abinit/tests/seq/Refs/tsv7_70.abo

1133 lines
60 KiB
Plaintext

.Version 10.1.4.5 of ABINIT, released Sep 2024.
.(sequential version, prepared for a x86_64_linux_gnu13.2 computer)
.Copyright (C) 1998-2025 ABINIT group .
ABINIT comes with ABSOLUTELY NO WARRANTY.
It is free software, and you are welcome to redistribute it
under certain conditions (GNU General Public License,
see ~abinit/COPYING or http://www.gnu.org/copyleft/gpl.txt).
ABINIT is a project of the Universite Catholique de Louvain,
Corning Inc. and other collaborators, see ~abinit/doc/developers/contributors.txt .
Please read https://docs.abinit.org/theory/acknowledgments for suggested
acknowledgments of the ABINIT effort.
For more information, see https://www.abinit.org .
.Starting date : Sat 14 Sep 2024.
- ( at 19h24 )
- input file -> /home/buildbot/ABINIT3/eos_gnu_13.2_serial/trunk_merge-10.0/tests/TestBot_MPI1/seq_tsv7_70/tsv7_70.abi
- output file -> tsv7_70.abo
- root for input files -> tsv7_70i
- root for output files -> tsv7_70o
DATASET 1 : space group F-4 3 m (#216); Bravais cF (face-center cubic)
================================================================================
Values of the parameters that define the memory need for DATASET 1.
intxc = 0 ionmov = 0 iscf = 17 lmnmax = 8
lnmax = 4 mgfft = 16 mpssoang = 2 mqgrid = 3001
natom = 2 nloc_mem = 2 nspden = 1 nspinor = 1
nsppol = 1 nsym = 24 n1xccc = 1 ntypat = 2
occopt = 1 xclevel = 1
- mband = 4 mffmem = 1 mkmem = 2
mpw = 138 nfft = 4096 nkpt = 2
PAW method is used; the additional fine FFT grid is defined by:
mgfftf= 20 nfftf = 8000
================================================================================
P This job should need less than 3.773 Mbytes of memory.
Rough estimation (10% accuracy) of disk space for files :
_ WF disk file : 0.019 Mbytes ; DEN or POT disk file : 0.063 Mbytes.
================================================================================
DATASET 2 : space group Im m 2 (# 44); Bravais oI (body-center ortho.)
================================================================================
Values of the parameters that define the memory need for DATASET 2.
intxc = 0 ionmov = 0 iscf = 17 lmnmax = 8
lnmax = 4 mgfft = 16 mpssoang = 2 mqgrid = 3001
natom = 2 nloc_mem = 2 nspden = 1 nspinor = 1
nsppol = 1 nsym = 4 n1xccc = 1 ntypat = 2
occopt = 1 xclevel = 1
- mband = 4 mffmem = 1 mkmem = 6
mpw = 138 nfft = 4096 nkpt = 6
PAW method is used; the additional fine FFT grid is defined by:
mgfftf= 20 nfftf = 8000
================================================================================
P This job should need less than 3.835 Mbytes of memory.
Rough estimation (10% accuracy) of disk space for files :
_ WF disk file : 0.053 Mbytes ; DEN or POT disk file : 0.063 Mbytes.
================================================================================
--------------------------------------------------------------------------------
------------- Echo of variables that govern the present computation ------------
--------------------------------------------------------------------------------
-
- outvars: echo of selected default values
- iomode0 = 0 , fftalg0 =512 , wfoptalg0 = 10
-
- outvars: echo of global parameters not present in the input file
- max_nthreads = 0
-
-outvars: echo values of preprocessed input variables --------
acell 1.0530000000E+01 1.0530000000E+01 1.0530000000E+01 Bohr
amu 2.69815390E+01 7.49215900E+01
berryopt1 -1
berryopt2 4
dilatmx 1.05000000E+00
ecut 4.00000000E+00 Hartree
ecutsm 5.00000000E-01 Hartree
efield1 0.00000000E+00 0.00000000E+00 0.00000000E+00
efield2 1.00000000E-04 0.00000000E+00 0.00000000E+00
- fftalg 512
getwfk1 0
getwfk2 1
ixc 7
jdtset 1 2
kpt1 -2.50000000E-01 5.00000000E-01 0.00000000E+00
-2.50000000E-01 0.00000000E+00 0.00000000E+00
kpt2 -2.50000000E-01 5.00000000E-01 0.00000000E+00
5.00000000E-01 -2.50000000E-01 0.00000000E+00
-2.50000000E-01 0.00000000E+00 0.00000000E+00
-2.50000000E-01 2.50000000E-01 2.50000000E-01
0.00000000E+00 -2.50000000E-01 0.00000000E+00
0.00000000E+00 5.00000000E-01 2.50000000E-01
kptrlatt 2 -2 2 -2 2 2 -2 -2 2
kptrlen 2.10600000E+01
P mkmem1 2
P mkmem2 6
natom 2
nband1 4
nband2 4
ndtset 2
ngfft 16 16 16
ngfftdg 20 20 20
nkpt1 2
nkpt2 6
nstep 10
nsym1 24
nsym2 4
ntypat 2
occ1 2.000000 2.000000 2.000000 2.000000
occ2 2.000000 2.000000 2.000000 2.000000
optforces 1
pawecutdg 8.00000000E+00 Hartree
rprim 0.0000000000E+00 5.0000000000E-01 5.0000000000E-01
5.0000000000E-01 0.0000000000E+00 5.0000000000E-01
5.0000000000E-01 5.0000000000E-01 0.0000000000E+00
shiftk 5.00000000E-01 5.00000000E-01 5.00000000E-01
spgroup1 216
spgroup2 44
symafm1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1
1 1 1 1
symafm2 1 1 1 1
symmorphi 0
symrel1 1 0 0 0 1 0 0 0 1 0 -1 1 0 -1 0 1 -1 0
-1 0 0 -1 0 1 -1 1 0 0 1 -1 1 0 -1 0 0 -1
-1 0 0 -1 1 0 -1 0 1 0 -1 1 1 -1 0 0 -1 0
1 0 0 0 0 1 0 1 0 0 1 -1 0 0 -1 1 0 -1
-1 0 1 -1 1 0 -1 0 0 0 -1 0 1 -1 0 0 -1 1
1 0 -1 0 0 -1 0 1 -1 0 1 0 0 0 1 1 0 0
1 0 -1 0 1 -1 0 0 -1 0 -1 0 0 -1 1 1 -1 0
-1 0 1 -1 0 0 -1 1 0 0 1 0 1 0 0 0 0 1
0 0 -1 0 1 -1 1 0 -1 1 -1 0 0 -1 1 0 -1 0
0 0 1 1 0 0 0 1 0 -1 1 0 -1 0 0 -1 0 1
0 0 1 0 1 0 1 0 0 1 -1 0 0 -1 0 0 -1 1
0 0 -1 1 0 -1 0 1 -1 -1 1 0 -1 0 1 -1 0 0
symrel2 1 0 0 0 1 0 0 0 1 -1 0 0 -1 0 1 -1 1 0
-1 0 0 -1 1 0 -1 0 1 1 0 0 0 0 1 0 1 0
tnons1 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
tnons2 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
toldfe 1.00000000E-22 Hartree
typat 1 2
useylm 1
wtk1 0.75000 0.25000
wtk2 0.25000 0.25000 0.12500 0.12500 0.12500 0.12500
xangst 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
1.3930590016E+00 1.3930590016E+00 1.3930590016E+00
xcart 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
2.6325000000E+00 2.6325000000E+00 2.6325000000E+00
xred 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
2.5000000000E-01 2.5000000000E-01 2.5000000000E-01
znucl 13.00000 33.00000
================================================================================
chkinp: Checking input parameters for consistency, jdtset= 1.
chkinp: Checking input parameters for consistency, jdtset= 2.
