abinit/tests/paral/Refs/t60_MPI4.abo

3217 lines
153 KiB
Plaintext

.Version 10.1.4.5 of ABINIT, released Sep 2024.
.(MPI version, prepared for a x86_64_linux_gnu13.2 computer)
.Copyright (C) 1998-2025 ABINIT group .
ABINIT comes with ABSOLUTELY NO WARRANTY.
It is free software, and you are welcome to redistribute it
under certain conditions (GNU General Public License,
see ~abinit/COPYING or http://www.gnu.org/copyleft/gpl.txt).
ABINIT is a project of the Universite Catholique de Louvain,
Corning Inc. and other collaborators, see ~abinit/doc/developers/contributors.txt .
Please read https://docs.abinit.org/theory/acknowledgments for suggested
acknowledgments of the ABINIT effort.
For more information, see https://www.abinit.org .
.Starting date : Fri 13 Sep 2024.
- ( at 19h30 )
- input file -> /home/buildbot/ABINIT3/eos_gnu_13.2_mpich/trunk_merge-10.0/tests/TestBot_MPI4/paral_t60_MPI4/t60.abi
- output file -> t60_MPI4.abo
- root for input files -> t60_MPI4i
- root for output files -> t60_MPI4o
DATASET 11 : space group P1 (# 1); Bravais aP (primitive triclinic)
================================================================================
Values of the parameters that define the memory need for DATASET 11.
intxc = 0 ionmov = 0 iscf = 7 lmnmax = 1
lnmax = 1 mgfft = 15 mpssoang = 2 mqgrid = 3001
natom = 2 nloc_mem = 1 nspden = 1 nspinor = 1
nsppol = 1 nsym = 1 n1xccc = 2501 ntypat = 1
occopt = 1 xclevel = 1
- mband = 10 mffmem = 1 mkmem = 2
mpw = 116 nfft = 3375 nkpt = 8
================================================================================
P This job should need less than 1.514 Mbytes of memory.
Rough estimation (10% accuracy) of disk space for files :
_ WF disk file : 0.144 Mbytes ; DEN or POT disk file : 0.028 Mbytes.
================================================================================
DATASET 12 : space group P1 (# 1); Bravais aP (primitive triclinic)
================================================================================
Values of the parameters that define the memory need for DATASET 12.
intxc = 0 ionmov = 0 iscf = -2 lmnmax = 1
lnmax = 1 mgfft = 15 mpssoang = 2 mqgrid = 3001
natom = 2 nloc_mem = 1 nspden = 1 nspinor = 1
nsppol = 1 nsym = 1 n1xccc = 2501 ntypat = 1
occopt = 1 xclevel = 1
- mband = 10 mffmem = 1 mkmem = 2
mpw = 116 nfft = 3375 nkpt = 8
================================================================================
P This job should need less than 1.102 Mbytes of memory.
Rough estimation (10% accuracy) of disk space for files :
_ WF disk file : 0.144 Mbytes ; DEN or POT disk file : 0.028 Mbytes.
================================================================================
DATASET 13 : space group P1 (# 1); Bravais aP (primitive triclinic)
================================================================================
Values of the parameters that define the memory need for DATASET 13 (RF).
intxc = 0 iscf = 7 lmnmax = 1 lnmax = 1
mgfft = 15 mpssoang = 2 mqgrid = 3001 natom = 2
nloc_mem = 1 nspden = 1 nspinor = 1 nsppol = 1
nsym = 1 n1xccc = 2501 ntypat = 1 occopt = 1
xclevel = 1
- mband = 10 mffmem = 1 mkmem = 2
- mkqmem = 2 mk1mem = 2 mpw = 116
nfft = 3375 nkpt = 8
================================================================================
P This job should need less than 1.296 Mbytes of memory.
Rough estimation (10% accuracy) of disk space for files :
_ WF disk file : 0.144 Mbytes ; DEN or POT disk file : 0.028 Mbytes.
================================================================================
DATASET 21 : space group P1 (# 1); Bravais aP (primitive triclinic)
================================================================================
Values of the parameters that define the memory need for DATASET 21.
intxc = 0 ionmov = 0 iscf = 7 lmnmax = 1
lnmax = 1 mgfft = 15 mpssoang = 2 mqgrid = 3001
natom = 2 nloc_mem = 1 nspden = 1 nspinor = 1
nsppol = 1 nsym = 1 n1xccc = 2501 ntypat = 1
occopt = 1 xclevel = 1
- mband = 10 mffmem = 1 mkmem = 2
mpw = 116 nfft = 3375 nkpt = 8
================================================================================
P This job should need less than 1.514 Mbytes of memory.
Rough estimation (10% accuracy) of disk space for files :
_ WF disk file : 0.144 Mbytes ; DEN or POT disk file : 0.028 Mbytes.
================================================================================
DATASET 22 : space group P1 (# 1); Bravais aP (primitive triclinic)
================================================================================
Values of the parameters that define the memory need for DATASET 22.
intxc = 0 ionmov = 0 iscf = -2 lmnmax = 1
lnmax = 1 mgfft = 15 mpssoang = 2 mqgrid = 3001
natom = 2 nloc_mem = 1 nspden = 1 nspinor = 1
nsppol = 1 nsym = 1 n1xccc = 2501 ntypat = 1
occopt = 1 xclevel = 1
- mband = 10 mffmem = 1 mkmem = 2
mpw = 116 nfft = 3375 nkpt = 8
================================================================================
P This job should need less than 1.102 Mbytes of memory.
Rough estimation (10% accuracy) of disk space for files :
_ WF disk file : 0.144 Mbytes ; DEN or POT disk file : 0.028 Mbytes.
================================================================================
DATASET 23 : space group P1 (# 1); Bravais aP (primitive triclinic)
================================================================================
Values of the parameters that define the memory need for DATASET 23 (RF).
intxc = 0 iscf = 7 lmnmax = 1 lnmax = 1
mgfft = 15 mpssoang = 2 mqgrid = 3001 natom = 2
nloc_mem = 1 nspden = 1 nspinor = 1 nsppol = 1
nsym = 1 n1xccc = 2501 ntypat = 1 occopt = 1
xclevel = 1
- mband = 10 mffmem = 1 mkmem = 2
- mkqmem = 2 mk1mem = 2 mpw = 116
nfft = 3375 nkpt = 8
================================================================================
P This job should need less than 1.476 Mbytes of memory.
Rough estimation (10% accuracy) of disk space for files :
_ WF disk file : 0.144 Mbytes ; DEN or POT disk file : 0.028 Mbytes.
================================================================================
DATASET 31 : space group P1 (# 1); Bravais aP (primitive triclinic)
================================================================================
Values of the parameters that define the memory need for DATASET 31.
intxc = 0 ionmov = 0 iscf = 7 lmnmax = 1
lnmax = 1 mgfft = 15 mpssoang = 2 mqgrid = 3001
natom = 2 nloc_mem = 1 nspden = 1 nspinor = 1
nsppol = 1 nsym = 1 n1xccc = 2501 ntypat = 1
occopt = 1 xclevel = 1
- mband = 10 mffmem = 1 mkmem = 2
mpw = 116 nfft = 3375 nkpt = 8
================================================================================
P This job should need less than 1.514 Mbytes of memory.
Rough estimation (10% accuracy) of disk space for files :
_ WF disk file : 0.144 Mbytes ; DEN or POT disk file : 0.028 Mbytes.
================================================================================
DATASET 32 : space group P1 (# 1); Bravais aP (primitive triclinic)
================================================================================
Values of the parameters that define the memory need for DATASET 32.
intxc = 0 ionmov = 0 iscf = -2 lmnmax = 1
lnmax = 1 mgfft = 15 mpssoang = 2 mqgrid = 3001
natom = 2 nloc_mem = 1 nspden = 1 nspinor = 1
nsppol = 1 nsym = 1 n1xccc = 2501 ntypat = 1
occopt = 1 xclevel = 1
- mband = 10 mffmem = 1 mkmem = 2
mpw = 116 nfft = 3375 nkpt = 8
================================================================================
P This job should need less than 1.102 Mbytes of memory.
Rough estimation (10% accuracy) of disk space for files :
_ WF disk file : 0.144 Mbytes ; DEN or POT disk file : 0.028 Mbytes.
================================================================================
DATASET 33 : space group P1 (# 1); Bravais aP (primitive triclinic)
================================================================================
Values of the parameters that define the memory need for DATASET 33 (RF).
intxc = 0 iscf = 7 lmnmax = 1 lnmax = 1
mgfft = 15 mpssoang = 2 mqgrid = 3001 natom = 2
nloc_mem = 1 nspden = 1 nspinor = 1 nsppol = 1
nsym = 1 n1xccc = 2501 ntypat = 1 occopt = 1
xclevel = 1
- mband = 10 mffmem = 1 mkmem = 2
- mkqmem = 2 mk1mem = 2 mpw = 116
nfft = 3375 nkpt = 8
================================================================================
P This job should need less than 1.476 Mbytes of memory.
Rough estimation (10% accuracy) of disk space for files :
_ WF disk file : 0.144 Mbytes ; DEN or POT disk file : 0.028 Mbytes.
================================================================================
--------------------------------------------------------------------------------
------------- Echo of variables that govern the present computation ------------
--------------------------------------------------------------------------------
-
- outvars: echo of selected default values
- iomode0 = 0 , fftalg0 =512 , wfoptalg0 = 0
-
- outvars: echo of global parameters not present in the input file
- max_nthreads = 0
-
-outvars: echo values of preprocessed input variables --------
acell 6.6709983131E+00 6.6709983131E+00 6.6709983131E+00 Bohr
amu 1.20110000E+01
bdeigrf 10
diemac 6.00000000E+00
ecut 1.00000000E+01 Hartree
elph2_imagden 3.67493254E-03 Hartree
enunit 2
- fftalg 512
getden11 0
getden12 -1
getden13 0
getden21 0
getden22 -1
getden23 0
getden31 0
getden32 -1
getden33 0
getwfk11 0
getwfk12 0
getwfk13 -2
getwfk21 0
getwfk22 0
getwfk23 -2
getwfk31 0
getwfk32 0
getwfk33 -2
getwfq11 0
getwfq12 0
getwfq13 -1
getwfq21 0
getwfq22 0
getwfq23 -1
getwfq31 0
getwfq32 0
getwfq33 -1
ieig2rf11 0
ieig2rf12 0
ieig2rf13 4
ieig2rf21 0
ieig2rf22 0
ieig2rf23 4
ieig2rf31 0
ieig2rf32 0
ieig2rf33 4
iscf11 7
iscf12 -2
iscf13 7
iscf21 7
iscf22 -2
iscf23 7
iscf31 7
iscf32 -2
iscf33 7
istwfk11 1 1 1 1 1 1 1 1
istwfk12 1 1 1 1 1 1 1 1
istwfk13 1 1 1 1 1 1 1 1
istwfk21 1 1 1 1 1 1 1 1
istwfk22 1 1 0 0 1 1 0 0
istwfk23 1 1 1 1 1 1 1 1
istwfk31 1 1 1 1 1 1 1 1
istwfk32 0 0 0 0 0 0 0 0
istwfk33 1 1 1 1 1 1 1 1
jdtset 11 12 13 21 22 23 31 32 33
kpt 0.00000000E+00 0.00000000E+00 0.00000000E+00
5.00000000E-01 0.00000000E+00 0.00000000E+00
0.00000000E+00 5.00000000E-01 0.00000000E+00
5.00000000E-01 5.00000000E-01 0.00000000E+00
0.00000000E+00 0.00000000E+00 5.00000000E-01
5.00000000E-01 0.00000000E+00 5.00000000E-01
0.00000000E+00 5.00000000E-01 5.00000000E-01
5.00000000E-01 5.00000000E-01 5.00000000E-01
kptopt 3
kptrlatt 2 0 0 0 2 0 0 0 2
kptrlen 9.43421629E+00
P mkmem 2
P mkqmem 2
P mk1mem 2
natom 2
nband 10
nbdbuf 2
ndtset 9
ngfft 15 15 15
nkpt 8
nqpt11 0
nqpt12 1
nqpt13 1
nqpt21 0
nqpt22 1
nqpt23 1
nqpt31 0
nqpt32 1
nqpt33 1
nstep 50
nsym 1
ntypat 1
occ 2.000000 2.000000 2.000000 2.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000
optdriver11 0
optdriver12 0
optdriver13 1
optdriver21 0
optdriver22 0
optdriver23 1
optdriver31 0
optdriver32 0
optdriver33 1
prtpot11 0
prtpot12 0
prtpot13 1
prtpot21 0
prtpot22 0
prtpot23 1
prtpot31 0
prtpot32 0
prtpot33 1
qpt11 0.00000000E+00 0.00000000E+00 0.00000000E+00
qpt12 0.00000000E+00 0.00000000E+00 0.00000000E+00
qpt13 0.00000000E+00 0.00000000E+00 0.00000000E+00
qpt21 0.00000000E+00 0.00000000E+00 0.00000000E+00
qpt22 0.00000000E+00 5.00000000E-01 0.00000000E+00
qpt23 0.00000000E+00 5.00000000E-01 0.00000000E+00
qpt31 0.00000000E+00 0.00000000E+00 0.00000000E+00
qpt32 1.00000000E-01 0.00000000E+00 0.00000000E+00
qpt33 1.00000000E-01 0.00000000E+00 0.00000000E+00
rfphon11 0
rfphon12 0
rfphon13 1
rfphon21 0
rfphon22 0
rfphon23 1
rfphon31 0
rfphon32 0
rfphon33 1
rprim 0.0000000000E+00 5.0000000000E-01 5.0000000000E-01
5.0000000000E-01 0.0000000000E+00 5.0000000000E-01
5.0000000000E-01 5.0000000000E-01 0.0000000000E+00
smdelta11 0
smdelta12 0
smdelta13 1
smdelta21 0
smdelta22 0
smdelta23 1
smdelta31 0
smdelta32 0
smdelta33 1
spgroup 1
tolwfr 1.00000000E-08
typat 1 1
wtk 0.12500 0.12500 0.12500 0.12500 0.12500 0.12500
0.12500 0.12500
xangst 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
8.8253506646E-01 8.8253506646E-01 8.8253506646E-01
xcart 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
1.6677495783E+00 1.6677495783E+00 1.6677495783E+00
xred 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
2.5000000000E-01 2.5000000000E-01 2.5000000000E-01
znucl 6.00000
================================================================================
chkinp: Checking input parameters for consistency, jdtset= 11.
chkinp: Checking input parameters for consistency, jdtset= 12.
chkinp: Checking input parameters for consistency, jdtset= 13.
chkinp: Checking input parameters for consistency, jdtset= 21.
chkinp: Checking input parameters for consistency, jdtset= 22.
chkinp: Checking input parameters for consistency, jdtset= 23.
chkinp: Checking input parameters for consistency, jdtset= 31.
chkinp: Checking input parameters for consistency, jdtset= 32.
chkinp: Checking input parameters for consistency, jdtset= 33.
