
|
|
ISOTHERMAL modulus [in GPa]: Bulk Kt= 79.019 and Shear G= 32.216
|
|
Average of Young modulus E [in GPa]= 85.084 Lame modulus Lambda [in GPa]= 57.542 and Poisson ratio Nu= 0.321
|
|
Velocities [in m.s-1]: compressional Vp= 6701.449 shear Vs= 3444.053 and bulk Vphi= 5393.893
|
|
Debye velocity [in m.s-1]= 3857.101 and temperature [in K]= 451.098
|
|
|
|
============================== Hill average =================================
|
|
ISOTHERMAL modulus [in GPa]: Bulk Kt= 79.019 and Shear G= 32.792
|
|
Average of Young modulus E [in GPa]= 86.421 Lame modulus Lambda [in GPa]= 57.158 and Poisson ratio Nu= 0.318
|
|
Velocities [in m.s-1]: compressional Vp= 6722.522 shear Vs= 3474.718 and bulk Vphi= 5393.893
|
|
Debye velocity [in m.s-1]= 3890.016 and temperature [in K]= 454.948
|
|
|
|
========================= Elastic anisotropy =================================
|
|
Elastic anisotropy index : A_U= 5*G_V/G_R + K_V/K_R - 6 = 0.179
|
|
Bulk anisotropy ratio : A_B= (B_V-B_R)/(B_V+B_R) = 0.000
|
|
Shear anisotropy ratio : A_G= (G_V-G_R)/(G_V+G_R) = 0.018
|
|
|
|
#############################################################################
|
|
######################### Energies, errors,... #############################
|
|
#############################################################################
|
|
Thermodynamic quantities and convergence parameters of THE MODEL,
|
|
as a function of the step number (energies in eV/atom and forces in Ha/bohr) :
|
|
<U_TDEP> = U_0 + U_1 + U_2
|
|
with U_0 = < U_MD - sum_i Phi1 ui - 1/2 sum_ij Phi2 ui uj >
|
|
and U_1 = < sum_i Phi1 ui >
|
|
and U_2 = < 1/2 sum_ij Phi2 ui uj >
|
|
Delta_U = < U_MD - U_TDEP >
|
|
Delta_U2= (< (U_MD - U_TDEP)^2 >)**0.5
|
|
Delta_F2= (< (F_MD - F_TDEP)^2 >)**0.5
|
|
Sigma = (< (F_MD - F_TDEP)^2 >/<F_MD**2>)**0.5
|
|
<U_MD> U_0 U_1 U_2 Delta_U Delta_U2 Delta_F2 Sigma
|
|
-56.30133 -56.40725 0.00000 0.10592 0.00000 0.38259 0.00631 0.50615
|
|
NOTE : in the harmonic and classical limit (T>>T_Debye), U_2=3/2*kB*T= 0.11633
|
|
|
|
See the etotMDvsTDEP.dat & fcartMDvsTDEP.dat files
|
|
|
|
#############################################################################
|
|
################# Thermodynamic quantities: Free energy,...##################
|
|
#############################################################################
|
|
See the thermo.dat file
|
|
|
|
#############################################################################
|
|
######################### CALCULATION COMPLETED #############################
|
|
#############################################################################
|
|
Suggested references for the acknowledgment of ABINIT usage.
|
|
|
|
The users of ABINIT have little formal obligations with respect to the ABINIT group
|
|
(those specified in the GNU General Public License, http://www.gnu.org/copyleft/gpl.txt).
|
|
However, it is common practice in the scientific literature,
|
|
to acknowledge the efforts of people that have made the research possible.
|
|
In this spirit, please find below suggested citations of work written by ABINIT developers,
|
|
corresponding to implementations inside of ABINIT that you have used in the present run.
|
|
Note also that it will be of great value to readers of publications presenting these results,
|
|
to read papers enabling them to understand the theoretical formalism and details
|
|
of the ABINIT implementation.
|
|
For information on why they are suggested, see also https://docs.abinit.org/theory/acknowledgments.
|
|
|
|
[1] a-TDEP: Temperature Dependent Effective Potential for Abinit
|
|
-- Lattice dynamic properties including anharmonicity
|
|
F. Bottin, J. Bieder and J. Bouchet, Comput. Phys. Comm. 254, 107301 (2020).
|
|
Strong suggestion to cite this paper in your publications.
|
|
|
|
[2] Thermal evolution of vibrational properties of alpha-U
|
|
J. Bouchet and F. Bottin, Phys. Rev. B 92, 174108 (2015).
|
|
Strong suggestion to cite this paper in your publications.
|
|
|
|
[3] Lattice dynamics of anharmonic solids from first principles
|
|
O. Hellman, I.A. Abrikosov and S.I. Simak, Phys. Rev. B 84, 180301(R) (2011).
|
|
|
|
[4] Temperature dependent effective potential method for accurate free energy calculations of solids
|
|
O. Hellman, P. Steneteg, I.A. Abrikosov and S.I. Simak, Phys. Rev. B 87, 104111 (2013).
|