================================================================================
== DATASET 1 ==================================================================
- mpi_nproc: 1, omp_nthreads: -1 (-1 if OMP is not activated)
--- !DatasetInfo
iteration_state: {dtset: 1, }
dimensions: {natom: 2, nkpt: 2, mband: 4, nsppol: 1, nspinor: 1, nspden: 1, mpw: 138, }
cutoff_energies: {ecut: 4.0, pawecutdg: 8.0, }
electrons: {nelect: 8.00000000E+00, charge: 0.00000000E+00, occopt: 1.00000000E+00, tsmear: 1.00000000E-02, }
meta: {optdriver: 0, ionmov: 0, optcell: 0, iscf: 17, paral_kgb: 0, }
...
Exchange-correlation functional for the present dataset will be:
LDA: Perdew-Wang 92 LSD fit to Ceperley-Alder data - ixc=7
Citation for XC functional:
J.P.Perdew and Y.Wang, PRB 45, 13244 (1992)
Real(R)+Recip(G) space primitive vectors, cartesian coordinates (Bohr,Bohr^-1):
R(1)= 0.0000000 5.2650000 5.2650000 G(1)= -0.0949668 0.0949668 0.0949668
R(2)= 5.2650000 0.0000000 5.2650000 G(2)= 0.0949668 -0.0949668 0.0949668
R(3)= 5.2650000 5.2650000 0.0000000 G(3)= 0.0949668 0.0949668 -0.0949668
Unit cell volume ucvol= 2.9189397E+02 bohr^3
Angles (23,13,12)= 6.00000000E+01 6.00000000E+01 6.00000000E+01 degrees
Coarse grid specifications (used for wave-functions):
getcut: wavevector= 0.0000 0.0000 0.0000 ngfft= 16 16 16
ecut(hartree)= 4.410 => boxcut(ratio)= 2.27312
getcut : COMMENT -
Note that boxcut > 2.2 ; recall that boxcut=Gcut(box)/Gcut(sphere) = 2
is sufficient for exact treatment of convolution.
Such a large boxcut is a waste : you could raise ecut
e.g. ecut= 5.696695 Hartrees makes boxcut=2
Fine grid specifications (used for densities):
getcut: wavevector= 0.0000 0.0000 0.0000 ngfft= 20 20 20
ecut(hartree)= 8.820 => boxcut(ratio)= 2.00917
--- Pseudopotential description ------------------------------------------------
- pspini: atom type 1 psp file is /home/buildbot/ABINIT3/eos_gnu_13.2_serial/trunk_merge-10.0/tests/Pspdir/al_ps.abinit.paw
- pspatm: opening atomic psp file /home/buildbot/ABINIT3/eos_gnu_13.2_serial/trunk_merge-10.0/tests/Pspdir/al_ps.abinit.paw
- Paw atomic data for element Al - Generated by AtomPAW + AtomPAW2Abinit v3.2.1
- 13.00000 3.00000 20091223 znucl, zion, pspdat
7 7 1 0 473 0.00000 pspcod,pspxc,lmax,lloc,mmax,r2well
Pseudopotential format is: paw4
basis_size (lnmax)= 4 (lmn_size= 8), orbitals= 0 0 1 1
Spheres core radius: rc_sph= 2.01466516
4 radial meshes are used:
- mesh 1: r(i)=AA*[exp(BB*(i-1))-1], size= 473 , AA= 0.12205E-02 BB= 0.15866E-01
- mesh 2: r(i)=AA*[exp(BB*(i-1))-1], size= 468 , AA= 0.12205E-02 BB= 0.15866E-01
- mesh 3: r(i)=AA*[exp(BB*(i-1))-1], size= 521 , AA= 0.12205E-02 BB= 0.15866E-01
- mesh 4: r(i)=AA*[exp(BB*(i-1))-1], size= 569 , AA= 0.12205E-02 BB= 0.15866E-01
Shapefunction is SIN type: shapef(r)=[sin(pi*r/rshp)/(pi*r/rshp)]**2
Radius for shape functions = sphere core radius
Radial grid used for partial waves is grid 1
Radial grid used for projectors is grid 2
Radial grid used for (t)core density is grid 3
Radial grid used for Vloc is grid 4
Radial grid used for pseudo valence density is grid 4
Compensation charge density is taken into account in XC energy/potential
pspatm: atomic psp has been read and splines computed
- pspini: atom type 2 psp file is /home/buildbot/ABINIT3/eos_gnu_13.2_serial/trunk_merge-10.0/tests/Pspdir/as_ps.paw
- pspatm: opening atomic psp file /home/buildbot/ABINIT3/eos_gnu_13.2_serial/trunk_merge-10.0/tests/Pspdir/as_ps.paw
- Paw atomic data for element As - Generated by AtomPAW + AtomPAW2Abinit v3.2.0
- 33.00000 5.00000 20090611 znucl, zion, pspdat
7 7 1 0 495 0.00000 pspcod,pspxc,lmax,lloc,mmax,r2well
Pseudopotential format is: paw4
basis_size (lnmax)= 4 (lmn_size= 8), orbitals= 0 0 1 1
Spheres core radius: rc_sph= 2.20863348
4 radial meshes are used:
- mesh 1: r(i)=AA*[exp(BB*(i-1))-1], size= 495 , AA= 0.51795E-03 BB= 0.17092E-01
- mesh 2: r(i)=AA*[exp(BB*(i-1))-1], size= 501 , AA= 0.51795E-03 BB= 0.17092E-01
- mesh 3: r(i)=AA*[exp(BB*(i-1))-1], size= 546 , AA= 0.51795E-03 BB= 0.17092E-01
- mesh 4: r(i)=AA*[exp(BB*(i-1))-1], size= 578 , AA= 0.51795E-03 BB= 0.17092E-01
Shapefunction is SIN type: shapef(r)=[sin(pi*r/rshp)/(pi*r/rshp)]**2
Radius for shape functions = sphere core radius
Radial grid used for partial waves is grid 1
Radial grid used for projectors is grid 2
Radial grid used for (t)core density is grid 3
Radial grid used for Vloc is grid 4
Radial grid used for pseudo valence density is grid 4
Compensation charge density is taken into account in XC energy/potential
pspatm: atomic psp has been read and splines computed
2.11748330E+02 ecore*ucvol(ha*bohr**3)
--------------------------------------------------------------------------------
_setup2: Arith. and geom. avg. npw (full set) are 132.000 131.955
initberry: for direction 1, nkstr = 2, nstr = 16
initberry: for direction 2, nkstr = 2, nstr = 16
initberry: for direction 3, nkstr = 2, nstr = 16
================================================================================
--- !BeginCycle
iteration_state: {dtset: 1, }
solver: {iscf: 17, nstep: 10, nline: 4, wfoptalg: 10, }
tolerances: {toldfe: 1.00E-22, }
...