================================================================================
== DATASET 11 ==================================================================
- mpi_nproc: 4, omp_nthreads: -1 (-1 if OMP is not activated)
--- !DatasetInfo
iteration_state: {dtset: 11, }
dimensions: {natom: 2, nkpt: 8, mband: 10, nsppol: 1, nspinor: 1, nspden: 1, mpw: 116, }
cutoff_energies: {ecut: 10.0, pawecutdg: -1.0, }
electrons: {nelect: 8.00000000E+00, charge: 0.00000000E+00, occopt: 1.00000000E+00, tsmear: 1.00000000E-02, }
meta: {optdriver: 0, ionmov: 0, optcell: 0, iscf: 7, paral_kgb: 0, }
...
Exchange-correlation functional for the present dataset will be:
LDA: new Teter (4/93) with spin-polarized option - ixc=1
Citation for XC functional:
S. Goedecker, M. Teter, J. Huetter, PRB 54, 1703 (1996)
Real(R)+Recip(G) space primitive vectors, cartesian coordinates (Bohr,Bohr^-1):
R(1)= 0.0000000 3.3354992 3.3354992 G(1)= -0.1499026 0.1499026 0.1499026
R(2)= 3.3354992 0.0000000 3.3354992 G(2)= 0.1499026 -0.1499026 0.1499026
R(3)= 3.3354992 3.3354992 0.0000000 G(3)= 0.1499026 0.1499026 -0.1499026
Unit cell volume ucvol= 7.4218556E+01 bohr^3
Angles (23,13,12)= 6.00000000E+01 6.00000000E+01 6.00000000E+01 degrees
getcut: wavevector= 0.0000 0.0000 0.0000 ngfft= 15 15 15
ecut(hartree)= 10.000 => boxcut(ratio)= 2.09552
--- Pseudopotential description ------------------------------------------------
- pspini: atom type 1 psp file is /home/buildbot/ABINIT3/eos_gnu_13.2_mpich/trunk_merge-10.0/tests/Pspdir/PseudosTM_pwteter/6c.pspnc
- pspatm: opening atomic psp file /home/buildbot/ABINIT3/eos_gnu_13.2_mpich/trunk_merge-10.0/tests/Pspdir/PseudosTM_pwteter/6c.pspnc
- Troullier-Martins psp for element C Thu Oct 27 17:29:33 EDT 1994
- 6.00000 4.00000 940714 znucl, zion, pspdat
1 1 1 1 2001 0.00000 pspcod,pspxc,lmax,lloc,mmax,r2well
0 10.372 24.987 1 1.4850707 l,e99.0,e99.9,nproj,rcpsp
0.00000000 0.00000000 0.00000000 0.00000000 rms, ekb1, ekb2, epsatm
1 15.431 21.987 0 1.4850707 l,e99.0,e99.9,nproj,rcpsp
0.00000000 0.00000000 0.00000000 0.00000000 rms, ekb1, ekb2, epsatm
0.83985002509544 0.99012430797080 0.51184907750884 rchrg,fchrg,qchrg
pspatm : epsatm= 0.92590353
--- l ekb(1:nproj) -->
0 4.921466
pspatm: atomic psp has been read and splines computed
1.48144565E+01 ecore*ucvol(ha*bohr**3)
--------------------------------------------------------------------------------
_setup2: Arith. and geom. avg. npw (full set) are 111.625 111.563
================================================================================
--- !BeginCycle
iteration_state: {dtset: 11, }
solver: {iscf: 7, nstep: 50, nline: 4, wfoptalg: 0, }
tolerances: {tolwfr: 1.00E-08, }
...
iter Etot(hartree) deltaE(h) residm vres2
ETOT 1 -11.683963329499 -1.168E+01 5.766E-03 8.670E+00
ETOT 2 -11.692111223316 -8.148E-03 1.679E-06 2.457E-02
ETOT 3 -11.692124873332 -1.365E-05 3.208E-07 8.105E-04
ETOT 4 -11.692125008378 -1.350E-07 1.413E-07 3.120E-04
ETOT 5 -11.692125615451 -6.071E-07 3.190E-08 1.448E-06
ETOT 6 -11.692125617840 -2.389E-09 6.772E-10 9.701E-09
At SCF step 6 max residual= 6.77E-10 < tolwfr= 1.00E-08 =>converged.
Cartesian components of stress tensor (hartree/bohr^3)
sigma(1 1)= 3.32483279E-03 sigma(3 2)= 5.05926498E-09
sigma(2 2)= 3.32483047E-03 sigma(3 1)= -2.06972340E-08
sigma(3 3)= 3.32483131E-03 sigma(2 1)= -2.65002807E-08
--- !ResultsGS
iteration_state: {dtset: 11, }
comment : Summary of ground state results
lattice_vectors:
- [ 0.0000000, 3.3354992, 3.3354992, ]
- [ 3.3354992, 0.0000000, 3.3354992, ]
- [ 3.3354992, 3.3354992, 0.0000000, ]
lattice_lengths: [ 4.71711, 4.71711, 4.71711, ]
lattice_angles: [ 60.000, 60.000, 60.000, ] # degrees, (23, 13, 12)
lattice_volume: 7.4218556E+01
convergence: {deltae: -2.389E-09, res2: 9.701E-09, residm: 6.772E-10, diffor: null, }
etotal : -1.16921256E+01
entropy : 0.00000000E+00
fermie : 5.21038972E-01
cartesian_stress_tensor: # hartree/bohr^3
- [ 3.32483279E-03, -2.65002807E-08, -2.06972340E-08, ]
- [ -2.65002807E-08, 3.32483047E-03, 5.05926498E-09, ]
- [ -2.06972340E-08, 5.05926498E-09, 3.32483131E-03, ]
pressure_GPa: -9.7820E+01
xred :
- [ 0.0000E+00, 0.0000E+00, 0.0000E+00, C]
- [ 2.5000E-01, 2.5000E-01, 2.5000E-01, C]
cartesian_forces: # hartree/bohr
- [ -4.35078779E-07, -2.43831802E-06, -1.90873985E-06, ]
- [ 4.35078779E-07, 2.43831802E-06, 1.90873985E-06, ]
force_length_stats: {min: 3.12697556E-06, max: 3.12697556E-06, mean: 3.12697556E-06, }
...
Integrated electronic density in atomic spheres:
------------------------------------------------
Atom Sphere_radius Integrated_density
1 2.00000 4.79819736
2 2.00000 4.91959218
================================================================================
----iterations are completed or convergence reached----
Mean square residual over all n,k,spin= 19.526E-11; max= 67.716E-11
reduced coordinates (array xred) for 2 atoms
0.000000000000 0.000000000000 0.000000000000
0.250000000000 0.250000000000 0.250000000000
rms dE/dt= 2.0661E-05; max dE/dt= 2.3774E-05; dE/dt below (all hartree)
1 -0.000011988396 0.000011621265 0.000023773703
2 -0.000040987611 -0.000004014345 0.000004605278
cartesian coordinates (angstrom) at end:
1 0.00000000000000 0.00000000000000 0.00000000000000
2 0.88253506645871 0.88253506645871 0.88253506645871
cartesian forces (hartree/bohr) at end:
1 -0.00000043507878 -0.00000243831802 -0.00000190873985
2 0.00000043507878 0.00000243831802 0.00000190873985
frms,max,avg= 1.8053602E-06 2.4383180E-06 -6.668E-06 2.414E-06 5.528E-06 h/b
cartesian forces (eV/Angstrom) at end:
1 -0.00002237264849 -0.00012538334347 -0.00009815134103
2 0.00002237264849 0.00012538334347 0.00009815134103
frms,max,avg= 9.2835345E-05 1.2538334E-04 -3.429E-04 1.241E-04 2.842E-04 e/A
length scales= 6.670998313100 6.670998313100 6.670998313100 bohr
= 3.530140265835 3.530140265835 3.530140265835 angstroms
prteigrs : about to open file t60_MPI4o_DS11_EIG
Fermi (or HOMO) energy (hartree) = 0.52104 Average Vxc (hartree)= -0.50804
Eigenvalues (hartree) for nkpt= 8 k points:
kpt# 1, nband= 10, wtk= 0.12500, kpt= 0.0000 0.0000 0.0000 (reduced coord)
-0.31566 0.52104 0.52104 0.52104 0.75482 0.75482 0.75482 0.99990
1.19500 1.48731
prteigrs : prtvol=0 or 1, do not print more k-points.
Fermi (or HOMO) energy (eV) = 14.17819 Average Vxc (eV)= -13.82455
Eigenvalues ( eV ) for nkpt= 8 k points:
kpt# 1, nband= 10, wtk= 0.12500, kpt= 0.0000 0.0000 0.0000 (reduced coord)
-8.58957 14.17819 14.17819 14.17819 20.53957 20.53957 20.53957 27.20859
32.51758 40.47171
prteigrs : prtvol=0 or 1, do not print more k-points.
--- !EnergyTerms
iteration_state : {dtset: 11, }
comment : Components of total free energy in Hartree
kinetic : 8.31278643095758E+00
hartree : 9.59212312316061E-01
xc : -4.35176965734625E+00
Ewald energy : -1.29199206267251E+01
psp_core : 1.99605829697410E-01
local_psp : -5.14256368993921E+00
non_local_psp : 1.25052378320004E+00
total_energy : -1.16921256178395E+01
total_energy_eV : -3.18158918326370E+02
band_energy : 1.53085093947756E+00
...
Cartesian components of stress tensor (hartree/bohr^3)
sigma(1 1)= 3.32483279E-03 sigma(3 2)= 5.05926498E-09
sigma(2 2)= 3.32483047E-03 sigma(3 1)= -2.06972340E-08
sigma(3 3)= 3.32483131E-03 sigma(2 1)= -2.65002807E-08
-Cartesian components of stress tensor (GPa) [Pressure= -9.7820E+01 GPa]
- sigma(1 1)= 9.78199415E+01 sigma(3 2)= 1.48848690E-04
- sigma(2 2)= 9.78198731E+01 sigma(3 1)= -6.08933546E-04
- sigma(3 3)= 9.78198979E+01 sigma(2 1)= -7.79665045E-04
================================================================================
== DATASET 12 ==================================================================
- mpi_nproc: 4, omp_nthreads: -1 (-1 if OMP is not activated)
--- !DatasetInfo
iteration_state: {dtset: 12, }
dimensions: {natom: 2, nkpt: 8, mband: 10, nsppol: 1, nspinor: 1, nspden: 1, mpw: 116, }
cutoff_energies: {ecut: 10.0, pawecutdg: -1.0, }
electrons: {nelect: 8.00000000E+00, charge: 0.00000000E+00, occopt: 1.00000000E+00, tsmear: 1.00000000E-02, }
meta: {optdriver: 0, ionmov: 0, optcell: 0, iscf: -2, paral_kgb: 0, }
...
mkfilename : getden/=0, take file _DEN from output of DATASET 11.
Exchange-correlation functional for the present dataset will be:
LDA: new Teter (4/93) with spin-polarized option - ixc=1
Citation for XC functional:
S. Goedecker, M. Teter, J. Huetter, PRB 54, 1703 (1996)
Real(R)+Recip(G) space primitive vectors, cartesian coordinates (Bohr,Bohr^-1):
R(1)= 0.0000000 3.3354992 3.3354992 G(1)= -0.1499026 0.1499026 0.1499026
R(2)= 3.3354992 0.0000000 3.3354992 G(2)= 0.1499026 -0.1499026 0.1499026
R(3)= 3.3354992 3.3354992 0.0000000 G(3)= 0.1499026 0.1499026 -0.1499026
Unit cell volume ucvol= 7.4218556E+01 bohr^3
Angles (23,13,12)= 6.00000000E+01 6.00000000E+01 6.00000000E+01 degrees
getcut: wavevector= 0.0000 0.0000 0.0000 ngfft= 15 15 15
ecut(hartree)= 10.000 => boxcut(ratio)= 2.09552
--------------------------------------------------------------------------------
================================================================================
prteigrs : about to open file t60_MPI4o_DS12_EIG
Non-SCF case, kpt 1 ( 0.00000 0.00000 0.00000), residuals and eigenvalues=
1.09E-09 4.82E-09 4.84E-09 3.93E-10 3.77E-09 1.70E-09 3.42E-09 4.12E-10
1.84E-09 4.50E-04
-3.1566E-01 5.2104E-01 5.2104E-01 5.2104E-01 7.5482E-01 7.5482E-01
7.5482E-01 9.9990E-01 1.1950E+00 1.4884E+00
prteigrs : prtvol=0 or 1, do not print more k-points.
--- !ResultsGS
iteration_state: {dtset: 12, }
comment : Summary of ground state results
lattice_vectors:
- [ 0.0000000, 3.3354992, 3.3354992, ]
- [ 3.3354992, 0.0000000, 3.3354992, ]
- [ 3.3354992, 3.3354992, 0.0000000, ]
lattice_lengths: [ 4.71711, 4.71711, 4.71711, ]
lattice_angles: [ 60.000, 60.000, 60.000, ] # degrees, (23, 13, 12)
lattice_volume: 7.4218556E+01
convergence: {deltae: 0.000E+00, res2: 0.000E+00, residm: 8.800E-09, diffor: 0.000E+00, }
etotal : -1.16921256E+01
entropy : 0.00000000E+00
fermie : 5.21038972E-01
cartesian_stress_tensor: null
pressure_GPa: null
xred :
- [ 0.0000E+00, 0.0000E+00, 0.0000E+00, C]
- [ 2.5000E-01, 2.5000E-01, 2.5000E-01, C]
cartesian_forces: null
force_length_stats: {min: null, max: null, mean: null, }
...
Integrated electronic density in atomic spheres:
------------------------------------------------
Atom Sphere_radius Integrated_density
1 2.00000 4.79819736
2 2.00000 4.91959218
================================================================================
----iterations are completed or convergence reached----
Mean square residual over all n,k,spin= 26.581E-10; max= 88.002E-10
reduced coordinates (array xred) for 2 atoms
0.000000000000 0.000000000000 0.000000000000
0.250000000000 0.250000000000 0.250000000000
cartesian coordinates (angstrom) at end:
1 0.00000000000000 0.00000000000000 0.00000000000000
2 0.88253506645871 0.88253506645871 0.88253506645871
length scales= 6.670998313100 6.670998313100 6.670998313100 bohr
= 3.530140265835 3.530140265835 3.530140265835 angstroms
prteigrs : about to open file t60_MPI4o_DS12_EIG
Eigenvalues (hartree) for nkpt= 8 k points:
kpt# 1, nband= 10, wtk= 0.12500, kpt= 0.0000 0.0000 0.0000 (reduced coord)
-0.31566 0.52104 0.52104 0.52104 0.75482 0.75482 0.75482 0.99990
1.19500 1.48836
prteigrs : prtvol=0 or 1, do not print more k-points.