iter Etot(hartree) deltaE(h) residm nres2 diffor maxfor
ETOT 1 -8.5888016967677 -8.589E+00 4.264E-03 3.773E-01 0.000E+00 0.000E+00
ETOT 2 -8.5866365837552 2.165E-03 1.178E-07 5.499E-02 0.000E+00 0.000E+00
ETOT 3 -8.5852331371898 1.403E-03 4.931E-06 1.227E-03 1.309E-26 1.309E-26
ETOT 4 -8.5852389559298 -5.819E-06 7.774E-08 9.093E-05 1.289E-26 2.046E-28
ETOT 5 -8.5852397903811 -8.345E-07 1.772E-08 7.678E-06 1.023E-27 8.183E-28
ETOT 6 -8.5852399581213 -1.677E-07 3.820E-10 2.876E-07 8.183E-28 0.000E+00
ETOT 7 -8.5852399596457 -1.524E-09 2.390E-11 6.208E-09 1.279E-29 1.279E-29
ETOT 8 -8.5852399596791 -3.334E-11 2.701E-13 1.305E-09 3.676E-29 2.397E-29
ETOT 9 -8.5852399596527 2.641E-11 4.640E-13 1.058E-10 7.991E-30 1.598E-29
ETOT 10 -8.5852399596467 5.963E-12 2.984E-14 1.033E-12 1.678E-29 7.991E-31
Computing the polarization (Berry phase) for reciprocal vector:
0.50000 0.00000 0.00000 (in reduced coordinates)
-0.04748 0.04748 0.04748 (in cartesian coordinates - atomic units)
Number of strings: 16
Number of k points in string: 2
Summary of the results
Electronic Berry phase 1.737899402E-02
Ionic phase -7.500000000E-01
Total phase -7.326210060E-01
Remapping in [-1,1] -7.326210060E-01
Polarization -1.525885649E-02 (a.u. of charge)/bohr^2
Polarization -8.730318343E-01 C/m^2
Computing the polarization (Berry phase) for reciprocal vector:
0.00000 0.50000 0.00000 (in reduced coordinates)
0.04748 -0.04748 0.04748 (in cartesian coordinates - atomic units)
Number of strings: 16
Number of k points in string: 2
Summary of the results
Electronic Berry phase 1.737899402E-02
Ionic phase -7.500000000E-01
Total phase -7.326210060E-01
Remapping in [-1,1] -7.326210060E-01
Polarization -1.525885649E-02 (a.u. of charge)/bohr^2
Polarization -8.730318343E-01 C/m^2
Computing the polarization (Berry phase) for reciprocal vector:
0.00000 0.00000 0.50000 (in reduced coordinates)
0.04748 0.04748 -0.04748 (in cartesian coordinates - atomic units)
Number of strings: 16
Number of k points in string: 2
Summary of the results
Electronic Berry phase 1.737899402E-02
Ionic phase -7.500000000E-01
Total phase -7.326210060E-01
Remapping in [-1,1] -7.326210060E-01
Polarization -1.525885649E-02 (a.u. of charge)/bohr^2
Polarization -8.730318343E-01 C/m^2
Polarization in cartesian coordinates (a.u.):
(the sum of the electronic and ionic Berry phase has been folded into [-1, 1])
Electronic berry phase: 0.626942747E-03 0.626942747E-03 0.626942747E-03
...includes PAW on-site term: 0.000000000E+00 0.000000000E+00 0.000000000E+00
Ionic: -0.270560574E-01 -0.270560574E-01 -0.270560574E-01
Total: -0.264291147E-01 -0.264291147E-01 -0.264291147E-01
Polarization in cartesian coordinates (C/m^2):
(the sum of the electronic and ionic Berry phase has been folded into [-1, 1])
Electronic berry phase: 0.358703798E-01 0.358703798E-01 0.358703798E-01
...includes PAW on-site term: 0.000000000E+00 0.000000000E+00 0.000000000E+00
Ionic: -0.154800587E+01 -0.154800587E+01 -0.154800587E+01
Total: -0.151213549E+01 -0.151213549E+01 -0.151213549E+01
Cartesian components of stress tensor (hartree/bohr^3)
sigma(1 1)= -1.62563221E-04 sigma(3 2)= 0.00000000E+00
sigma(2 2)= -1.62563221E-04 sigma(3 1)= 0.00000000E+00
sigma(3 3)= -1.62563221E-04 sigma(2 1)= 0.00000000E+00
scprqt: WARNING -
nstep= 10 was not enough SCF cycles to converge;
maximum energy difference= 5.963E-12 exceeds toldfe= 1.000E-22
--- !ResultsGS
iteration_state: {dtset: 1, }
comment : Summary of ground state results
lattice_vectors:
- [ 0.0000000, 5.2650000, 5.2650000, ]
- [ 5.2650000, 0.0000000, 5.2650000, ]
- [ 5.2650000, 5.2650000, 0.0000000, ]
lattice_lengths: [ 7.44583, 7.44583, 7.44583, ]
lattice_angles: [ 60.000, 60.000, 60.000, ] # degrees, (23, 13, 12)
lattice_volume: 2.9189397E+02
convergence: {deltae: 5.963E-12, res2: 1.033E-12, residm: 2.984E-14, diffor: 1.678E-29, }
etotal : -8.58523996E+00
entropy : 0.00000000E+00
fermie : 8.20644201E-02
cartesian_stress_tensor: # hartree/bohr^3
- [ -1.62563221E-04, 0.00000000E+00, 0.00000000E+00, ]
- [ 0.00000000E+00, -1.62563221E-04, 0.00000000E+00, ]
- [ 0.00000000E+00, 0.00000000E+00, -1.62563221E-04, ]
pressure_GPa: 4.7828E+00
xred :
- [ 0.0000E+00, 0.0000E+00, 0.0000E+00, Al]
- [ 2.5000E-01, 2.5000E-01, 2.5000E-01, As]
cartesian_forces: # hartree/bohr
- [ -7.99099366E-31, -7.99099366E-31, -7.99099366E-31, ]
- [ 7.99099366E-31, 7.99099366E-31, 7.99099366E-31, ]
force_length_stats: {min: 1.38408070E-30, max: 1.38408070E-30, mean: 1.38408070E-30, }
...
Integrated electronic density in atomic spheres:
------------------------------------------------
Atom Sphere_radius Integrated_density
1 2.01467 0.98221041
2 2.20863 3.19831777
PAW TEST:
==== Compensation charge inside spheres ============
The following values must be close to each other ...
Compensation charge over spherical meshes = -0.941483559191504
Compensation charge over fine fft grid = -0.941464316347655
==== Results concerning PAW augmentation regions ====
Total pseudopotential strength Dij (hartree):
Atom # 1
0.35140 0.00184 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
0.00184 12.94122 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
0.00000 0.00000 0.07809 0.00000 0.00000 -0.01112 0.00000 0.00000
0.00000 0.00000 0.00000 0.07809 0.00000 0.00000 -0.01112 0.00000
0.00000 0.00000 0.00000 0.00000 0.07809 0.00000 0.00000 -0.01112
0.00000 0.00000 -0.01112 0.00000 0.00000 0.10126 0.00000 0.00000
0.00000 0.00000 0.00000 -0.01112 0.00000 0.00000 0.10126 0.00000
0.00000 0.00000 0.00000 0.00000 -0.01112 0.00000 0.00000 0.10126
Atom # 2
0.26000 -0.05539 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
-0.05539 1.29654 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
0.00000 0.00000 -0.03869 0.00000 0.00000 -0.00675 0.00000 0.00000
0.00000 0.00000 0.00000 -0.03869 0.00000 0.00000 -0.00675 0.00000
0.00000 0.00000 0.00000 0.00000 -0.03869 0.00000 0.00000 -0.00675
0.00000 0.00000 -0.00675 0.00000 0.00000 -0.15538 0.00000 0.00000
0.00000 0.00000 0.00000 -0.00675 0.00000 0.00000 -0.15538 0.00000
0.00000 0.00000 0.00000 0.00000 -0.00675 0.00000 0.00000 -0.15538
Augmentation waves occupancies Rhoij:
Atom # 1
1.24886 0.00274 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
0.00274 0.00002 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
0.00000 0.00000 0.89491 0.00000 0.00000 -0.01067 0.00000 0.00000
0.00000 0.00000 0.00000 0.89491 0.00000 0.00000 -0.01067 0.00000
0.00000 0.00000 0.00000 0.00000 0.89491 0.00000 0.00000 -0.01067
0.00000 0.00000 -0.01067 0.00000 0.00000 0.00017 0.00000 0.00000
0.00000 0.00000 0.00000 -0.01067 0.00000 0.00000 0.00017 0.00000
0.00000 0.00000 0.00000 0.00000 -0.01067 0.00000 0.00000 0.00017
Atom # 2
1.76119 0.02611 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
0.02611 0.00072 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
0.00000 0.00000 0.94714 0.00000 0.00000 0.04995 0.00000 0.00000
0.00000 0.00000 0.00000 0.94714 0.00000 0.00000 0.04995 0.00000
0.00000 0.00000 0.00000 0.00000 0.94714 0.00000 0.00000 0.04995
0.00000 0.00000 0.04995 0.00000 0.00000 0.00277 0.00000 0.00000
0.00000 0.00000 0.00000 0.04995 0.00000 0.00000 0.00277 0.00000
0.00000 0.00000 0.00000 0.00000 0.04995 0.00000 0.00000 0.00277
================================================================================
----iterations are completed or convergence reached----
Mean square residual over all n,k,spin= 10.883E-15; max= 29.835E-15
reduced coordinates (array xred) for 2 atoms
0.000000000000 0.000000000000 0.000000000000
0.250000000000 0.250000000000 0.250000000000
rms dE/dt= 1.1900E-29; max dE/dt= 1.6829E-29; dE/dt below (all hartree)
1 0.000000000000 0.000000000000 0.000000000000
2 0.000000000000 0.000000000000 0.000000000000
cartesian coordinates (angstrom) at end:
1 0.00000000000000 0.00000000000000 0.00000000000000
2 1.39305900161317 1.39305900161317 1.39305900161317
cartesian forces (hartree/bohr) at end:
1 -0.00000000000000 -0.00000000000000 -0.00000000000000
2 0.00000000000000 0.00000000000000 0.00000000000000
frms,max,avg= 7.9909937E-31 7.9909937E-31 0.000E+00 0.000E+00 0.000E+00 h/b
cartesian forces (eV/Angstrom) at end:
1 -0.00000000000000 -0.00000000000000 -0.00000000000000
2 0.00000000000000 0.00000000000000 0.00000000000000
frms,max,avg= 4.1091338E-29 4.1091338E-29 0.000E+00 0.000E+00 0.000E+00 e/A
length scales= 10.530000000000 10.530000000000 10.530000000000 bohr
= 5.572236006453 5.572236006453 5.572236006453 angstroms
prteigrs : about to open file tsv7_70o_DS1_EIG
Fermi (or HOMO) energy (hartree) = 0.08206 Average Vxc (hartree)= -0.33066
Eigenvalues (hartree) for nkpt= 2 k points:
kpt# 1, nband= 4, wtk= 0.75000, kpt= -0.2500 0.5000 0.0000 (reduced coord)
-0.27294 -0.09227 -0.00669 0.03741
prteigrs : prtvol=0 or 1, do not print more k-points.