Eigenvalues ( eV ) for nkpt= 8 k points:
kpt# 1, nband= 10, wtk= 0.12500, kpt= 0.0000 0.0000 0.0000 (reduced coord)
-8.58957 14.17819 14.17819 14.17819 20.53957 20.53957 20.53957 27.20859
32.51757 40.50045
prteigrs : prtvol=0 or 1, do not print more k-points.
================================================================================
== DATASET 13 ==================================================================
- mpi_nproc: 4, omp_nthreads: -1 (-1 if OMP is not activated)
--- !DatasetInfo
iteration_state: {dtset: 13, }
dimensions: {natom: 2, nkpt: 8, mband: 10, nsppol: 1, nspinor: 1, nspden: 1, mpw: 116, }
cutoff_energies: {ecut: 10.0, pawecutdg: -1.0, }
electrons: {nelect: 8.00000000E+00, charge: 0.00000000E+00, occopt: 1.00000000E+00, tsmear: 1.00000000E-02, }
meta: {optdriver: 1, rfphon: 1, }
...
mkfilename : getwfk/=0, take file _WFK from output of DATASET 11.
mkfilename : getwfq/=0, take file _WFQ from output of DATASET 12.
Exchange-correlation functional for the present dataset will be:
LDA: new Teter (4/93) with spin-polarized option - ixc=1
Citation for XC functional:
S. Goedecker, M. Teter, J. Huetter, PRB 54, 1703 (1996)
Real(R)+Recip(G) space primitive vectors, cartesian coordinates (Bohr,Bohr^-1):
R(1)= 0.0000000 3.3354992 3.3354992 G(1)= -0.1499026 0.1499026 0.1499026
R(2)= 3.3354992 0.0000000 3.3354992 G(2)= 0.1499026 -0.1499026 0.1499026
R(3)= 3.3354992 3.3354992 0.0000000 G(3)= 0.1499026 0.1499026 -0.1499026
Unit cell volume ucvol= 7.4218556E+01 bohr^3
Angles (23,13,12)= 6.00000000E+01 6.00000000E+01 6.00000000E+01 degrees
setup1 : take into account q-point for computing boxcut.
getcut: wavevector= 0.0000 0.0000 0.0000 ngfft= 15 15 15
ecut(hartree)= 10.000 => boxcut(ratio)= 2.09552
--------------------------------------------------------------------------------
==> initialize data related to q vector <==
The list of irreducible perturbations for this q vector is:
1) idir= 1 ipert= 1
2) idir= 2 ipert= 1
3) idir= 3 ipert= 1
4) idir= 1 ipert= 2
5) idir= 2 ipert= 2
6) idir= 3 ipert= 2
================================================================================
--------------------------------------------------------------------------------
Perturbation wavevector (in red.coord.) 0.000000 0.000000 0.000000
Perturbation : displacement of atom 1 along direction 1
The set of symmetries contains only one element for this perturbation.
symkpt : not enough symmetry to change the number of k points.
--------------------------------------------------------------------------------
--------------------------------------------------------------------------------
Initialisation of the first-order wave-functions :
ireadwf= 0
--- !BeginCycle
iteration_state: {dtset: 13, }
solver: {iscf: 7, nstep: 50, nline: 4, wfoptalg: 0, }
tolerances: {tolwfr: 1.00E-08, }
...
iter 2DEtotal(Ha) deltaE(Ha) residm vres2
-ETOT 1 25.960304810652 -1.786E+02 4.507E-01 3.975E+03
ETOT 2 17.920710748251 -8.040E+00 7.268E-03 9.756E+01
ETOT 3 17.655853205007 -2.649E-01 1.683E-04 6.947E-01
ETOT 4 17.654203769321 -1.649E-03 9.227E-07 3.821E-03
ETOT 5 17.654199141278 -4.628E-06 9.983E-09 2.224E-04
At SCF step 5 max residual= 9.98E-09 < tolwfr= 1.00E-08 =>converged.
================================================================================
----iterations are completed or convergence reached----
Mean square residual over all n,k,spin= 30.307E-10; max= 99.829E-10
Thirteen components of 2nd-order total energy (hartree) are
1,2,3: 0th-order hamiltonian combined with 1st-order wavefunctions
kin0= 2.09708953E+02 eigvalue= -1.62254604E+01 local= -8.82034931E+01
4,5,6: 1st-order hamiltonian combined with 1st and 0th-order wfs
loc psp = -1.02476794E+02 Hartree= 2.32980242E+01 xc= -8.65009762E+00
note that "loc psp" includes a xc core correction that could be resolved
7,8,9: eventually, occupation + non-local contributions
edocc= 1.54721490E+01 enl0= 5.15443858E+01 enl1= -2.71411804E+02
1-9 gives the relaxation energy (to be shifted if some occ is /=2.0)
erelax= -1.86944138E+02
10,11,12 Non-relaxation contributions : frozen-wavefunctions and Ewald
fr.local= 3.35599239E+01 fr.nonlo= 1.52999597E+02 Ewald= 2.00931375E+01
13,14 Frozen wf xc core corrections (1) and (2)
frxc 1 = -1.12473455E+01 frxc 2 = 9.19302446E+00
Resulting in :
2DEtotal= 0.1765419914E+02 Ha. Also 2DEtotal= 0.480395189574E+03 eV
(2DErelax= -1.8694413791E+02 Ha. 2DEnonrelax= 2.0459833705E+02 Ha)
( non-var. 2DEtotal : 1.7654037908E+01 Ha)
--------------------------------------------------------------------------------
Perturbation wavevector (in red.coord.) 0.000000 0.000000 0.000000
Perturbation : displacement of atom 1 along direction 2
The set of symmetries contains only one element for this perturbation.
symkpt : not enough symmetry to change the number of k points.
--------------------------------------------------------------------------------
--------------------------------------------------------------------------------
Initialisation of the first-order wave-functions :
ireadwf= 0
--- !BeginCycle
iteration_state: {dtset: 13, }
solver: {iscf: 7, nstep: 50, nline: 4, wfoptalg: 0, }
tolerances: {tolwfr: 1.00E-08, }
...
iter 2DEtotal(Ha) deltaE(Ha) residm vres2
-ETOT 1 25.953422937467 -1.786E+02 2.994E-01 3.974E+03
ETOT 2 17.917399756161 -8.036E+00 6.773E-03 9.750E+01
ETOT 3 17.652684834838 -2.647E-01 1.447E-04 6.970E-01
ETOT 4 17.651031298767 -1.654E-03 8.421E-07 4.883E-03
ETOT 5 17.651026791875 -4.507E-06 9.348E-09 1.313E-03
At SCF step 5 max residual= 9.35E-09 < tolwfr= 1.00E-08 =>converged.
================================================================================
----iterations are completed or convergence reached----
Mean square residual over all n,k,spin= 25.306E-10; max= 93.475E-10
Thirteen components of 2nd-order total energy (hartree) are
1,2,3: 0th-order hamiltonian combined with 1st-order wavefunctions
kin0= 2.07543038E+02 eigvalue= -1.57082656E+01 local= -8.74743645E+01
4,5,6: 1st-order hamiltonian combined with 1st and 0th-order wfs
loc psp = -1.02465724E+02 Hartree= 2.32974748E+01 xc= -8.65013878E+00
note that "loc psp" includes a xc core correction that could be resolved
7,8,9: eventually, occupation + non-local contributions
edocc= 1.64366860E+01 enl0= 5.15034321E+01 enl1= -2.71429661E+02
1-9 gives the relaxation energy (to be shifted if some occ is /=2.0)
erelax= -1.86947523E+02
10,11,12 Non-relaxation contributions : frozen-wavefunctions and Ewald
fr.local= 3.35599774E+01 fr.nonlo= 1.52999758E+02 Ewald= 2.00931375E+01
13,14 Frozen wf xc core corrections (1) and (2)
frxc 1 = -1.12473446E+01 frxc 2 = 9.19302166E+00
Resulting in :
2DEtotal= 0.1765102679E+02 Ha. Also 2DEtotal= 0.480308865557E+03 eV
(2DErelax= -1.8694752303E+02 Ha. 2DEnonrelax= 2.0459854982E+02 Ha)
( non-var. 2DEtotal : 1.7650857188E+01 Ha)
--------------------------------------------------------------------------------
Perturbation wavevector (in red.coord.) 0.000000 0.000000 0.000000
Perturbation : displacement of atom 1 along direction 3
The set of symmetries contains only one element for this perturbation.
symkpt : not enough symmetry to change the number of k points.
--------------------------------------------------------------------------------
--------------------------------------------------------------------------------
Initialisation of the first-order wave-functions :
ireadwf= 0
--- !BeginCycle
iteration_state: {dtset: 13, }
solver: {iscf: 7, nstep: 50, nline: 4, wfoptalg: 0, }
tolerances: {tolwfr: 1.00E-08, }
...
iter 2DEtotal(Ha) deltaE(Ha) residm vres2
-ETOT 1 25.947254514391 -1.787E+02 3.935E-01 3.974E+03
ETOT 2 17.913497955631 -8.034E+00 7.111E-03 9.728E+01
ETOT 3 17.649409195180 -2.641E-01 1.610E-04 6.962E-01
ETOT 4 17.647760595485 -1.649E-03 9.130E-07 5.411E-03
ETOT 5 17.647756031639 -4.564E-06 9.921E-09 1.832E-03
At SCF step 5 max residual= 9.92E-09 < tolwfr= 1.00E-08 =>converged.
================================================================================
----iterations are completed or convergence reached----
Mean square residual over all n,k,spin= 27.680E-10; max= 99.207E-10
Thirteen components of 2nd-order total energy (hartree) are
1,2,3: 0th-order hamiltonian combined with 1st-order wavefunctions
kin0= 2.07717275E+02 eigvalue= -1.57461064E+01 local= -8.74397285E+01
4,5,6: 1st-order hamiltonian combined with 1st and 0th-order wfs
loc psp = -1.02460272E+02 Hartree= 2.32976170E+01 xc= -8.65025900E+00
note that "loc psp" includes a xc core correction that could be resolved
7,8,9: eventually, occupation + non-local contributions
edocc= 1.63847067E+01 enl0= 5.13877794E+01 enl1= -2.71441880E+02
1-9 gives the relaxation energy (to be shifted if some occ is /=2.0)
erelax= -1.86950869E+02
10,11,12 Non-relaxation contributions : frozen-wavefunctions and Ewald
fr.local= 3.35599879E+01 fr.nonlo= 1.52999823E+02 Ewald= 2.00931375E+01
13,14 Frozen wf xc core corrections (1) and (2)
frxc 1 = -1.12473443E+01 frxc 2 = 9.19302052E+00
Resulting in :
2DEtotal= 0.1764775603E+02 Ha. Also 2DEtotal= 0.480219863645E+03 eV
(2DErelax= -1.8695086860E+02 Ha. 2DEnonrelax= 2.0459862463E+02 Ha)
( non-var. 2DEtotal : 1.7647548431E+01 Ha)
--------------------------------------------------------------------------------
Perturbation wavevector (in red.coord.) 0.000000 0.000000 0.000000
Perturbation : displacement of atom 2 along direction 1
The set of symmetries contains only one element for this perturbation.
symkpt : not enough symmetry to change the number of k points.
--------------------------------------------------------------------------------
--------------------------------------------------------------------------------
Initialisation of the first-order wave-functions :
ireadwf= 0
--- !BeginCycle
iteration_state: {dtset: 13, }
solver: {iscf: 7, nstep: 50, nline: 4, wfoptalg: 0, }
tolerances: {tolwfr: 1.00E-08, }
...
iter 2DEtotal(Ha) deltaE(Ha) residm vres2
-ETOT 1 25.950658435687 -1.786E+02 4.506E-01 3.974E+03
ETOT 2 17.915541775551 -8.035E+00 7.267E-03 9.751E+01
ETOT 3 17.650780684384 -2.648E-01 1.684E-04 6.959E-01
ETOT 4 17.649128231698 -1.652E-03 9.247E-07 3.822E-03
ETOT 5 17.649123602005 -4.630E-06 9.938E-09 2.195E-04
At SCF step 5 max residual= 9.94E-09 < tolwfr= 1.00E-08 =>converged.
================================================================================
----iterations are completed or convergence reached----
Mean square residual over all n,k,spin= 29.916E-10; max= 99.379E-10
Thirteen components of 2nd-order total energy (hartree) are
1,2,3: 0th-order hamiltonian combined with 1st-order wavefunctions
kin0= 2.09652992E+02 eigvalue= -1.62098274E+01 local= -8.81175650E+01
4,5,6: 1st-order hamiltonian combined with 1st and 0th-order wfs
loc psp = -1.02457132E+02 Hartree= 2.32964881E+01 xc= -8.64973402E+00
note that "loc psp" includes a xc core correction that could be resolved
7,8,9: eventually, occupation + non-local contributions
edocc= 1.55201522E+01 enl0= 5.14552152E+01 enl1= -2.71438006E+02
1-9 gives the relaxation energy (to be shifted if some occ is /=2.0)
erelax= -1.86947417E+02
10,11,12 Non-relaxation contributions : frozen-wavefunctions and Ewald
fr.local= 3.35586249E+01 fr.nonlo= 1.52997747E+02 Ewald= 2.00931375E+01
13,14 Frozen wf xc core corrections (1) and (2)
frxc 1 = -1.12462267E+01 frxc 2 = 9.19325775E+00
Resulting in :
2DEtotal= 0.1764912360E+02 Ha. Also 2DEtotal= 0.480257077127E+03 eV
(2DErelax= -1.8694741676E+02 Ha. 2DEnonrelax= 2.0459654037E+02 Ha)
( non-var. 2DEtotal : 1.7648971353E+01 Ha)
--------------------------------------------------------------------------------
Perturbation wavevector (in red.coord.) 0.000000 0.000000 0.000000
Perturbation : displacement of atom 2 along direction 2
The set of symmetries contains only one element for this perturbation.
symkpt : not enough symmetry to change the number of k points.
--------------------------------------------------------------------------------
--------------------------------------------------------------------------------
Initialisation of the first-order wave-functions :
ireadwf= 0
--- !BeginCycle
iteration_state: {dtset: 13, }
solver: {iscf: 7, nstep: 50, nline: 4, wfoptalg: 0, }
tolerances: {tolwfr: 1.00E-08, }
...
iter 2DEtotal(Ha) deltaE(Ha) residm vres2
-ETOT 1 25.949929952865 -1.786E+02 2.994E-01 3.974E+03
ETOT 2 17.914280820176 -8.036E+00 6.773E-03 9.750E+01
ETOT 3 17.649568750800 -2.647E-01 1.448E-04 6.968E-01
ETOT 4 17.647915236103 -1.654E-03 8.408E-07 4.735E-03
ETOT 5 17.647910723999 -4.512E-06 9.215E-09 1.163E-03
At SCF step 5 max residual= 9.22E-09 < tolwfr= 1.00E-08 =>converged.