--- !EnergyTerms
iteration_state : {dtset: 1, }
comment : Components of total free energy in Hartree
kinetic : 3.47974715002176E+00
hartree : 7.72876250783594E-01
xc : -2.69143656061075E+00
Ewald energy : -8.54432049481056E+00
psp_core : 7.25428932010496E-01
local_psp : -2.38444222266219E+00
spherical_terms : 5.69062120510393E-02
total_energy : -8.58524073321661E+00
total_energy_eV : -2.33616281122065E+02
...
--- !EnergyTermsDC
iteration_state : {dtset: 1, }
comment : '"Double-counting" decomposition of free energy'
band_energy : -5.92108141213374E-01
Ewald energy : -8.54432049481056E+00
psp_core : 7.25428932010496E-01
xc_dc : -2.54954975859103E-01
spherical_terms : 8.07147202258360E-02
total_energy_dc : -8.58523995964670E+00
total_energy_dc_eV : -2.33616260072157E+02
...
Cartesian components of stress tensor (hartree/bohr^3)
sigma(1 1)= -1.62563221E-04 sigma(3 2)= 0.00000000E+00
sigma(2 2)= -1.62563221E-04 sigma(3 1)= 0.00000000E+00
sigma(3 3)= -1.62563221E-04 sigma(2 1)= 0.00000000E+00
-Cartesian components of stress tensor (GPa) [Pressure= 4.7828E+00 GPa]
- sigma(1 1)= -4.78277428E+00 sigma(3 2)= 0.00000000E+00
- sigma(2 2)= -4.78277428E+00 sigma(3 1)= 0.00000000E+00
- sigma(3 3)= -4.78277428E+00 sigma(2 1)= 0.00000000E+00
================================================================================
== DATASET 2 ==================================================================
- mpi_nproc: 1, omp_nthreads: -1 (-1 if OMP is not activated)
--- !DatasetInfo
iteration_state: {dtset: 2, }
dimensions: {natom: 2, nkpt: 6, mband: 4, nsppol: 1, nspinor: 1, nspden: 1, mpw: 138, }
cutoff_energies: {ecut: 4.0, pawecutdg: 8.0, }
electrons: {nelect: 8.00000000E+00, charge: 0.00000000E+00, occopt: 1.00000000E+00, tsmear: 1.00000000E-02, }
meta: {optdriver: 0, ionmov: 0, optcell: 0, iscf: 17, paral_kgb: 0, }
...
mkfilename : getwfk/=0, take file _WFK from output of DATASET 1.
Exchange-correlation functional for the present dataset will be:
LDA: Perdew-Wang 92 LSD fit to Ceperley-Alder data - ixc=7
Citation for XC functional:
J.P.Perdew and Y.Wang, PRB 45, 13244 (1992)
Real(R)+Recip(G) space primitive vectors, cartesian coordinates (Bohr,Bohr^-1):
R(1)= 0.0000000 5.2650000 5.2650000 G(1)= -0.0949668 0.0949668 0.0949668
R(2)= 5.2650000 0.0000000 5.2650000 G(2)= 0.0949668 -0.0949668 0.0949668
R(3)= 5.2650000 5.2650000 0.0000000 G(3)= 0.0949668 0.0949668 -0.0949668
Unit cell volume ucvol= 2.9189397E+02 bohr^3
Angles (23,13,12)= 6.00000000E+01 6.00000000E+01 6.00000000E+01 degrees
Coarse grid specifications (used for wave-functions):
getcut: wavevector= 0.0000 0.0000 0.0000 ngfft= 16 16 16
ecut(hartree)= 4.410 => boxcut(ratio)= 2.27312
getcut : COMMENT -
Note that boxcut > 2.2 ; recall that boxcut=Gcut(box)/Gcut(sphere) = 2
is sufficient for exact treatment of convolution.
Such a large boxcut is a waste : you could raise ecut
e.g. ecut= 5.696695 Hartrees makes boxcut=2
Fine grid specifications (used for densities):
getcut: wavevector= 0.0000 0.0000 0.0000 ngfft= 20 20 20
ecut(hartree)= 8.820 => boxcut(ratio)= 2.00917
--------------------------------------------------------------------------------
-inwffil : will read wavefunctions from disk file tsv7_70o_DS1_WFK
_setup2: Arith. and geom. avg. npw (full set) are 132.000 131.955
initberry: for direction 1, nkstr = 2, nstr = 16
initberry: for direction 2, nkstr = 2, nstr = 16
initberry: for direction 3, nkstr = 2, nstr = 16
initberry: COMMENT -
As a rough estimate,
to be below the critical field, the bandgap of your system
should be larger than 0.03 eV.
================================================================================
--- !BeginCycle
iteration_state: {dtset: 2, }
solver: {iscf: 17, nstep: 10, nline: 4, wfoptalg: 10, }
tolerances: {toldfe: 1.00E-22, }
...
iter Etot(hartree) deltaE(h) residm nres2 diffor maxfor
ETOT 1 -8.5872195661141 -8.587E+00 4.940E-04 5.855E-02 3.632E-04 3.632E-04
ETOT 2 -8.5846572652827 2.562E-03 1.364E-07 4.926E-03 5.710E-04 2.078E-04
ETOT 3 -8.5844736352292 1.836E-04 1.187E-06 2.721E-04 1.236E-04 3.314E-04
ETOT 4 -8.5844694036123 4.232E-06 1.461E-07 1.037E-05 2.282E-05 3.086E-04
ETOT 5 -8.5844694433566 -3.974E-08 1.171E-07 7.390E-07 3.003E-05 2.785E-04
ETOT 6 -8.5844693168185 1.265E-07 1.172E-07 4.092E-08 5.444E-07 2.791E-04
ETOT 7 -8.5844693122505 4.568E-09 1.173E-07 2.015E-09 3.778E-06 2.829E-04
ETOT 8 -8.5844693239091 -1.166E-08 1.172E-07 1.537E-10 5.603E-07 2.834E-04
ETOT 9 -8.5844693248569 -9.478E-10 1.172E-07 1.164E-11 7.481E-07 2.827E-04
ETOT 10 -8.5844693224241 2.433E-09 1.172E-07 2.028E-12 2.002E-07 2.829E-04
Computing the polarization (Berry phase) for reciprocal vector:
0.50000 0.00000 0.00000 (in reduced coordinates)
-0.04748 0.04748 0.04748 (in cartesian coordinates - atomic units)
Number of strings: 16
Number of k points in string: 2
Summary of the results
Electronic Berry phase 1.627778644E-02
Ionic phase -7.500000000E-01
Total phase -7.337222136E-01
Remapping in [-1,1] -7.337222136E-01
Polarization -1.528179218E-02 (a.u. of charge)/bohr^2
Polarization -8.743440943E-01 C/m^2
Computing the polarization (Berry phase) for reciprocal vector:
0.00000 0.50000 0.00000 (in reduced coordinates)
0.04748 -0.04748 0.04748 (in cartesian coordinates - atomic units)
Number of strings: 16
Number of k points in string: 2
Summary of the results
Electronic Berry phase 1.870334750E-02
Ionic phase -7.500000000E-01
Total phase -7.312966525E-01
Remapping in [-1,1] -7.312966525E-01
Polarization -1.523127317E-02 (a.u. of charge)/bohr^2
Polarization -8.714536612E-01 C/m^2
Computing the polarization (Berry phase) for reciprocal vector:
0.00000 0.00000 0.50000 (in reduced coordinates)
0.04748 0.04748 -0.04748 (in cartesian coordinates - atomic units)
Number of strings: 16
Number of k points in string: 2
Summary of the results
Electronic Berry phase 1.870334750E-02
Ionic phase -7.500000000E-01
Total phase -7.312966525E-01
Remapping in [-1,1] -7.312966525E-01
Polarization -1.523127317E-02 (a.u. of charge)/bohr^2
Polarization -8.714536612E-01 C/m^2
Polarization in cartesian coordinates (a.u.):
(the sum of the electronic and ionic Berry phase has been folded into [-1, 1])
Electronic berry phase: 0.674718459E-03 0.630967713E-03 0.630967713E-03
...includes PAW on-site term: -0.710088114E-06 0.000000000E+00 0.000000000E+00
Ionic: -0.270560574E-01 -0.270560574E-01 -0.270560574E-01
Total: -0.263813390E-01 -0.264250897E-01 -0.264250897E-01
Polarization in cartesian coordinates (C/m^2):
(the sum of the electronic and ionic Berry phase has been folded into [-1, 1])
Electronic berry phase: 0.386038557E-01 0.361006672E-01 0.361006672E-01
...includes PAW on-site term: -0.406275221E-04 0.000000000E+00 0.000000000E+00
Ionic: -0.154800587E+01 -0.154800587E+01 -0.154800587E+01
Total: -0.150940202E+01 -0.151190521E+01 -0.151190521E+01
Stress tensor under a constant electric field:
Cartesian components of Maxwell stress tensor (hartree/bohr^3)
Maxstr(1 1)= 3.16628699E-11 Maxstr(3 2)= 0.00000000E+00
Maxstr(2 2)= -3.16628699E-11 Maxstr(3 1)= 0.00000000E+00
Maxstr(3 3)= -3.16628699E-11 Maxstr(2 1)= 0.00000000E+00
Cartesian components of stress tensor (hartree/bohr^3)
sigma(1 1)= -1.62716846E-04 sigma(3 2)= 1.17238466E-06
sigma(2 2)= -1.62718740E-04 sigma(3 1)= 0.00000000E+00
sigma(3 3)= -1.62718740E-04 sigma(2 1)= 0.00000000E+00
scprqt: WARNING -
nstep= 10 was not enough SCF cycles to converge;
maximum energy difference= 2.433E-09 exceeds toldfe= 1.000E-22
--- !ResultsGS
iteration_state: {dtset: 2, }
comment : Summary of ground state results
lattice_vectors:
- [ 0.0000000, 5.2650000, 5.2650000, ]
- [ 5.2650000, 0.0000000, 5.2650000, ]
- [ 5.2650000, 5.2650000, 0.0000000, ]
lattice_lengths: [ 7.44583, 7.44583, 7.44583, ]
lattice_angles: [ 60.000, 60.000, 60.000, ] # degrees, (23, 13, 12)
lattice_volume: 2.9189397E+02
convergence: {deltae: 2.433E-09, res2: 2.028E-12, residm: 1.172E-07, diffor: 2.002E-07, }
etotal : -8.58446932E+00
entropy : 0.00000000E+00
fermie : 8.20733363E-02
cartesian_stress_tensor: # hartree/bohr^3
- [ -1.62716846E-04, 0.00000000E+00, 0.00000000E+00, ]
- [ 0.00000000E+00, -1.62718740E-04, 1.17238466E-06, ]
- [ 0.00000000E+00, 1.17238466E-06, -1.62718740E-04, ]
pressure_GPa: 4.7873E+00
xred :
- [ 0.0000E+00, 0.0000E+00, 0.0000E+00, Al]
- [ 2.5000E-01, 2.5000E-01, 2.5000E-01, As]
cartesian_forces: # hartree/bohr
- [ 2.82878604E-04, -1.04476354E-21, 1.04476354E-21, ]
- [ -2.82878604E-04, 1.04476354E-21, -1.04476354E-21, ]
force_length_stats: {min: 2.82878604E-04, max: 2.82878604E-04, mean: 2.82878604E-04, }
...
Integrated electronic density in atomic spheres:
------------------------------------------------
Atom Sphere_radius Integrated_density
1 2.01467 0.98223496
2 2.20863 3.19833665
PAW TEST:
==== Compensation charge inside spheres ============
The following values must be close to each other ...