================================================================================
----iterations are completed or convergence reached----
Mean square residual over all n,k,spin= 27.198E-10; max= 92.154E-10
Thirteen components of 2nd-order total energy (hartree) are
1,2,3: 0th-order hamiltonian combined with 1st-order wavefunctions
kin0= 2.07627183E+02 eigvalue= -1.57240683E+01 local= -8.74958032E+01
4,5,6: 1st-order hamiltonian combined with 1st and 0th-order wfs
loc psp = -1.02456950E+02 Hartree= 2.32968858E+01 xc= -8.64986479E+00
note that "loc psp" includes a xc core correction that could be resolved
7,8,9: eventually, occupation + non-local contributions
edocc= 1.64175203E+01 enl0= 5.14769583E+01 enl1= -2.71440325E+02
1-9 gives the relaxation energy (to be shifted if some occ is /=2.0)
erelax= -1.86948464E+02
10,11,12 Non-relaxation contributions : frozen-wavefunctions and Ewald
fr.local= 3.35586404E+01 fr.nonlo= 1.52997562E+02 Ewald= 2.00931375E+01
13,14 Frozen wf xc core corrections (1) and (2)
frxc 1 = -1.12462277E+01 frxc 2 = 9.19326216E+00
Resulting in :
2DEtotal= 0.1764791072E+02 Ha. Also 2DEtotal= 0.480224073038E+03 eV
(2DErelax= -1.8694846376E+02 Ha. 2DEnonrelax= 2.0459637449E+02 Ha)
( non-var. 2DEtotal : 1.7647737030E+01 Ha)
--------------------------------------------------------------------------------
Perturbation wavevector (in red.coord.) 0.000000 0.000000 0.000000
Perturbation : displacement of atom 2 along direction 3
The set of symmetries contains only one element for this perturbation.
symkpt : not enough symmetry to change the number of k points.
--------------------------------------------------------------------------------
--------------------------------------------------------------------------------
Initialisation of the first-order wave-functions :
ireadwf= 0
--- !BeginCycle
iteration_state: {dtset: 13, }
solver: {iscf: 7, nstep: 50, nline: 4, wfoptalg: 0, }
tolerances: {tolwfr: 1.00E-08, }
...
iter 2DEtotal(Ha) deltaE(Ha) residm vres2
-ETOT 1 25.948669761099 -1.786E+02 3.935E-01 3.974E+03
ETOT 2 17.914937572141 -8.034E+00 7.112E-03 9.730E+01
ETOT 3 17.650811350207 -2.641E-01 1.612E-04 6.958E-01
ETOT 4 17.649162986669 -1.648E-03 9.111E-07 5.147E-03
ETOT 5 17.649158459342 -4.527E-06 9.638E-09 1.578E-03
At SCF step 5 max residual= 9.64E-09 < tolwfr= 1.00E-08 =>converged.
================================================================================
----iterations are completed or convergence reached----
Mean square residual over all n,k,spin= 26.417E-10; max= 96.377E-10
Thirteen components of 2nd-order total energy (hartree) are
1,2,3: 0th-order hamiltonian combined with 1st-order wavefunctions
kin0= 2.07783324E+02 eigvalue= -1.57643916E+01 local= -8.76337340E+01
4,5,6: 1st-order hamiltonian combined with 1st and 0th-order wfs
loc psp = -1.02455026E+02 Hartree= 2.32961958E+01 xc= -8.64969565E+00
note that "loc psp" includes a xc core correction that could be resolved
7,8,9: eventually, occupation + non-local contributions
edocc= 1.63253665E+01 enl0= 5.15905204E+01 enl1= -2.71439728E+02
1-9 gives the relaxation energy (to be shifted if some occ is /=2.0)
erelax= -1.86947169E+02
10,11,12 Non-relaxation contributions : frozen-wavefunctions and Ewald
fr.local= 3.35586399E+01 fr.nonlo= 1.52997514E+02 Ewald= 2.00931375E+01
13,14 Frozen wf xc core corrections (1) and (2)
frxc 1 = -1.12462280E+01 frxc 2 = 9.19326340E+00
Resulting in :
2DEtotal= 0.1764915846E+02 Ha. Also 2DEtotal= 0.480258025643E+03 eV
(2DErelax= -1.8694716859E+02 Ha. 2DEnonrelax= 2.0459632705E+02 Ha)
( non-var. 2DEtotal : 1.7648950109E+01 Ha)
Components of the Sternheimer part only of the second-order derivatives of the electronic energy,
EIGR2D, in Ha unit.
For automatic tests, printing the matrix for the first k-point, first band, first atom.
1 1 1 1 -1.0558047081E+00 0.0000000000E+00
1 1 2 1 -5.2787572906E-01 -9.5191311903E-06
1 1 3 1 -5.2784201663E-01 2.7331074320E-05
2 1 1 1 -5.2787572906E-01 9.5191311903E-06
2 1 2 1 -1.0557976023E+00 0.0000000000E+00
2 1 3 1 -5.2784033188E-01 4.4275225284E-05
3 1 1 1 -5.2784201663E-01 -2.7331074320E-05
3 1 2 1 -5.2784033188E-01 -4.4275225284E-05
3 1 3 1 -1.0557055578E+00 0.0000000000E+00
Components of second-order derivatives of the electronic energy, EIGI2D.
For automatic tests, printing the matrix for the first k-point, first band, first atom.
1 1 1 1 9.7986604667E-10 0.0000000000E+00
1 1 2 1 1.1634571854E-09 1.7189605882E-10
1 1 3 1 1.3202724426E-09 5.0292162271E-10
2 1 1 1 1.1634571854E-09 -1.7189605882E-10
2 1 2 1 1.4116020063E-09 0.0000000000E+00
2 1 3 1 1.6558699125E-09 3.6553786860E-10
3 1 1 1 1.3202724426E-09 -5.0292162271E-10
3 1 2 1 1.6558699125E-09 -3.6553786860E-10
3 1 3 1 2.0370636252E-09 0.0000000000E+00
================================================================================
---- first-order wavefunction calculations are completed ----
==> Compute Derivative Database <==
2nd-order matrix (non-cartesian coordinates, masses not included,
asr not included )
j1 j2 matrix element
dir pert dir pert real part imaginary part
1 1 1 1 17.6540379079 0.0000000000
1 1 2 1 8.8269542068 0.0000000000
1 1 3 1 8.8253805139 0.0000000000
1 1 1 2 -17.6486591991 0.0000000000
1 1 2 2 -8.8250146170 -0.0000000000
1 1 3 2 -8.8239866870 0.0000000000
2 1 1 1 8.8269811838 0.0000000000
2 1 2 1 17.6508571879 0.0000000000
2 1 3 1 8.8172681973 0.0000000000
2 1 1 2 -8.8279516024 -0.0000000000
2 1 2 2 -17.6529374533 0.0000000000
2 1 3 2 -8.8286857126 -0.0000000000
3 1 1 1 8.8253980767 0.0000000000
3 1 2 1 8.8172686817 0.0000000000
3 1 3 1 17.6475484311 0.0000000000
3 1 1 2 -8.8293281052 0.0000000000
3 1 2 2 -8.8359800565 -0.0000000000
3 1 3 2 -17.6523111550 0.0000000000
1 2 1 1 -17.6485899372 -0.0000000000
1 2 2 1 -8.8279516801 0.0000000000
1 2 3 1 -8.8292860266 -0.0000000000
1 2 1 2 17.6489713533 0.0000000000
1 2 2 2 8.8230698592 0.0000000000
1 2 3 2 8.8247585038 0.0000000000
2 2 1 1 -8.8249437384 0.0000000000
2 2 2 1 -17.6529091575 -0.0000000000
2 2 3 1 -8.8359127496 0.0000000000
2 2 1 2 8.8230758172 0.0000000000
2 2 2 2 17.6477370297 0.0000000000
2 2 3 2 8.8218502479 0.0000000000
3 2 1 1 -8.8239435402 -0.0000000000
3 2 2 1 -8.8286681916 0.0000000000
3 2 3 1 -17.6522393685 -0.0000000000
3 2 1 2 8.8247709787 0.0000000000
3 2 2 2 8.8218635248 0.0000000000
3 2 3 2 17.6489501093 0.0000000000
Dynamical matrix, in cartesian coordinates,
if specified in the inputs, asr has been imposed
j1 j2 matrix element
dir pert dir pert real part imaginary part
1 1 1 1 0.7934951056 -0.0000000000
1 1 2 1 0.0000388249 0.0000000000
1 1 3 1 0.0003485943 0.0000000000
1 1 1 2 -0.7934951056 0.0000000000
1 1 2 2 -0.0000388249 -0.0000000000
1 1 3 2 -0.0003485943 -0.0000000000
2 1 1 1 0.0001265925 0.0000000000
2 1 2 1 0.7929849748 -0.0000000000
2 1 3 1 0.0002355117 0.0000000000
2 1 1 2 -0.0001265925 -0.0000000000
2 1 2 2 -0.7929849748 0.0000000000
2 1 3 2 -0.0002355117 -0.0000000000
3 1 1 1 -0.0001112178 0.0000000000
3 1 2 1 0.0001274527 0.0000000000
3 1 3 1 0.7929693094 -0.0000000000
3 1 1 2 0.0001112178 -0.0000000000
3 1 2 2 -0.0001274527 -0.0000000000
3 1 3 2 -0.7929693094 0.0000000000
1 2 1 1 -0.7934929002 -0.0000000000
1 2 2 1 -0.0001244379 0.0000000000
1 2 3 1 0.0001110749 0.0000000000
1 2 1 2 0.7934929002 0.0000000000
1 2 2 2 0.0001244379 -0.0000000000
1 2 3 2 -0.0001110749 -0.0000000000
2 2 1 1 -0.0000389558 0.0000000000
2 2 2 1 -0.7929827515 -0.0000000000
2 2 3 1 -0.0001278095 0.0000000000
2 2 1 2 0.0000389558 -0.0000000000
2 2 2 2 0.7929827515 0.0000000000
2 2 3 2 0.0001278095 -0.0000000000
3 2 1 1 -0.0003496886 0.0000000000
3 2 2 1 -0.0002327277 0.0000000000
3 2 3 1 -0.7929677344 -0.0000000000
3 2 1 2 0.0003496886 -0.0000000000
3 2 2 2 0.0002327277 -0.0000000000
3 2 3 2 0.7929677344 0.0000000000
Phonon wavevector (reduced coordinates) : 0.00000 0.00000 0.00000
Phonon energies in Hartree :
-1.290837E-06 -1.286418E-06 0.000000E+00 8.509921E-03 8.511595E-03
8.513960E-03
Phonon energies in meV :
- -3.512547E-02 -3.500520E-02 0.000000E+00 2.315667E+02 2.316123E+02
- 2.316766E+02
Phonon frequencies in cm-1 :
- -2.833060E-01 -2.823360E-01 0.000000E+00 1.867712E+03 1.868079E+03
- 1.868598E+03
Phonon frequencies in Thz :
- -8.493301E-03 -8.464221E-03 0.000000E+00 5.599259E+01 5.600360E+01
- 5.601917E+01
Phonon energies in Kelvin :
- -4.076137E-01 -4.062180E-01 0.000000E+00 2.687217E+03 2.687746E+03
- 2.688493E+03
Components of second-order derivatives of the electronic energy, EIGR2D.
For automatic tests, printing the matrix for the first k-point, first band, first atom.
1 1 1 1 -1.6872518304E+00 0.0000000000E+00
1 1 2 1 -8.4361235167E-01 -1.6149855915E-05
1 1 3 1 -8.4359444786E-01 1.9060578530E-06
2 1 1 1 -8.4361235167E-01 1.6149855915E-05
2 1 2 1 -1.6873220010E+00 0.0000000000E+00
2 1 3 1 -8.4360848919E-01 1.4806407694E-05
3 1 1 1 -8.4359444786E-01 -1.9060578530E-06
3 1 2 1 -8.4360848919E-01 -1.4806407694E-05
3 1 3 1 -1.6872888431E+00 0.0000000000E+00
Components of second-order derivatives of the electronic energy, EIGI2D.
For automatic tests, printing the matrix for the first k-point, first band, first atom.
1 1 1 1 9.7986604667E-10 0.0000000000E+00
1 1 2 1 1.1634571854E-09 1.7189605882E-10
1 1 3 1 1.3202724426E-09 5.0292162271E-10
2 1 1 1 1.1634571854E-09 -1.7189605882E-10
2 1 2 1 1.4116020063E-09 0.0000000000E+00
2 1 3 1 1.6558699125E-09 3.6553786860E-10
3 1 1 1 1.3202724426E-09 -5.0292162271E-10
3 1 2 1 1.6558699125E-09 -3.6553786860E-10
3 1 3 1 2.0370636252E-09 0.0000000000E+00
================================================================================
---- T=0 shift of eigenenergies due to electron-phonon interation at q ----
Warning : the total shift must be computed through anaddb,
here, only the contribution of one q point is printed.
Print first the electronic eigenvalues, then the q-dependent Fan shift of eigenvalues.
Phonons at gamma, also compute the Diagonal Debye-Waller shift of eigenvalues.
Eigenvalues (hartree) for nkpt= 8 k points:
kpt# 1, nband= 10, wtk= 0.12500, kpt= 0.0000 0.0000 0.0000 (reduced coord)
-0.31566 0.52104 0.52104 0.52104 0.75482 0.75482 0.75482 0.99990
1.19500 1.48731
prteigrs : prtvol=0 or 1, do not print more k-points.
Eigenvalues ( eV ) for nkpt= 8 k points:
kpt# 1, nband= 10, wtk= 0.12500, kpt= 0.0000 0.0000 0.0000 (reduced coord)
-8.58957 14.17819 14.17819 14.17819 20.53957 20.53957 20.53957 27.20859
32.51758 40.47171
prteigrs : prtvol=0 or 1, do not print more k-points.
Fan corrections to eigenvalues at T=0 (hartree) for nkpt= 8 k points:
(in case of degenerate eigenvalues, averaged derivative)
kpt# 1, nband= 10, wtk= 0.12500, kpt= 0.0000 0.0000 0.0000 (reduced coord)
-0.00084 -0.00581 -0.00581 -0.00581 -0.00619 -0.00619 -0.00619 -0.00110
0.00040 0.00245
prteigrs : prtvol=0 or 1, do not print more k-points.
Fan corrections to eigenvalues at T=0 ( eV ) for nkpt= 8 k points:
kpt# 1, nband= 10, wtk= 0.12500, kpt= 0.0000 0.0000 0.0000 (reduced coord)
-0.02278 -0.15823 -0.15816 -0.15810 -0.16856 -0.16841 -0.16844 -0.02983
0.01096 0.06667
prteigrs : prtvol=0 or 1, do not print more k-points.
DDW corrections to eigenvalues at T=0 (hartree) for nkpt= 8 k points:
(in case of degenerate eigenvalues, averaged derivative)
kpt# 1, nband= 10, wtk= 0.12500, kpt= 0.0000 0.0000 0.0000 (reduced coord)
0.00038 0.00752 0.00751 0.00752 0.00500 0.00500 0.00500 0.00060
-0.00128 -0.00176
prteigrs : prtvol=0 or 1, do not print more k-points.