Compensation charge over spherical meshes = -0.941502929504007
Compensation charge over fine fft grid = -0.941484473434902
==== Results concerning PAW augmentation regions ====
Total pseudopotential strength Dij (hartree):
Atom # 1
0.35140 0.00184 0.00000 0.00000 0.00000 0.00000 0.00000 -0.00000
0.00184 12.94123 0.00000 0.00000 -0.00000 0.00000 0.00000 -0.00002
0.00000 0.00000 0.07809 0.00000 0.00000 -0.01112 0.00000 0.00000
0.00000 0.00000 0.00000 0.07809 0.00000 0.00000 -0.01112 0.00000
0.00000 -0.00000 0.00000 0.00000 0.07809 0.00000 0.00000 -0.01112
0.00000 0.00000 -0.01112 0.00000 0.00000 0.10126 0.00000 0.00000
0.00000 0.00000 0.00000 -0.01112 0.00000 0.00000 0.10126 0.00000
-0.00000 -0.00002 0.00000 0.00000 -0.01112 0.00000 0.00000 0.10126
Atom # 2
0.26000 -0.05539 0.00000 0.00000 0.00001 0.00000 0.00000 0.00002
-0.05539 1.29654 0.00000 0.00000 -0.00000 0.00000 0.00000 0.00000
0.00000 0.00000 -0.03869 -0.00000 0.00000 -0.00675 -0.00000 0.00000
0.00000 0.00000 -0.00000 -0.03869 0.00000 -0.00000 -0.00675 0.00000
0.00001 -0.00000 0.00000 0.00000 -0.03869 0.00000 0.00000 -0.00675
0.00000 0.00000 -0.00675 -0.00000 0.00000 -0.15538 0.00000 0.00000
0.00000 0.00000 -0.00000 -0.00675 0.00000 0.00000 -0.15538 0.00000
0.00002 0.00000 0.00000 0.00000 -0.00675 0.00000 0.00000 -0.15538
Augmentation waves occupancies Rhoij:
Atom # 1
1.24912 0.00274 0.00000 0.00000 0.00082 0.00000 0.00000 -0.00001
0.00274 0.00002 0.00000 0.00000 -0.00001 0.00000 0.00000 0.00000
0.00000 0.00000 0.89481 0.00133 0.00000 -0.01067 -0.00000 0.00000
0.00000 0.00000 0.00133 0.89481 0.00000 -0.00000 -0.01067 0.00000
0.00082 -0.00001 0.00000 0.00000 0.89481 0.00000 0.00000 -0.01067
0.00000 0.00000 -0.01067 -0.00000 0.00000 0.00017 -0.00000 0.00000
0.00000 0.00000 -0.00000 -0.01067 0.00000 -0.00000 0.00017 0.00000
-0.00001 0.00000 0.00000 0.00000 -0.01067 0.00000 0.00000 0.00017
Atom # 2
1.76120 0.02612 0.00000 0.00000 0.00081 0.00000 0.00000 0.00002
0.02612 0.00072 0.00000 0.00000 -0.00004 0.00000 0.00000 -0.00000
0.00000 0.00000 0.94716 -0.00051 0.00000 0.04995 -0.00001 0.00000
0.00000 0.00000 -0.00051 0.94716 0.00000 -0.00001 0.04995 0.00000
0.00081 -0.00004 0.00000 0.00000 0.94716 0.00000 0.00000 0.04995
0.00000 0.00000 0.04995 -0.00001 0.00000 0.00277 -0.00000 0.00000
0.00000 0.00000 -0.00001 0.04995 0.00000 -0.00000 0.00277 0.00000
0.00002 -0.00000 0.00000 0.00000 0.04995 0.00000 0.00000 0.00277
================================================================================
----iterations are completed or convergence reached----
Mean square residual over all n,k,spin= 32.209E-09; max= 11.721E-08
reduced coordinates (array xred) for 2 atoms
0.000000000000 0.000000000000 0.000000000000
0.250000000000 0.250000000000 0.250000000000
rms dE/dt= 1.2592E-03; max dE/dt= 1.8894E-03; dE/dt below (all hartree)
1 0.000000000000 -0.001089275502 -0.001089275502
2 0.000000000000 0.001889436193 0.001889436193
cartesian coordinates (angstrom) at end:
1 0.00000000000000 0.00000000000000 0.00000000000000
2 1.39305900161317 1.39305900161317 1.39305900161317
cartesian forces (hartree/bohr) at end:
1 0.00028287860351 -0.00000000000000 0.00000000000000
2 -0.00028287860351 0.00000000000000 -0.00000000000000
frms,max,avg= 1.6332004E-04 2.8287860E-04 -7.599E-05 0.000E+00 0.000E+00 h/b
cartesian forces (eV/Angstrom) at end:
1 0.01454620142530 -0.00000000000000 0.00000000000000
2 -0.01454620142530 0.00000000000000 -0.00000000000000
frms,max,avg= 8.3982533E-03 1.4546201E-02 -3.907E-03 0.000E+00 0.000E+00 e/A
length scales= 10.530000000000 10.530000000000 10.530000000000 bohr
= 5.572236006453 5.572236006453 5.572236006453 angstroms
prteigrs : about to open file tsv7_70o_DS2_EIG
Fermi (or HOMO) energy (hartree) = 0.08207 Average Vxc (hartree)= -0.33066
Eigenvalues (hartree) for nkpt= 6 k points:
kpt# 1, nband= 4, wtk= 0.25000, kpt= -0.2500 0.5000 0.0000 (reduced coord)
-0.27294 -0.09228 -0.00668 0.03741
prteigrs : prtvol=0 or 1, do not print more k-points.
--- !EnergyTerms
iteration_state : {dtset: 2, }
comment : Components of total free energy in Hartree
kinetic : 3.47975699493670E+00
hartree : 7.72875747392854E-01
xc : -2.69143785808635E+00
Ewald energy : -8.54432049481056E+00
psp_core : 7.25428932010496E-01
local_psp : -2.38448029688266E+00
spherical_terms : 5.69377994669682E-02
electric : 7.69939234158951E-04
kohn_sham : -8.58523917597254E+00
total_energy : -8.58446923673838E+00
total_energy_eV : -2.33595287635249E+02
...
--- !EnergyTermsDC
iteration_state : {dtset: 2, }
comment : '"Double-counting" decomposition of free energy'
band_energy : -5.92105339588200E-01
Ewald energy : -8.54432049481056E+00
psp_core : 7.25428932010496E-01
xc_dc : -2.54955379670290E-01
electric_field : 7.69939234158951E-04
spherical_terms : 8.07130197145216E-02
total_energy_dc : -8.58446932310987E+00
total_energy_dc_eV : -2.33595289985537E+02
...
Constant unreduced E calculation - final values:
(a. u.)
E: 1.000000000E-04 0.000000000E+00 0.000000000E+00
P: -2.638133899E-02 -2.642508973E-02 -2.642508973E-02
ebar: 0.000000000E+00 5.265000000E-04 5.265000000E-04
pbar: -3.496670471E+00 -3.493775836E+00 -3.493775836E+00
e: -2.205905416E-04 2.205905416E-04 2.205905416E-04
p: -7.337222136E-01 -7.312966525E-01 -7.312966525E-01
(S.I.), that is V/m for E, and C/m^2 for P
- E: 5.142206319E+07 0.000000000E+00 0.000000000E+00
P: -1.509402018E+00 -1.511905206E+00 -1.511905206E+00
Please check: COMMENT -
As a rough estimate,
to be below the critical field, the bandgap of your system
should be larger than 0.03 eV.