DDW corrections to eigenvalues at T=0 ( eV ) for nkpt= 8 k points:
kpt# 1, nband= 10, wtk= 0.12500, kpt= 0.0000 0.0000 0.0000 (reduced coord)
0.01043 0.20453 0.20440 0.20450 0.13594 0.13596 0.13593 0.01635
-0.03484 -0.04792
prteigrs : prtvol=0 or 1, do not print more k-points.
Fan+DDW corrs to eigenvalues at T=0 (hartree) for nkpt= 8 k points:
(in case of degenerate eigenvalues, averaged derivative)
kpt# 1, nband= 10, wtk= 0.12500, kpt= 0.0000 0.0000 0.0000 (reduced coord)
-0.00045 0.00170 0.00170 0.00170 -0.00120 -0.00119 -0.00119 -0.00050
-0.00088 0.00069
prteigrs : prtvol=0 or 1, do not print more k-points.
Fan+DDW corrs to eigenvalues at T=0 ( eV ) for nkpt= 8 k points:
kpt# 1, nband= 10, wtk= 0.12500, kpt= 0.0000 0.0000 0.0000 (reduced coord)
-0.01235 0.04630 0.04624 0.04639 -0.03262 -0.03245 -0.03252 -0.01347
-0.02388 0.01875
prteigrs : prtvol=0 or 1, do not print more k-points.
================================================================================
== DATASET 21 ==================================================================
- mpi_nproc: 4, omp_nthreads: -1 (-1 if OMP is not activated)
--- !DatasetInfo
iteration_state: {dtset: 21, }
dimensions: {natom: 2, nkpt: 8, mband: 10, nsppol: 1, nspinor: 1, nspden: 1, mpw: 116, }
cutoff_energies: {ecut: 10.0, pawecutdg: -1.0, }
electrons: {nelect: 8.00000000E+00, charge: 0.00000000E+00, occopt: 1.00000000E+00, tsmear: 1.00000000E-02, }
meta: {optdriver: 0, ionmov: 0, optcell: 0, iscf: 7, paral_kgb: 0, }
...
Exchange-correlation functional for the present dataset will be:
LDA: new Teter (4/93) with spin-polarized option - ixc=1
Citation for XC functional:
S. Goedecker, M. Teter, J. Huetter, PRB 54, 1703 (1996)
Real(R)+Recip(G) space primitive vectors, cartesian coordinates (Bohr,Bohr^-1):
R(1)= 0.0000000 3.3354992 3.3354992 G(1)= -0.1499026 0.1499026 0.1499026
R(2)= 3.3354992 0.0000000 3.3354992 G(2)= 0.1499026 -0.1499026 0.1499026
R(3)= 3.3354992 3.3354992 0.0000000 G(3)= 0.1499026 0.1499026 -0.1499026
Unit cell volume ucvol= 7.4218556E+01 bohr^3
Angles (23,13,12)= 6.00000000E+01 6.00000000E+01 6.00000000E+01 degrees
getcut: wavevector= 0.0000 0.0000 0.0000 ngfft= 15 15 15
ecut(hartree)= 10.000 => boxcut(ratio)= 2.09552
--------------------------------------------------------------------------------
_setup2: Arith. and geom. avg. npw (full set) are 111.625 111.563
================================================================================
--- !BeginCycle
iteration_state: {dtset: 21, }
solver: {iscf: 7, nstep: 50, nline: 4, wfoptalg: 0, }
tolerances: {tolwfr: 1.00E-08, }
...
iter Etot(hartree) deltaE(h) residm vres2
ETOT 1 -11.683963329499 -1.168E+01 5.766E-03 8.670E+00
ETOT 2 -11.692111223316 -8.148E-03 1.679E-06 2.457E-02
ETOT 3 -11.692124873332 -1.365E-05 3.208E-07 8.105E-04
ETOT 4 -11.692125008378 -1.350E-07 1.413E-07 3.120E-04
ETOT 5 -11.692125615451 -6.071E-07 3.190E-08 1.448E-06
ETOT 6 -11.692125617840 -2.389E-09 6.772E-10 9.701E-09
At SCF step 6 max residual= 6.77E-10 < tolwfr= 1.00E-08 =>converged.
Cartesian components of stress tensor (hartree/bohr^3)
sigma(1 1)= 3.32483279E-03 sigma(3 2)= 5.05926498E-09
sigma(2 2)= 3.32483047E-03 sigma(3 1)= -2.06972340E-08
sigma(3 3)= 3.32483131E-03 sigma(2 1)= -2.65002807E-08
--- !ResultsGS
iteration_state: {dtset: 21, }
comment : Summary of ground state results
lattice_vectors:
- [ 0.0000000, 3.3354992, 3.3354992, ]
- [ 3.3354992, 0.0000000, 3.3354992, ]
- [ 3.3354992, 3.3354992, 0.0000000, ]
lattice_lengths: [ 4.71711, 4.71711, 4.71711, ]
lattice_angles: [ 60.000, 60.000, 60.000, ] # degrees, (23, 13, 12)
lattice_volume: 7.4218556E+01
convergence: {deltae: -2.389E-09, res2: 9.701E-09, residm: 6.772E-10, diffor: null, }
etotal : -1.16921256E+01
entropy : 0.00000000E+00
fermie : 5.21038972E-01
cartesian_stress_tensor: # hartree/bohr^3
- [ 3.32483279E-03, -2.65002807E-08, -2.06972340E-08, ]
- [ -2.65002807E-08, 3.32483047E-03, 5.05926498E-09, ]
- [ -2.06972340E-08, 5.05926498E-09, 3.32483131E-03, ]
pressure_GPa: -9.7820E+01
xred :
- [ 0.0000E+00, 0.0000E+00, 0.0000E+00, C]
- [ 2.5000E-01, 2.5000E-01, 2.5000E-01, C]
cartesian_forces: # hartree/bohr
- [ -4.35078779E-07, -2.43831802E-06, -1.90873985E-06, ]
- [ 4.35078779E-07, 2.43831802E-06, 1.90873985E-06, ]
force_length_stats: {min: 3.12697556E-06, max: 3.12697556E-06, mean: 3.12697556E-06, }
...
Integrated electronic density in atomic spheres:
------------------------------------------------
Atom Sphere_radius Integrated_density
1 2.00000 4.79819736
2 2.00000 4.91959218
================================================================================
----iterations are completed or convergence reached----
Mean square residual over all n,k,spin= 19.526E-11; max= 67.716E-11
reduced coordinates (array xred) for 2 atoms
0.000000000000 0.000000000000 0.000000000000
0.250000000000 0.250000000000 0.250000000000
rms dE/dt= 2.0661E-05; max dE/dt= 2.3774E-05; dE/dt below (all hartree)
1 -0.000011988396 0.000011621265 0.000023773703
2 -0.000040987611 -0.000004014345 0.000004605278
cartesian coordinates (angstrom) at end:
1 0.00000000000000 0.00000000000000 0.00000000000000
2 0.88253506645871 0.88253506645871 0.88253506645871
cartesian forces (hartree/bohr) at end:
1 -0.00000043507878 -0.00000243831802 -0.00000190873985
2 0.00000043507878 0.00000243831802 0.00000190873985
frms,max,avg= 1.8053602E-06 2.4383180E-06 -6.668E-06 2.414E-06 5.528E-06 h/b
cartesian forces (eV/Angstrom) at end:
1 -0.00002237264849 -0.00012538334347 -0.00009815134103
2 0.00002237264849 0.00012538334347 0.00009815134103
frms,max,avg= 9.2835345E-05 1.2538334E-04 -3.429E-04 1.241E-04 2.842E-04 e/A
length scales= 6.670998313100 6.670998313100 6.670998313100 bohr
= 3.530140265835 3.530140265835 3.530140265835 angstroms
prteigrs : about to open file t60_MPI4o_DS21_EIG
Fermi (or HOMO) energy (hartree) = 0.52104 Average Vxc (hartree)= -0.50804
Eigenvalues (hartree) for nkpt= 8 k points:
kpt# 1, nband= 10, wtk= 0.12500, kpt= 0.0000 0.0000 0.0000 (reduced coord)
-0.31566 0.52104 0.52104 0.52104 0.75482 0.75482 0.75482 0.99990
1.19500 1.48731
prteigrs : prtvol=0 or 1, do not print more k-points.
Fermi (or HOMO) energy (eV) = 14.17819 Average Vxc (eV)= -13.82455
Eigenvalues ( eV ) for nkpt= 8 k points:
kpt# 1, nband= 10, wtk= 0.12500, kpt= 0.0000 0.0000 0.0000 (reduced coord)
-8.58957 14.17819 14.17819 14.17819 20.53957 20.53957 20.53957 27.20859
32.51758 40.47171
prteigrs : prtvol=0 or 1, do not print more k-points.
--- !EnergyTerms
iteration_state : {dtset: 21, }
comment : Components of total free energy in Hartree
kinetic : 8.31278643095758E+00
hartree : 9.59212312316061E-01
xc : -4.35176965734625E+00
Ewald energy : -1.29199206267251E+01
psp_core : 1.99605829697410E-01
local_psp : -5.14256368993921E+00
non_local_psp : 1.25052378320004E+00
total_energy : -1.16921256178395E+01
total_energy_eV : -3.18158918326370E+02
band_energy : 1.53085093947756E+00
...
Cartesian components of stress tensor (hartree/bohr^3)
sigma(1 1)= 3.32483279E-03 sigma(3 2)= 5.05926498E-09
sigma(2 2)= 3.32483047E-03 sigma(3 1)= -2.06972340E-08
sigma(3 3)= 3.32483131E-03 sigma(2 1)= -2.65002807E-08
-Cartesian components of stress tensor (GPa) [Pressure= -9.7820E+01 GPa]
- sigma(1 1)= 9.78199415E+01 sigma(3 2)= 1.48848690E-04
- sigma(2 2)= 9.78198731E+01 sigma(3 1)= -6.08933546E-04
- sigma(3 3)= 9.78198979E+01 sigma(2 1)= -7.79665045E-04
================================================================================
== DATASET 22 ==================================================================
- mpi_nproc: 4, omp_nthreads: -1 (-1 if OMP is not activated)
--- !DatasetInfo
iteration_state: {dtset: 22, }
dimensions: {natom: 2, nkpt: 8, mband: 10, nsppol: 1, nspinor: 1, nspden: 1, mpw: 116, }
cutoff_energies: {ecut: 10.0, pawecutdg: -1.0, }
electrons: {nelect: 8.00000000E+00, charge: 0.00000000E+00, occopt: 1.00000000E+00, tsmear: 1.00000000E-02, }
meta: {optdriver: 0, ionmov: 0, optcell: 0, iscf: -2, paral_kgb: 0, }
...
mkfilename : getden/=0, take file _DEN from output of DATASET 21.
Exchange-correlation functional for the present dataset will be:
LDA: new Teter (4/93) with spin-polarized option - ixc=1
Citation for XC functional:
S. Goedecker, M. Teter, J. Huetter, PRB 54, 1703 (1996)
Real(R)+Recip(G) space primitive vectors, cartesian coordinates (Bohr,Bohr^-1):
R(1)= 0.0000000 3.3354992 3.3354992 G(1)= -0.1499026 0.1499026 0.1499026
R(2)= 3.3354992 0.0000000 3.3354992 G(2)= 0.1499026 -0.1499026 0.1499026
R(3)= 3.3354992 3.3354992 0.0000000 G(3)= 0.1499026 0.1499026 -0.1499026
Unit cell volume ucvol= 7.4218556E+01 bohr^3
Angles (23,13,12)= 6.00000000E+01 6.00000000E+01 6.00000000E+01 degrees
getcut: wavevector= 0.0000 0.0000 0.0000 ngfft= 15 15 15
ecut(hartree)= 10.000 => boxcut(ratio)= 2.09552
--------------------------------------------------------------------------------
================================================================================
prteigrs : about to open file t60_MPI4o_DS22_EIG
Non-SCF case, kpt 1 ( 0.00000 0.50000 0.00000), residuals and eigenvalues=
4.83E-10 6.22E-09 1.51E-09 1.10E-09 6.91E-10 6.39E-09 2.85E-09 2.86E-09
1.02E-05 2.30E-05
-9.0032E-02 -2.4304E-03 4.3029E-01 4.3029E-01 8.3414E-01 8.4609E-01
8.4609E-01 1.1160E+00 1.3567E+00 1.4609E+00
prteigrs : prtvol=0 or 1, do not print more k-points.
--- !ResultsGS
iteration_state: {dtset: 22, }
comment : Summary of ground state results
lattice_vectors:
- [ 0.0000000, 3.3354992, 3.3354992, ]
- [ 3.3354992, 0.0000000, 3.3354992, ]
- [ 3.3354992, 3.3354992, 0.0000000, ]
lattice_lengths: [ 4.71711, 4.71711, 4.71711, ]
lattice_angles: [ 60.000, 60.000, 60.000, ] # degrees, (23, 13, 12)
lattice_volume: 7.4218556E+01
convergence: {deltae: 0.000E+00, res2: 0.000E+00, residm: 9.866E-09, diffor: 0.000E+00, }
etotal : -1.16921256E+01
entropy : 0.00000000E+00
fermie : 5.21038972E-01
cartesian_stress_tensor: null
pressure_GPa: null
xred :
- [ 0.0000E+00, 0.0000E+00, 0.0000E+00, C]
- [ 2.5000E-01, 2.5000E-01, 2.5000E-01, C]
cartesian_forces: null
force_length_stats: {min: null, max: null, mean: null, }
...
Integrated electronic density in atomic spheres:
------------------------------------------------
Atom Sphere_radius Integrated_density
1 2.00000 4.79819736
2 2.00000 4.91959218
================================================================================
----iterations are completed or convergence reached----
Mean square residual over all n,k,spin= 26.912E-10; max= 98.658E-10
reduced coordinates (array xred) for 2 atoms
0.000000000000 0.000000000000 0.000000000000
0.250000000000 0.250000000000 0.250000000000
cartesian coordinates (angstrom) at end:
1 0.00000000000000 0.00000000000000 0.00000000000000
2 0.88253506645871 0.88253506645871 0.88253506645871
length scales= 6.670998313100 6.670998313100 6.670998313100 bohr
= 3.530140265835 3.530140265835 3.530140265835 angstroms
prteigrs : about to open file t60_MPI4o_DS22_EIG
Eigenvalues (hartree) for nkpt= 8 k points:
kpt# 1, nband= 10, wtk= 0.12500, kpt= 0.0000 0.5000 0.0000 (reduced coord)
-0.09003 -0.00243 0.43029 0.43029 0.83414 0.84609 0.84609 1.11601
1.35674 1.46095
prteigrs : prtvol=0 or 1, do not print more k-points.
Eigenvalues ( eV ) for nkpt= 8 k points:
kpt# 1, nband= 10, wtk= 0.12500, kpt= 0.0000 0.5000 0.0000 (reduced coord)
-2.44989 -0.06613 11.70875 11.70876 22.69800 23.02325 23.02326 30.36814
36.91888 39.75435
prteigrs : prtvol=0 or 1, do not print more k-points.
================================================================================
== DATASET 23 ==================================================================
- mpi_nproc: 4, omp_nthreads: -1 (-1 if OMP is not activated)
--- !DatasetInfo
iteration_state: {dtset: 23, }
dimensions: {natom: 2, nkpt: 8, mband: 10, nsppol: 1, nspinor: 1, nspden: 1, mpw: 116, }
cutoff_energies: {ecut: 10.0, pawecutdg: -1.0, }
electrons: {nelect: 8.00000000E+00, charge: 0.00000000E+00, occopt: 1.00000000E+00, tsmear: 1.00000000E-02, }
meta: {optdriver: 1, rfphon: 1, }
...
mkfilename : getwfk/=0, take file _WFK from output of DATASET 21.
mkfilename : getwfq/=0, take file _WFQ from output of DATASET 22.
Exchange-correlation functional for the present dataset will be:
LDA: new Teter (4/93) with spin-polarized option - ixc=1
Citation for XC functional:
S. Goedecker, M. Teter, J. Huetter, PRB 54, 1703 (1996)
Real(R)+Recip(G) space primitive vectors, cartesian coordinates (Bohr,Bohr^-1):
R(1)= 0.0000000 3.3354992 3.3354992 G(1)= -0.1499026 0.1499026 0.1499026
R(2)= 3.3354992 0.0000000 3.3354992 G(2)= 0.1499026 -0.1499026 0.1499026
R(3)= 3.3354992 3.3354992 0.0000000 G(3)= 0.1499026 0.1499026 -0.1499026
Unit cell volume ucvol= 7.4218556E+01 bohr^3
Angles (23,13,12)= 6.00000000E+01 6.00000000E+01 6.00000000E+01 degrees
setup1 : take into account q-point for computing boxcut.
getcut: wavevector= 0.0000 0.5000 0.0000 ngfft= 15 15 15
ecut(hartree)= 10.000 => boxcut(ratio)= 1.93885
--- Pseudopotential description ------------------------------------------------
- pspini: atom type 1 psp file is /home/buildbot/ABINIT3/eos_gnu_13.2_mpich/trunk_merge-10.0/tests/Pspdir/PseudosTM_pwteter/6c.pspnc
- pspatm: opening atomic psp file /home/buildbot/ABINIT3/eos_gnu_13.2_mpich/trunk_merge-10.0/tests/Pspdir/PseudosTM_pwteter/6c.pspnc
- Troullier-Martins psp for element C Thu Oct 27 17:29:33 EDT 1994
- 6.00000 4.00000 940714 znucl, zion, pspdat
1 1 1 1 2001 0.00000 pspcod,pspxc,lmax,lloc,mmax,r2well
0 10.372 24.987 1 1.4850707 l,e99.0,e99.9,nproj,rcpsp
0.00000000 0.00000000 0.00000000 0.00000000 rms, ekb1, ekb2, epsatm
1 15.431 21.987 0 1.4850707 l,e99.0,e99.9,nproj,rcpsp
0.00000000 0.00000000 0.00000000 0.00000000 rms, ekb1, ekb2, epsatm
0.83985002509544 0.99012430797080 0.51184907750884 rchrg,fchrg,qchrg
pspatm : epsatm= 0.92590353
--- l ekb(1:nproj) -->
0 4.921466
pspatm: atomic psp has been read and splines computed
--------------------------------------------------------------------------------
==> initialize data related to q vector <==
The list of irreducible perturbations for this q vector is:
1) idir= 1 ipert= 1
2) idir= 2 ipert= 1
3) idir= 3 ipert= 1
4) idir= 1 ipert= 2
5) idir= 2 ipert= 2
6) idir= 3 ipert= 2
================================================================================
--------------------------------------------------------------------------------
Perturbation wavevector (in red.coord.) 0.000000 0.500000 0.000000
Perturbation : displacement of atom 1 along direction 1
The set of symmetries contains only one element for this perturbation.
symkpt : not enough symmetry to change the number of k points.
--------------------------------------------------------------------------------
--------------------------------------------------------------------------------
Initialisation of the first-order wave-functions :
ireadwf= 0
--- !BeginCycle
iteration_state: {dtset: 23, }
solver: {iscf: 7, nstep: 50, nline: 4, wfoptalg: 0, }
tolerances: {tolwfr: 1.00E-08, }
...
iter 2DEtotal(Ha) deltaE(Ha) residm vres2
-ETOT 1 29.042195945080 -1.783E+02 4.904E-01 7.292E+03
ETOT 2 14.341832740157 -1.470E+01 2.196E-02 3.461E+02
ETOT 3 13.528804162630 -8.130E-01 6.983E-04 3.193E-01
ETOT 4 13.528262223664 -5.419E-04 7.286E-07 3.682E-03
ETOT 5 13.528255246898 -6.977E-06 9.917E-09 2.333E-04
At SCF step 5 max residual= 9.92E-09 < tolwfr= 1.00E-08 =>converged.
================================================================================
----iterations are completed or convergence reached----
Mean square residual over all n,k,spin= 23.699E-10; max= 99.173E-10
Thirteen components of 2nd-order total energy (hartree) are
1,2,3: 0th-order hamiltonian combined with 1st-order wavefunctions
kin0= 2.04345843E+02 eigvalue= -1.56108347E+01 local= -8.73025532E+01
4,5,6: 1st-order hamiltonian combined with 1st and 0th-order wfs
loc psp = -1.20173613E+02 Hartree= 2.92705737E+01 xc= -9.89119280E+00
note that "loc psp" includes a xc core correction that could be resolved
7,8,9: eventually, occupation + non-local contributions
edocc= 2.05972170E+01 enl0= 5.24128603E+01 enl1= -2.67470080E+02
1-9 gives the relaxation energy (to be shifted if some occ is /=2.0)
erelax= -1.93821780E+02
10,11,12 Non-relaxation contributions : frozen-wavefunctions and Ewald
fr.local= 3.35599239E+01 fr.nonlo= 1.52999597E+02 Ewald= 2.28448357E+01
13,14 Frozen wf xc core corrections (1) and (2)
frxc 1 = -1.12473455E+01 frxc 2 = 9.19302446E+00
Resulting in :
2DEtotal= 0.1352825525E+02 Ha. Also 2DEtotal= 0.368122546479E+03 eV
(2DErelax= -1.9382177999E+02 Ha. 2DEnonrelax= 2.0735003524E+02 Ha)
( non-var. 2DEtotal : 1.3528188583E+01 Ha)
--------------------------------------------------------------------------------
Perturbation wavevector (in red.coord.) 0.000000 0.500000 0.000000
Perturbation : displacement of atom 1 along direction 2
The set of symmetries contains only one element for this perturbation.
symkpt : not enough symmetry to change the number of k points.
--------------------------------------------------------------------------------
--------------------------------------------------------------------------------
Initialisation of the first-order wave-functions :
ireadwf= 0
--- !BeginCycle
iteration_state: {dtset: 23, }
solver: {iscf: 7, nstep: 50, nline: 4, wfoptalg: 0, }
tolerances: {tolwfr: 1.00E-08, }
...
iter 2DEtotal(Ha) deltaE(Ha) residm vres2
-ETOT 1 283.69620840440 4.166E+01 4.144E-01 2.868E+05
ETOT 2 178.44655642605 -1.052E+02 1.333E-01 1.461E+05
ETOT 3 19.291159108137 -1.592E+02 3.165E-02 1.478E+03
ETOT 4 16.609301825354 -2.682E+00 2.902E-04 2.452E+01
ETOT 5 16.570495650616 -3.881E-02 1.187E-05 3.483E-01
ETOT 6 16.570053329785 -4.423E-04 5.735E-07 5.594E-03
ETOT 7 16.570047233585 -6.096E-06 9.901E-09 2.649E-04
At SCF step 7 max residual= 9.90E-09 < tolwfr= 1.00E-08 =>converged.
================================================================================
----iterations are completed or convergence reached----
Mean square residual over all n,k,spin= 38.849E-10; max= 99.011E-10
Thirteen components of 2nd-order total energy (hartree) are
1,2,3: 0th-order hamiltonian combined with 1st-order wavefunctions
kin0= 2.07505846E+02 eigvalue= -1.69538445E+01 local= -8.98422656E+01
4,5,6: 1st-order hamiltonian combined with 1st and 0th-order wfs
loc psp = -1.91588546E+02 Hartree= 6.11193394E+01 xc= -1.02890396E+01
note that "loc psp" includes a xc core correction that could be resolved
7,8,9: eventually, occupation + non-local contributions
edocc= 1.97822329E+01 enl0= 5.41395653E+01 enl1= -2.59336367E+02
1-9 gives the relaxation energy (to be shifted if some occ is /=2.0)
erelax= -2.25463079E+02
10,11,12 Non-relaxation contributions : frozen-wavefunctions and Ewald
fr.local= 3.35599774E+01 fr.nonlo= 1.52999758E+02 Ewald= 5.75277144E+01
13,14 Frozen wf xc core corrections (1) and (2)
frxc 1 = -1.12473446E+01 frxc 2 = 9.19302166E+00
Resulting in :
2DEtotal= 0.1657004723E+02 Ha. Also 2DEtotal= 0.450893915851E+03 eV
(2DErelax= -2.2546307945E+02 Ha. 2DEnonrelax= 2.4203312668E+02 Ha)
( non-var. 2DEtotal : 1.6570669845E+01 Ha)
--------------------------------------------------------------------------------
Perturbation wavevector (in red.coord.) 0.000000 0.500000 0.000000
Perturbation : displacement of atom 1 along direction 3
The set of symmetries contains only one element for this perturbation.
symkpt : not enough symmetry to change the number of k points.
--------------------------------------------------------------------------------
--------------------------------------------------------------------------------
Initialisation of the first-order wave-functions :
ireadwf= 0
--- !BeginCycle
iteration_state: {dtset: 23, }
solver: {iscf: 7, nstep: 50, nline: 4, wfoptalg: 0, }
tolerances: {tolwfr: 1.00E-08, }
...
iter 2DEtotal(Ha) deltaE(Ha) residm vres2
-ETOT 1 29.036073405896 -1.783E+02 4.814E-01 7.291E+03
ETOT 2 14.340209491450 -1.470E+01 1.748E-02 3.459E+02
ETOT 3 13.527679845207 -8.125E-01 5.436E-04 3.216E-01
ETOT 4 13.527135931414 -5.439E-04 5.445E-07 5.038E-03
ETOT 5 13.527128136999 -7.794E-06 9.586E-09 1.093E-03
At SCF step 5 max residual= 9.59E-09 < tolwfr= 1.00E-08 =>converged.
================================================================================
----iterations are completed or convergence reached----
Mean square residual over all n,k,spin= 16.246E-10; max= 95.864E-10
Thirteen components of 2nd-order total energy (hartree) are
1,2,3: 0th-order hamiltonian combined with 1st-order wavefunctions
kin0= 2.04303918E+02 eigvalue= -1.55806160E+01 local= -8.71687044E+01
4,5,6: 1st-order hamiltonian combined with 1st and 0th-order wfs
loc psp = -1.20174438E+02 Hartree= 2.92705783E+01 xc= -9.89138814E+00
note that "loc psp" includes a xc core correction that could be resolved
7,8,9: eventually, occupation + non-local contributions
edocc= 2.06127049E+01 enl0= 5.22768812E+01 enl1= -2.67472131E+02
1-9 gives the relaxation energy (to be shifted if some occ is /=2.0)
erelax= -1.93823195E+02
10,11,12 Non-relaxation contributions : frozen-wavefunctions and Ewald
fr.local= 3.35599879E+01 fr.nonlo= 1.52999823E+02 Ewald= 2.28448357E+01
13,14 Frozen wf xc core corrections (1) and (2)
frxc 1 = -1.12473443E+01 frxc 2 = 9.19302052E+00
Resulting in :
2DEtotal= 0.1352712814E+02 Ha. Also 2DEtotal= 0.368091876259E+03 eV
(2DErelax= -1.9382319468E+02 Ha. 2DEnonrelax= 2.0735032282E+02 Ha)
( non-var. 2DEtotal : 1.3527038443E+01 Ha)
--------------------------------------------------------------------------------
Perturbation wavevector (in red.coord.) 0.000000 0.500000 0.000000
Perturbation : displacement of atom 2 along direction 1
The set of symmetries contains only one element for this perturbation.
symkpt : not enough symmetry to change the number of k points.
--------------------------------------------------------------------------------
--------------------------------------------------------------------------------
Initialisation of the first-order wave-functions :
ireadwf= 0
--- !BeginCycle
iteration_state: {dtset: 23, }
solver: {iscf: 7, nstep: 50, nline: 4, wfoptalg: 0, }
tolerances: {tolwfr: 1.00E-08, }
...
iter 2DEtotal(Ha) deltaE(Ha) residm vres2
-ETOT 1 29.036057932789 -1.783E+02 4.913E-01 7.291E+03
ETOT 2 14.336669084396 -1.470E+01 2.194E-02 3.461E+02
ETOT 3 13.523768850784 -8.129E-01 6.968E-04 3.203E-01
ETOT 4 13.523225864394 -5.430E-04 7.303E-07 4.414E-03
ETOT 5 13.523218425630 -7.439E-06 9.821E-09 7.250E-04
At SCF step 5 max residual= 9.82E-09 < tolwfr= 1.00E-08 =>converged.
================================================================================
----iterations are completed or convergence reached----
Mean square residual over all n,k,spin= 19.432E-10; max= 98.209E-10
Thirteen components of 2nd-order total energy (hartree) are
1,2,3: 0th-order hamiltonian combined with 1st-order wavefunctions
kin0= 2.04321281E+02 eigvalue= -1.56008124E+01 local= -8.71877109E+01
4,5,6: 1st-order hamiltonian combined with 1st and 0th-order wfs
loc psp = -1.20167987E+02 Hartree= 2.92708735E+01 xc= -9.89148053E+00
note that "loc psp" includes a xc core correction that could be resolved
7,8,9: eventually, occupation + non-local contributions
edocc= 2.06315314E+01 enl0= 5.22815539E+01 enl1= -2.67482269E+02
1-9 gives the relaxation energy (to be shifted if some occ is /=2.0)
erelax= -1.93825020E+02
10,11,12 Non-relaxation contributions : frozen-wavefunctions and Ewald
fr.local= 3.35586249E+01 fr.nonlo= 1.52997747E+02 Ewald= 2.28448357E+01
13,14 Frozen wf xc core corrections (1) and (2)
frxc 1 = -1.12462267E+01 frxc 2 = 9.19325775E+00
Resulting in :
2DEtotal= 0.1352321843E+02 Ha. Also 2DEtotal= 0.367985487602E+03 eV
(2DErelax= -1.9382502013E+02 Ha. 2DEnonrelax= 2.0734823855E+02 Ha)
( non-var. 2DEtotal : 1.3523110476E+01 Ha)
--------------------------------------------------------------------------------
Perturbation wavevector (in red.coord.) 0.000000 0.500000 0.000000
Perturbation : displacement of atom 2 along direction 2
The set of symmetries contains only one element for this perturbation.
symkpt : not enough symmetry to change the number of k points.