--------------------------------------------------------------------------------
Cartesian components of stress tensor (hartree/bohr^3)
sigma(1 1)= -1.62716846E-04 sigma(3 2)= 1.17238466E-06
sigma(2 2)= -1.62718740E-04 sigma(3 1)= 0.00000000E+00
sigma(3 3)= -1.62718740E-04 sigma(2 1)= 0.00000000E+00
-Cartesian components of stress tensor (GPa) [Pressure= 4.7873E+00 GPa]
- sigma(1 1)= -4.78729409E+00 sigma(3 2)= 3.44927418E-02
- sigma(2 2)= -4.78734980E+00 sigma(3 1)= 0.00000000E+00
- sigma(3 3)= -4.78734980E+00 sigma(2 1)= 0.00000000E+00
== END DATASET(S) ==============================================================
================================================================================
-outvars: echo values of variables after computation --------
acell 1.0530000000E+01 1.0530000000E+01 1.0530000000E+01 Bohr
amu 2.69815390E+01 7.49215900E+01
berryopt1 -1
berryopt2 4
dilatmx 1.05000000E+00
ecut 4.00000000E+00 Hartree
ecutsm 5.00000000E-01 Hartree
efield1 0.00000000E+00 0.00000000E+00 0.00000000E+00
efield2 1.00000000E-04 0.00000000E+00 0.00000000E+00
etotal1 -8.5852399596E+00
etotal2 -8.5844693231E+00
fcart1 -7.9909936585E-31 -7.9909936585E-31 -7.9909936585E-31
7.9909936585E-31 7.9909936585E-31 7.9909936585E-31
fcart2 2.8287860351E-04 -1.0447635409E-21 1.0447635409E-21
-2.8287860351E-04 1.0447635409E-21 -1.0447635409E-21
- fftalg 512
getwfk1 0
getwfk2 1
ixc 7
jdtset 1 2
kpt1 -2.50000000E-01 5.00000000E-01 0.00000000E+00
-2.50000000E-01 0.00000000E+00 0.00000000E+00
kpt2 -2.50000000E-01 5.00000000E-01 0.00000000E+00
5.00000000E-01 -2.50000000E-01 0.00000000E+00
-2.50000000E-01 0.00000000E+00 0.00000000E+00
-2.50000000E-01 2.50000000E-01 2.50000000E-01
0.00000000E+00 -2.50000000E-01 0.00000000E+00
0.00000000E+00 5.00000000E-01 2.50000000E-01
kptrlatt 2 -2 2 -2 2 2 -2 -2 2
kptrlen 2.10600000E+01
P mkmem1 2
P mkmem2 6
natom 2
nband1 4
nband2 4
ndtset 2
ngfft 16 16 16
ngfftdg 20 20 20
nkpt1 2
nkpt2 6
nstep 10
nsym1 24
nsym2 4
ntypat 2
occ1 2.000000 2.000000 2.000000 2.000000
occ2 2.000000 2.000000 2.000000 2.000000
optforces 1
pawecutdg 8.00000000E+00 Hartree
rprim 0.0000000000E+00 5.0000000000E-01 5.0000000000E-01
5.0000000000E-01 0.0000000000E+00 5.0000000000E-01
5.0000000000E-01 5.0000000000E-01 0.0000000000E+00
shiftk 5.00000000E-01 5.00000000E-01 5.00000000E-01
spgroup1 216
spgroup2 44
strten1 -1.6256322108E-04 -1.6256322108E-04 -1.6256322108E-04
0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
strten2 -1.6271684609E-04 -1.6271873965E-04 -1.6271873965E-04
1.1723846603E-06 0.0000000000E+00 0.0000000000E+00
symafm1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1
1 1 1 1
symafm2 1 1 1 1
symmorphi 0
symrel1 1 0 0 0 1 0 0 0 1 0 -1 1 0 -1 0 1 -1 0
-1 0 0 -1 0 1 -1 1 0 0 1 -1 1 0 -1 0 0 -1
-1 0 0 -1 1 0 -1 0 1 0 -1 1 1 -1 0 0 -1 0
1 0 0 0 0 1 0 1 0 0 1 -1 0 0 -1 1 0 -1
-1 0 1 -1 1 0 -1 0 0 0 -1 0 1 -1 0 0 -1 1
1 0 -1 0 0 -1 0 1 -1 0 1 0 0 0 1 1 0 0
1 0 -1 0 1 -1 0 0 -1 0 -1 0 0 -1 1 1 -1 0
-1 0 1 -1 0 0 -1 1 0 0 1 0 1 0 0 0 0 1
0 0 -1 0 1 -1 1 0 -1 1 -1 0 0 -1 1 0 -1 0
0 0 1 1 0 0 0 1 0 -1 1 0 -1 0 0 -1 0 1
0 0 1 0 1 0 1 0 0 1 -1 0 0 -1 0 0 -1 1
0 0 -1 1 0 -1 0 1 -1 -1 1 0 -1 0 1 -1 0 0
symrel2 1 0 0 0 1 0 0 0 1 -1 0 0 -1 0 1 -1 1 0
-1 0 0 -1 1 0 -1 0 1 1 0 0 0 0 1 0 1 0
tnons1 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
tnons2 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
toldfe 1.00000000E-22 Hartree
typat 1 2
useylm 1
wtk1 0.75000 0.25000
wtk2 0.25000 0.25000 0.12500 0.12500 0.12500 0.12500
xangst 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
1.3930590016E+00 1.3930590016E+00 1.3930590016E+00
xcart 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
2.6325000000E+00 2.6325000000E+00 2.6325000000E+00
xred 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
2.5000000000E-01 2.5000000000E-01 2.5000000000E-01
znucl 13.00000 33.00000
================================================================================
- Total cpu time (s,m,h): 1.6 0.03 0.000
- Total wall clock time (s,m,h): 1.7 0.03 0.000
-
- For major independent code sections, cpu and wall times (sec),
- as well as % of the time and number of calls for node 0
-
-<BEGIN_TIMER mpi_nprocs = 1, omp_nthreads = 1, mpi_rank = 0>
- cpu_time = 1.6, wall_time = 1.7
-
- routine cpu % wall % number of calls Gflops Speedup Efficacity
- (-1=no count)
- pspini 0.334 20.2 0.333 19.8 2 -1.00 1.00 1.00
- timing timab 0.113 6.9 0.114 6.8 10 -1.00 0.99 0.99
- fourwf%(pot) 0.083 5.1 0.106 6.3 1804 -1.00 0.79 0.79
- get_dtsets_pspheads 0.058 3.5 0.059 3.5 1 -1.00 0.99 0.99
- getcprj%opernla 0.037 2.2 0.035 2.1 11134 -1.00 1.05 1.05
- fourdp 0.028 1.7 0.057 3.4 247 -1.00 0.49 0.49
- nonlop(apply) 0.026 1.6 0.018 1.1 1804 -1.00 1.43 1.43
- abinit(outvars) 0.024 1.5 0.024 1.4 1 -1.00 1.00 1.00
- abinit(after driver) 0.022 1.3 0.021 1.2 1 -1.00 1.03 1.03
- abinit(chkinp,chkvars) 0.020 1.2 0.020 1.2 1 -1.00 0.99 0.99
- ewald 0.018 1.1 0.018 1.1 2 -1.00 1.02 1.02
- forces 0.018 1.1 0.019 1.1 20 -1.00 0.97 0.97
- stress 0.015 0.9 0.014 0.8 2 -1.00 1.09 1.09
- ewald2 (+vdw_dftd) 0.014 0.9 0.014 0.8 2 -1.00 1.01 1.01
- pawinit 0.014 0.8 0.012 0.7 4 -1.00 1.16 1.16
- getghc(/=fourXX,nonlop,fock_XX) 0.013 0.8 0.014 0.8 -1 -1.00 0.93 0.93
- pawmkrho 0.012 0.7 0.014 0.8 20 -1.00 0.87 0.87
- initberry 0.011 0.7 0.010 0.6 2 -1.00 1.07 1.07
- xc:pot/=fourdp 0.010 0.6 0.012 0.7 40 -1.00 0.82 0.82
- pawdenpot 0.010 0.6 0.010 0.6 32 -1.00 0.95 0.95
- others (140) 0.061 3.7 0.066 3.9 -1 -1.00 0.92 0.92
-<END_TIMER>
-
- subtotal 0.941 57.1 0.990 58.9 0.95 0.95
- For major independent code sections, cpu and wall times (sec),
- as well as % of the total time and number of calls
-<BEGIN_TIMER mpi_nprocs = 1, omp_nthreads = 1, mpi_rank = world>
- cpu_time = 1.6, wall_time = 1.7
-
- routine cpu % wall % number of calls Gflops Speedup Efficacity
- (-1=no count)
- pspini 0.334 20.2 0.333 19.8 2 -1.00 1.00 1.00
- timing timab 0.113 6.9 0.114 6.8 10 -1.00 0.99 0.99
- fourwf%(pot) 0.083 5.1 0.106 6.3 1804 -1.00 0.79 0.79
- get_dtsets_pspheads 0.058 3.5 0.059 3.5 1 -1.00 0.99 0.99
- getcprj%opernla 0.037 2.2 0.035 2.1 11134 -1.00 1.05 1.05
- fourdp 0.028 1.7 0.057 3.4 247 -1.00 0.49 0.49
- nonlop(apply) 0.026 1.6 0.018 1.1 1804 -1.00 1.43 1.43
- abinit(outvars) 0.024 1.5 0.024 1.4 1 -1.00 1.00 1.00
- abinit(after driver) 0.022 1.3 0.021 1.2 1 -1.00 1.03 1.03
- abinit(chkinp,chkvars) 0.020 1.2 0.020 1.2 1 -1.00 0.99 0.99
- ewald 0.018 1.1 0.018 1.1 2 -1.00 1.02 1.02
- forces 0.018 1.1 0.019 1.1 20 -1.00 0.97 0.97
- stress 0.015 0.9 0.014 0.8 2 -1.00 1.09 1.09
- ewald2 (+vdw_dftd) 0.014 0.9 0.014 0.8 2 -1.00 1.01 1.01
- pawinit 0.014 0.8 0.012 0.7 4 -1.00 1.16 1.16
- getghc(/=fourXX,nonlop,fock_XX) 0.013 0.8 0.014 0.8 -1 -1.00 0.93 0.93
- pawmkrho 0.012 0.7 0.014 0.8 20 -1.00 0.87 0.87
- initberry 0.011 0.7 0.010 0.6 2 -1.00 1.07 1.07
- xc:pot/=fourdp 0.010 0.6 0.012 0.7 40 -1.00 0.82 0.82
- pawdenpot 0.010 0.6 0.010 0.6 32 -1.00 0.95 0.95
- others (140) 0.061 3.7 0.066 3.9 -1 -1.00 0.92 0.92
-<END_TIMER>
- subtotal 0.941 57.1 0.990 58.9 0.95 0.95
================================================================================
Suggested references for the acknowledgment of ABINIT usage.
The users of ABINIT have little formal obligations with respect to the ABINIT group
(those specified in the GNU General Public License, http://www.gnu.org/copyleft/gpl.txt).
However, it is common practice in the scientific literature,
to acknowledge the efforts of people that have made the research possible.
In this spirit, please find below suggested citations of work written by ABINIT developers,
corresponding to implementations inside of ABINIT that you have used in the present run.
Note also that it will be of great value to readers of publications presenting these results,
to read papers enabling them to understand the theoretical formalism and details
of the ABINIT implementation.
For information on why they are suggested, see also https://docs.abinit.org/theory/acknowledgments.
-
- [1] Implementation of the Projector Augmented-Wave Method in the ABINIT code.
- M. Torrent, F. Jollet, F. Bottin, G. Zerah, and X. Gonze Comput. Mat. Science 42, 337, (2008).
- Comment: PAW calculations. Strong suggestion to cite this paper.
- DOI and bibtex: see https://docs.abinit.org/theory/bibliography/#torrent2008
-
- [2] The Abinit project: Impact, environment and recent developments.
- Computer Phys. Comm. 248, 107042 (2020).
- X.Gonze, B. Amadon, G. Antonius, F.Arnardi, L.Baguet, J.-M.Beuken,
- J.Bieder, F.Bottin, J.Bouchet, E.Bousquet, N.Brouwer, F.Bruneval,
- G.Brunin, T.Cavignac, J.-B. Charraud, Wei Chen, M.Cote, S.Cottenier,
- J.Denier, G.Geneste, Ph.Ghosez, M.Giantomassi, Y.Gillet, O.Gingras,
- D.R.Hamann, G.Hautier, Xu He, N.Helbig, N.Holzwarth, Y.Jia, F.Jollet,
- W.Lafargue-Dit-Hauret, K.Lejaeghere, M.A.L.Marques, A.Martin, C.Martins,
- H.P.C. Miranda, F.Naccarato, K. Persson, G.Petretto, V.Planes, Y.Pouillon,
- S.Prokhorenko, F.Ricci, G.-M.Rignanese, A.H.Romero, M.M.Schmitt, M.Torrent,
- M.J.van Setten, B.Van Troeye, M.J.Verstraete, G.Zerah and J.W.Zwanzig
- Comment: the fifth generic paper describing the ABINIT project.
- Note that a version of this paper, that is not formatted for Computer Phys. Comm.
- is available at https://www.abinit.org/sites/default/files/ABINIT20.pdf .
- The licence allows the authors to put it on the Web.
- DOI and bibtex: see https://docs.abinit.org/theory/bibliography/#gonze2020
-
- [3] ABINIT: Overview, and focus on selected capabilities
- J. Chem. Phys. 152, 124102 (2020).
- A. Romero, D.C. Allan, B. Amadon, G. Antonius, T. Applencourt, L.Baguet,
- J.Bieder, F.Bottin, J.Bouchet, E.Bousquet, F.Bruneval,
- G.Brunin, D.Caliste, M.Cote,
- J.Denier, C. Dreyer, Ph.Ghosez, M.Giantomassi, Y.Gillet, O.Gingras,
- D.R.Hamann, G.Hautier, F.Jollet, G. Jomard,
- A.Martin,
- H.P.C. Miranda, F.Naccarato, G.Petretto, N.A. Pike, V.Planes,
- S.Prokhorenko, T. Rangel, F.Ricci, G.-M.Rignanese, M.Royo, M.Stengel, M.Torrent,
- M.J.van Setten, B.Van Troeye, M.J.Verstraete, J.Wiktor, J.W.Zwanziger, and X.Gonze.
- Comment: a global overview of ABINIT, with focus on selected capabilities .
- Note that a version of this paper, that is not formatted for J. Chem. Phys
- is available at https://www.abinit.org/sites/default/files/ABINIT20_JPC.pdf .
- The licence allows the authors to put it on the Web.
- DOI and bibtex: see https://docs.abinit.org/theory/bibliography/#romero2020
-
- [4] Recent developments in the ABINIT software package.
- Computer Phys. Comm. 205, 106 (2016).
- X.Gonze, F.Jollet, F.Abreu Araujo, D.Adams, B.Amadon, T.Applencourt,
- C.Audouze, J.-M.Beuken, J.Bieder, A.Bokhanchuk, E.Bousquet, F.Bruneval
- D.Caliste, M.Cote, F.Dahm, F.Da Pieve, M.Delaveau, M.Di Gennaro,
- B.Dorado, C.Espejo, G.Geneste, L.Genovese, A.Gerossier, M.Giantomassi,
- Y.Gillet, D.R.Hamann, L.He, G.Jomard, J.Laflamme Janssen, S.Le Roux,
- A.Levitt, A.Lherbier, F.Liu, I.Lukacevic, A.Martin, C.Martins,
- M.J.T.Oliveira, S.Ponce, Y.Pouillon, T.Rangel, G.-M.Rignanese,
- A.H.Romero, B.Rousseau, O.Rubel, A.A.Shukri, M.Stankovski, M.Torrent,
- M.J.Van Setten, B.Van Troeye, M.J.Verstraete, D.Waroquier, J.Wiktor,
- B.Xu, A.Zhou, J.W.Zwanziger.
- Comment: the fourth generic paper describing the ABINIT project.
- Note that a version of this paper, that is not formatted for Computer Phys. Comm.
- is available at https://www.abinit.org/sites/default/files/ABINIT16.pdf .
- The licence allows the authors to put it on the Web.
- DOI and bibtex: see https://docs.abinit.org/theory/bibliography/#gonze2016
-
- And optionally:
-
- [5] ABINIT: First-principles approach of materials and nanosystem properties.
- Computer Phys. Comm. 180, 2582-2615 (2009).
- X. Gonze, B. Amadon, P.-M. Anglade, J.-M. Beuken, F. Bottin, P. Boulanger, F. Bruneval,
- D. Caliste, R. Caracas, M. Cote, T. Deutsch, L. Genovese, Ph. Ghosez, M. Giantomassi
- S. Goedecker, D.R. Hamann, P. Hermet, F. Jollet, G. Jomard, S. Leroux, M. Mancini, S. Mazevet,
- M.J.T. Oliveira, G. Onida, Y. Pouillon, T. Rangel, G.-M. Rignanese, D. Sangalli, R. Shaltaf,
- M. Torrent, M.J. Verstraete, G. Zerah, J.W. Zwanziger
- Comment: the third generic paper describing the ABINIT project.
- Note that a version of this paper, that is not formatted for Computer Phys. Comm.
- is available at https://www.abinit.org/sites/default/files/ABINIT_CPC_v10.pdf .
- The licence allows the authors to put it on the Web.
- DOI and bibtex: see https://docs.abinit.org/theory/bibliography/#gonze2009
-
- Proc. 0 individual time (sec): cpu= 1.7 wall= 1.7
================================================================================
Calculation completed.
.Delivered 25 WARNINGs and 11 COMMENTs to log file.
+Overall time at end (sec) : cpu= 1.7 wall= 1.7