--------------------------------------------------------------------------------
--------------------------------------------------------------------------------
Initialisation of the first-order wave-functions :
ireadwf= 0
--- !BeginCycle
iteration_state: {dtset: 23, }
solver: {iscf: 7, nstep: 50, nline: 4, wfoptalg: 0, }
tolerances: {tolwfr: 1.00E-08, }
...
iter 2DEtotal(Ha) deltaE(Ha) residm vres2
-ETOT 1 283.68975195070 4.166E+01 4.144E-01 2.868E+05
ETOT 2 178.45438414300 -1.052E+02 1.393E-01 1.461E+05
ETOT 3 19.291954460266 -1.592E+02 3.245E-02 1.479E+03
ETOT 4 16.609579636875 -2.682E+00 3.152E-04 2.453E+01
ETOT 5 16.570754134691 -3.883E-02 1.188E-05 3.484E-01
ETOT 6 16.570311359353 -4.428E-04 5.742E-07 5.589E-03
ETOT 7 16.570305263095 -6.096E-06 9.660E-09 2.616E-04
At SCF step 7 max residual= 9.66E-09 < tolwfr= 1.00E-08 =>converged.
================================================================================
----iterations are completed or convergence reached----
Mean square residual over all n,k,spin= 39.453E-10; max= 96.596E-10
Thirteen components of 2nd-order total energy (hartree) are
1,2,3: 0th-order hamiltonian combined with 1st-order wavefunctions
kin0= 2.07531956E+02 eigvalue= -1.69504563E+01 local= -8.98511726E+01
4,5,6: 1st-order hamiltonian combined with 1st and 0th-order wfs
loc psp = -1.91586652E+02 Hartree= 6.11187108E+01 xc= -1.02888741E+01
note that "loc psp" includes a xc core correction that could be resolved
7,8,9: eventually, occupation + non-local contributions
edocc= 1.97841412E+01 enl0= 5.41151996E+01 enl1= -2.59333498E+02
1-9 gives the relaxation energy (to be shifted if some occ is /=2.0)
erelax= -2.25460646E+02
10,11,12 Non-relaxation contributions : frozen-wavefunctions and Ewald
fr.local= 3.35586404E+01 fr.nonlo= 1.52997562E+02 Ewald= 5.75277144E+01
13,14 Frozen wf xc core corrections (1) and (2)
frxc 1 = -1.12462277E+01 frxc 2 = 9.19326216E+00
Resulting in :
2DEtotal= 0.1657030526E+02 Ha. Also 2DEtotal= 0.450900937191E+03 eV
(2DErelax= -2.2546064609E+02 Ha. 2DEnonrelax= 2.4203095135E+02 Ha)
( non-var. 2DEtotal : 1.6570876091E+01 Ha)
--------------------------------------------------------------------------------
Perturbation wavevector (in red.coord.) 0.000000 0.500000 0.000000
Perturbation : displacement of atom 2 along direction 3
The set of symmetries contains only one element for this perturbation.
symkpt : not enough symmetry to change the number of k points.
--------------------------------------------------------------------------------
--------------------------------------------------------------------------------
Initialisation of the first-order wave-functions :
ireadwf= 0
--- !BeginCycle
iteration_state: {dtset: 23, }
solver: {iscf: 7, nstep: 50, nline: 4, wfoptalg: 0, }
tolerances: {tolwfr: 1.00E-08, }
...
iter 2DEtotal(Ha) deltaE(Ha) residm vres2
-ETOT 1 29.038129381927 -1.783E+02 4.851E-01 7.291E+03
ETOT 2 14.341435021568 -1.470E+01 1.765E-02 3.460E+02
ETOT 3 13.528758796392 -8.127E-01 5.904E-04 3.202E-01
ETOT 4 13.528214713592 -5.441E-04 6.411E-07 3.514E-03
ETOT 5 13.528207776455 -6.937E-06 9.909E-09 1.034E-04
At SCF step 5 max residual= 9.91E-09 < tolwfr= 1.00E-08 =>converged.
================================================================================
----iterations are completed or convergence reached----
Mean square residual over all n,k,spin= 16.730E-10; max= 99.095E-10
Thirteen components of 2nd-order total energy (hartree) are
1,2,3: 0th-order hamiltonian combined with 1st-order wavefunctions
kin0= 2.04518105E+02 eigvalue= -1.56326490E+01 local= -8.73937745E+01
4,5,6: 1st-order hamiltonian combined with 1st and 0th-order wfs
loc psp = -1.20175401E+02 Hartree= 2.92702337E+01 xc= -9.89102687E+00
note that "loc psp" includes a xc core correction that could be resolved
7,8,9: eventually, occupation + non-local contributions
edocc= 2.05009016E+01 enl0= 5.24480037E+01 enl1= -2.67464210E+02
1-9 gives the relaxation energy (to be shifted if some occ is /=2.0)
erelax= -1.93819817E+02
10,11,12 Non-relaxation contributions : frozen-wavefunctions and Ewald
fr.local= 3.35586399E+01 fr.nonlo= 1.52997514E+02 Ewald= 2.28448357E+01
13,14 Frozen wf xc core corrections (1) and (2)
frxc 1 = -1.12462280E+01 frxc 2 = 9.19326340E+00
Resulting in :
2DEtotal= 0.1352820778E+02 Ha. Also 2DEtotal= 0.368121254743E+03 eV
(2DErelax= -1.9381981747E+02 Ha. 2DEnonrelax= 2.0734802524E+02 Ha)
( non-var. 2DEtotal : 1.3528219676E+01 Ha)
Components of the Sternheimer part only of the second-order derivatives of the electronic energy,
EIGR2D, in Ha unit.
For automatic tests, printing the matrix for the first k-point, first band, first atom.
1 1 1 1 -9.6801011052E-01 0.0000000000E+00
1 1 2 1 -4.8364206197E-01 3.1339463335E-05
1 1 3 1 -4.8401683904E-01 8.9135785322E-06
2 1 1 1 -4.8364206197E-01 -3.1339463335E-05
2 1 2 1 -8.8516014518E-01 0.0000000000E+00
2 1 3 1 -4.8397251339E-01 1.3626917314E-04
3 1 1 1 -4.8401683904E-01 -8.9135785322E-06
3 1 2 1 -4.8397251339E-01 -1.3626917314E-04
3 1 3 1 -9.6803445297E-01 0.0000000000E+00
Components of second-order derivatives of the electronic energy, EIGI2D.
For automatic tests, printing the matrix for the first k-point, first band, first atom.
1 1 1 1 0.0000000000E+00 0.0000000000E+00
1 1 2 1 0.0000000000E+00 0.0000000000E+00
1 1 3 1 0.0000000000E+00 0.0000000000E+00
2 1 1 1 0.0000000000E+00 0.0000000000E+00
2 1 2 1 3.8082655192E-09 0.0000000000E+00
2 1 3 1 0.0000000000E+00 0.0000000000E+00
3 1 1 1 0.0000000000E+00 0.0000000000E+00
3 1 2 1 0.0000000000E+00 0.0000000000E+00
3 1 3 1 0.0000000000E+00 0.0000000000E+00
================================================================================
---- first-order wavefunction calculations are completed ----
==> Compute Derivative Database <==
2nd-order matrix (non-cartesian coordinates, masses not included,
asr not included )
j1 j2 matrix element
dir pert dir pert real part imaginary part
1 1 1 1 13.5281885826 0.0000000000
1 1 2 1 6.7654370816 0.0003197556
1 1 3 1 6.7640345183 0.0001469325
1 1 1 2 -12.8919197850 0.0001680407
1 1 2 2 -6.4471340635 0.0004199179
1 1 3 2 -6.4446062724 0.0000772419
2 1 1 1 6.7676554262 0.0006156750
2 1 2 1 16.5706698453 0.0000000000
2 1 3 1 6.7555838887 -0.0009981653
2 1 1 2 -6.4423853092 -0.0014281924
2 1 2 2 -5.4575893273 -0.0007650257
2 1 3 2 -6.4467635417 -0.0008902174
3 1 1 1 6.7640322664 -0.0001288967
3 1 2 1 6.7631719499 0.0005734656
3 1 3 1 13.5270384426 0.0000000000
3 1 1 2 -6.4479237756 0.0003040248
3 1 2 2 -6.4500507571 -0.0003723482
3 1 3 2 -12.8932974041 0.0000892041
1 2 1 1 -12.8919034793 -0.0001665037
1 2 2 1 -6.4484257679 0.0003219088
1 2 3 1 -6.4478996439 -0.0003040681
1 2 1 2 13.5231104756 0.0000000000
1 2 2 2 6.7622031407 0.0013536984
1 2 3 2 6.7646358651 0.0009908716
2 2 1 1 -6.4434310828 0.0004967407
2 2 2 1 -5.4575648159 0.0007560640
2 2 3 1 -6.4561171805 -0.0000652261
2 2 1 2 6.7667526272 -0.0024458520
2 2 2 2 16.5708760906 0.0000000000
2 2 3 2 6.7627649894 -0.0006924654
3 2 1 1 -6.4446979674 -0.0000607669
3 2 2 1 -6.4454282063 0.0004248848
3 2 3 1 -12.8934112513 -0.0000894659
3 2 1 2 6.7645599256 -0.0009918188
3 2 2 2 6.7656471468 0.0002471487
3 2 3 2 13.5282196760 0.0000000000
Dynamical matrix, in cartesian coordinates,
if specified in the inputs, asr has been imposed
j1 j2 matrix element
dir pert dir pert real part imaginary part
1 1 1 1 0.6759998588 -0.0000309685
1 1 2 1 -0.0684531669 -0.0000204940
1 1 3 1 0.0686104224 0.0000423706
1 1 1 2 -0.4125091291 -0.0000256917
1 1 2 2 -0.1670329751 -0.0000137785
1 1 3 2 0.1671053625 -0.0000442954
2 1 1 1 -0.0681120463 0.0000625338
2 1 2 1 0.6764183074 -0.0000110712
2 1 3 1 -0.0686029723 -0.0000223910
2 1 1 2 -0.1670316139 -0.0000006966
2 1 2 2 -0.4123165881 0.0000481847
2 1 3 2 -0.1673155600 0.0000372159
3 1 1 1 0.0681697071 -0.0000415601
3 1 2 1 -0.0685031752 0.0000033043
3 1 3 1 0.6766441713 0.0000301579
3 1 1 2 0.1670396786 0.0000154877
3 1 2 2 -0.1669530497 -0.0000560331
3 1 3 2 -0.4121812836 -0.0000142635
1 2 1 1 -0.4125630383 0.0000091218
1 2 2 1 -0.1672565404 -0.0000024086
1 2 3 1 0.1674261692 0.0000294849
1 2 1 2 0.6762014982 0.0000145562
1 2 2 2 -0.0683060153 -0.0000902080
1 2 3 2 0.0686746296 -0.0000642863
2 2 1 1 -0.1669200494 0.0000086835
2 2 2 1 -0.4121609111 -0.0000234381
2 2 3 1 -0.1672785326 -0.0000091001
2 2 1 2 -0.0681730738 0.0000411249
2 2 2 2 0.6762367169 0.0000345269
2 2 3 2 -0.0685853129 0.0000308197
3 2 1 1 0.1667213208 -0.0000003987
3 2 2 1 -0.1671979520 -0.0000121772
3 2 3 1 -0.4121276201 0.0000297495
3 2 1 2 0.0683406398 0.0000642437
3 2 2 2 -0.0683774390 -0.0000508329
3 2 3 2 0.6762259299 -0.0000145137
Phonon wavevector (reduced coordinates) : 0.00000 0.50000 0.00000
Phonon energies in Hartree :
1.138803E-03 1.141509E-03 5.793977E-03 6.379969E-03 7.363585E-03
7.364277E-03
Phonon energies in meV :
- 3.098841E+01 3.106204E+01 1.576621E+02 1.736078E+02 2.003733E+02
- 2.003922E+02
Phonon frequencies in cm-1 :
- 2.499384E+02 2.505323E+02 1.271631E+03 1.400241E+03 1.616120E+03
- 1.616272E+03
Phonon frequencies in Thz :
- 7.492964E+00 7.510769E+00 3.812254E+01 4.197818E+01 4.845006E+01
- 4.845462E+01
Phonon energies in Kelvin :
- 3.596051E+02 3.604596E+02 1.829591E+03 2.014632E+03 2.325233E+03
- 2.325452E+03
Components of second-order derivatives of the electronic energy, EIGR2D.
For automatic tests, printing the matrix for the first k-point, first band, first atom.
1 1 1 1 -1.6826722061E+00 0.0000000000E+00
1 1 2 1 -8.4123745302E-01 -3.0023660021E-05
1 1 3 1 -8.4134740301E-01 2.8442166387E-06
2 1 1 1 -8.4123745302E-01 3.0023660021E-05
2 1 2 1 -3.5967523699E+00 0.0000000000E+00
2 1 3 1 -8.4155660488E-01 4.9640317357E-05
3 1 1 1 -8.4134740301E-01 -2.8442166387E-06
3 1 2 1 -8.4155660488E-01 -4.9640317357E-05
3 1 3 1 -1.6827059405E+00 0.0000000000E+00
Components of second-order derivatives of the electronic energy, EIGI2D.
For automatic tests, printing the matrix for the first k-point, first band, first atom.
1 1 1 1 0.0000000000E+00 0.0000000000E+00
1 1 2 1 0.0000000000E+00 0.0000000000E+00
1 1 3 1 0.0000000000E+00 0.0000000000E+00
2 1 1 1 0.0000000000E+00 0.0000000000E+00
2 1 2 1 3.8082655192E-09 0.0000000000E+00
2 1 3 1 0.0000000000E+00 0.0000000000E+00
3 1 1 1 0.0000000000E+00 0.0000000000E+00
3 1 2 1 0.0000000000E+00 0.0000000000E+00
3 1 3 1 0.0000000000E+00 0.0000000000E+00
================================================================================
---- T=0 shift of eigenenergies due to electron-phonon interation at q ----
Warning : the total shift must be computed through anaddb,
here, only the contribution of one q point is printed.
Print first the electronic eigenvalues, then the q-dependent Fan shift of eigenvalues.
Eigenvalues (hartree) for nkpt= 8 k points:
kpt# 1, nband= 10, wtk= 0.12500, kpt= 0.0000 0.0000 0.0000 (reduced coord)
-0.31566 0.52104 0.52104 0.52104 0.75482 0.75482 0.75482 0.99990
1.19500 1.48731
prteigrs : prtvol=0 or 1, do not print more k-points.
Eigenvalues ( eV ) for nkpt= 8 k points:
kpt# 1, nband= 10, wtk= 0.12500, kpt= 0.0000 0.0000 0.0000 (reduced coord)
-8.58957 14.17819 14.17819 14.17819 20.53957 20.53957 20.53957 27.20859
32.51758 40.47171
prteigrs : prtvol=0 or 1, do not print more k-points.
Fan corrections to eigenvalues at T=0 (hartree) for nkpt= 8 k points:
(in case of degenerate eigenvalues, averaged derivative)
kpt# 1, nband= 10, wtk= 0.12500, kpt= 0.0000 0.0000 0.0000 (reduced coord)
-0.00389 -0.04144 -0.03474 -0.04476 -0.05105 -0.03412 -0.04795 -0.01062
0.00820 0.13664
prteigrs : prtvol=0 or 1, do not print more k-points.
Fan corrections to eigenvalues at T=0 ( eV ) for nkpt= 8 k points:
kpt# 1, nband= 10, wtk= 0.12500, kpt= 0.0000 0.0000 0.0000 (reduced coord)
-0.10572 -1.12776 -0.94519 -1.21797 -1.38902 -0.92854 -1.30477 -0.28904
0.22312 3.71818
prteigrs : prtvol=0 or 1, do not print more k-points.
================================================================================
== DATASET 31 ==================================================================
- mpi_nproc: 4, omp_nthreads: -1 (-1 if OMP is not activated)
--- !DatasetInfo
iteration_state: {dtset: 31, }
dimensions: {natom: 2, nkpt: 8, mband: 10, nsppol: 1, nspinor: 1, nspden: 1, mpw: 116, }
cutoff_energies: {ecut: 10.0, pawecutdg: -1.0, }
electrons: {nelect: 8.00000000E+00, charge: 0.00000000E+00, occopt: 1.00000000E+00, tsmear: 1.00000000E-02, }
meta: {optdriver: 0, ionmov: 0, optcell: 0, iscf: 7, paral_kgb: 0, }
...
Exchange-correlation functional for the present dataset will be:
LDA: new Teter (4/93) with spin-polarized option - ixc=1
Citation for XC functional:
S. Goedecker, M. Teter, J. Huetter, PRB 54, 1703 (1996)
Real(R)+Recip(G) space primitive vectors, cartesian coordinates (Bohr,Bohr^-1):
R(1)= 0.0000000 3.3354992 3.3354992 G(1)= -0.1499026 0.1499026 0.1499026
R(2)= 3.3354992 0.0000000 3.3354992 G(2)= 0.1499026 -0.1499026 0.1499026
R(3)= 3.3354992 3.3354992 0.0000000 G(3)= 0.1499026 0.1499026 -0.1499026
Unit cell volume ucvol= 7.4218556E+01 bohr^3
Angles (23,13,12)= 6.00000000E+01 6.00000000E+01 6.00000000E+01 degrees
getcut: wavevector= 0.0000 0.0000 0.0000 ngfft= 15 15 15
ecut(hartree)= 10.000 => boxcut(ratio)= 2.09552
--- Pseudopotential description ------------------------------------------------
- pspini: atom type 1 psp file is /home/buildbot/ABINIT3/eos_gnu_13.2_mpich/trunk_merge-10.0/tests/Pspdir/PseudosTM_pwteter/6c.pspnc
- pspatm: opening atomic psp file /home/buildbot/ABINIT3/eos_gnu_13.2_mpich/trunk_merge-10.0/tests/Pspdir/PseudosTM_pwteter/6c.pspnc
- Troullier-Martins psp for element C Thu Oct 27 17:29:33 EDT 1994
- 6.00000 4.00000 940714 znucl, zion, pspdat
1 1 1 1 2001 0.00000 pspcod,pspxc,lmax,lloc,mmax,r2well
0 10.372 24.987 1 1.4850707 l,e99.0,e99.9,nproj,rcpsp
0.00000000 0.00000000 0.00000000 0.00000000 rms, ekb1, ekb2, epsatm
1 15.431 21.987 0 1.4850707 l,e99.0,e99.9,nproj,rcpsp
0.00000000 0.00000000 0.00000000 0.00000000 rms, ekb1, ekb2, epsatm
0.83985002509544 0.99012430797080 0.51184907750884 rchrg,fchrg,qchrg
pspatm : epsatm= 0.92590353
--- l ekb(1:nproj) -->
0 4.921466
pspatm: atomic psp has been read and splines computed
--------------------------------------------------------------------------------
_setup2: Arith. and geom. avg. npw (full set) are 111.625 111.563
================================================================================
--- !BeginCycle
iteration_state: {dtset: 31, }
solver: {iscf: 7, nstep: 50, nline: 4, wfoptalg: 0, }
tolerances: {tolwfr: 1.00E-08, }
...
iter Etot(hartree) deltaE(h) residm vres2
ETOT 1 -11.683963329499 -1.168E+01 5.766E-03 8.670E+00
ETOT 2 -11.692111223316 -8.148E-03 1.679E-06 2.457E-02
ETOT 3 -11.692124873332 -1.365E-05 3.208E-07 8.105E-04
ETOT 4 -11.692125008378 -1.350E-07 1.413E-07 3.120E-04
ETOT 5 -11.692125615451 -6.071E-07 3.190E-08 1.448E-06
ETOT 6 -11.692125617840 -2.389E-09 6.772E-10 9.701E-09
At SCF step 6 max residual= 6.77E-10 < tolwfr= 1.00E-08 =>converged.
Cartesian components of stress tensor (hartree/bohr^3)
sigma(1 1)= 3.32483279E-03 sigma(3 2)= 5.05926498E-09
sigma(2 2)= 3.32483047E-03 sigma(3 1)= -2.06972340E-08
sigma(3 3)= 3.32483131E-03 sigma(2 1)= -2.65002807E-08
--- !ResultsGS
iteration_state: {dtset: 31, }
comment : Summary of ground state results
lattice_vectors:
- [ 0.0000000, 3.3354992, 3.3354992, ]
- [ 3.3354992, 0.0000000, 3.3354992, ]
- [ 3.3354992, 3.3354992, 0.0000000, ]
lattice_lengths: [ 4.71711, 4.71711, 4.71711, ]
lattice_angles: [ 60.000, 60.000, 60.000, ] # degrees, (23, 13, 12)
lattice_volume: 7.4218556E+01
convergence: {deltae: -2.389E-09, res2: 9.701E-09, residm: 6.772E-10, diffor: null, }
etotal : -1.16921256E+01
entropy : 0.00000000E+00
fermie : 5.21038972E-01
cartesian_stress_tensor: # hartree/bohr^3
- [ 3.32483279E-03, -2.65002807E-08, -2.06972340E-08, ]
- [ -2.65002807E-08, 3.32483047E-03, 5.05926498E-09, ]
- [ -2.06972340E-08, 5.05926498E-09, 3.32483131E-03, ]
pressure_GPa: -9.7820E+01
xred :
- [ 0.0000E+00, 0.0000E+00, 0.0000E+00, C]
- [ 2.5000E-01, 2.5000E-01, 2.5000E-01, C]
cartesian_forces: # hartree/bohr
- [ -4.35078779E-07, -2.43831802E-06, -1.90873985E-06, ]
- [ 4.35078779E-07, 2.43831802E-06, 1.90873985E-06, ]
force_length_stats: {min: 3.12697556E-06, max: 3.12697556E-06, mean: 3.12697556E-06, }
...
Integrated electronic density in atomic spheres:
------------------------------------------------
Atom Sphere_radius Integrated_density
1 2.00000 4.79819736
2 2.00000 4.91959218
================================================================================
----iterations are completed or convergence reached----
Mean square residual over all n,k,spin= 19.526E-11; max= 67.716E-11
reduced coordinates (array xred) for 2 atoms
0.000000000000 0.000000000000 0.000000000000
0.250000000000 0.250000000000 0.250000000000
rms dE/dt= 2.0661E-05; max dE/dt= 2.3774E-05; dE/dt below (all hartree)
1 -0.000011988396 0.000011621265 0.000023773703
2 -0.000040987611 -0.000004014345 0.000004605278
cartesian coordinates (angstrom) at end:
1 0.00000000000000 0.00000000000000 0.00000000000000
2 0.88253506645871 0.88253506645871 0.88253506645871
cartesian forces (hartree/bohr) at end:
1 -0.00000043507878 -0.00000243831802 -0.00000190873985
2 0.00000043507878 0.00000243831802 0.00000190873985
frms,max,avg= 1.8053602E-06 2.4383180E-06 -6.668E-06 2.414E-06 5.528E-06 h/b
cartesian forces (eV/Angstrom) at end:
1 -0.00002237264849 -0.00012538334347 -0.00009815134103
2 0.00002237264849 0.00012538334347 0.00009815134103
frms,max,avg= 9.2835345E-05 1.2538334E-04 -3.429E-04 1.241E-04 2.842E-04 e/A
length scales= 6.670998313100 6.670998313100 6.670998313100 bohr
= 3.530140265835 3.530140265835 3.530140265835 angstroms
prteigrs : about to open file t60_MPI4o_DS31_EIG
Fermi (or HOMO) energy (hartree) = 0.52104 Average Vxc (hartree)= -0.50804
Eigenvalues (hartree) for nkpt= 8 k points:
kpt# 1, nband= 10, wtk= 0.12500, kpt= 0.0000 0.0000 0.0000 (reduced coord)
-0.31566 0.52104 0.52104 0.52104 0.75482 0.75482 0.75482 0.99990
1.19500 1.48731
prteigrs : prtvol=0 or 1, do not print more k-points.
Fermi (or HOMO) energy (eV) = 14.17819 Average Vxc (eV)= -13.82455
Eigenvalues ( eV ) for nkpt= 8 k points:
kpt# 1, nband= 10, wtk= 0.12500, kpt= 0.0000 0.0000 0.0000 (reduced coord)
-8.58957 14.17819 14.17819 14.17819 20.53957 20.53957 20.53957 27.20859
32.51758 40.47171
prteigrs : prtvol=0 or 1, do not print more k-points.
--- !EnergyTerms
iteration_state : {dtset: 31, }
comment : Components of total free energy in Hartree
kinetic : 8.31278643095758E+00
hartree : 9.59212312316061E-01
xc : -4.35176965734625E+00
Ewald energy : -1.29199206267251E+01
psp_core : 1.99605829697410E-01
local_psp : -5.14256368993921E+00
non_local_psp : 1.25052378320004E+00
total_energy : -1.16921256178395E+01
total_energy_eV : -3.18158918326370E+02
band_energy : 1.53085093947756E+00
...
Cartesian components of stress tensor (hartree/bohr^3)
sigma(1 1)= 3.32483279E-03 sigma(3 2)= 5.05926498E-09
sigma(2 2)= 3.32483047E-03 sigma(3 1)= -2.06972340E-08
sigma(3 3)= 3.32483131E-03 sigma(2 1)= -2.65002807E-08
-Cartesian components of stress tensor (GPa) [Pressure= -9.7820E+01 GPa]
- sigma(1 1)= 9.78199415E+01 sigma(3 2)= 1.48848690E-04
- sigma(2 2)= 9.78198731E+01 sigma(3 1)= -6.08933546E-04
- sigma(3 3)= 9.78198979E+01 sigma(2 1)= -7.79665045E-04
================================================================================
== DATASET 32 ==================================================================
- mpi_nproc: 4, omp_nthreads: -1 (-1 if OMP is not activated)
--- !DatasetInfo
iteration_state: {dtset: 32, }
dimensions: {natom: 2, nkpt: 8, mband: 10, nsppol: 1, nspinor: 1, nspden: 1, mpw: 116, }
cutoff_energies: {ecut: 10.0, pawecutdg: -1.0, }
electrons: {nelect: 8.00000000E+00, charge: 0.00000000E+00, occopt: 1.00000000E+00, tsmear: 1.00000000E-02, }
meta: {optdriver: 0, ionmov: 0, optcell: 0, iscf: -2, paral_kgb: 0, }
...
mkfilename : getden/=0, take file _DEN from output of DATASET 31.
Exchange-correlation functional for the present dataset will be:
LDA: new Teter (4/93) with spin-polarized option - ixc=1
Citation for XC functional:
S. Goedecker, M. Teter, J. Huetter, PRB 54, 1703 (1996)
Real(R)+Recip(G) space primitive vectors, cartesian coordinates (Bohr,Bohr^-1):
R(1)= 0.0000000 3.3354992 3.3354992 G(1)= -0.1499026 0.1499026 0.1499026
R(2)= 3.3354992 0.0000000 3.3354992 G(2)= 0.1499026 -0.1499026 0.1499026
R(3)= 3.3354992 3.3354992 0.0000000 G(3)= 0.1499026 0.1499026 -0.1499026
Unit cell volume ucvol= 7.4218556E+01 bohr^3
Angles (23,13,12)= 6.00000000E+01 6.00000000E+01 6.00000000E+01 degrees
getcut: wavevector= 0.0000 0.0000 0.0000 ngfft= 15 15 15
ecut(hartree)= 10.000 => boxcut(ratio)= 2.09552
--------------------------------------------------------------------------------
================================================================================
prteigrs : about to open file t60_MPI4o_DS32_EIG
Non-SCF case, kpt 1 ( 0.10000 0.00000 0.00000), residuals and eigenvalues=
6.17E-10 1.60E-09 1.98E-09 2.01E-10 1.25E-09 5.35E-10 1.34E-09 1.37E-09
1.33E-08 8.58E-07
-3.0536E-01 4.5331E-01 5.0482E-01 5.0482E-01 7.7489E-01 7.7671E-01
7.7671E-01 1.0139E+00 1.2199E+00 1.3843E+00
prteigrs : prtvol=0 or 1, do not print more k-points.
--- !ResultsGS
iteration_state: {dtset: 32, }
comment : Summary of ground state results
lattice_vectors:
- [ 0.0000000, 3.3354992, 3.3354992, ]
- [ 3.3354992, 0.0000000, 3.3354992, ]
- [ 3.3354992, 3.3354992, 0.0000000, ]
lattice_lengths: [ 4.71711, 4.71711, 4.71711, ]
lattice_angles: [ 60.000, 60.000, 60.000, ] # degrees, (23, 13, 12)
lattice_volume: 7.4218556E+01
convergence: {deltae: 0.000E+00, res2: 0.000E+00, residm: 9.837E-09, diffor: 0.000E+00, }
etotal : -1.16921256E+01
entropy : 0.00000000E+00
fermie : 5.21038972E-01
cartesian_stress_tensor: null
pressure_GPa: null
xred :
- [ 0.0000E+00, 0.0000E+00, 0.0000E+00, C]
- [ 2.5000E-01, 2.5000E-01, 2.5000E-01, C]
cartesian_forces: null
force_length_stats: {min: null, max: null, mean: null, }
...
Integrated electronic density in atomic spheres:
------------------------------------------------
Atom Sphere_radius Integrated_density
1 2.00000 4.79819736
2 2.00000 4.91959218
================================================================================
----iterations are completed or convergence reached----
Mean square residual over all n,k,spin= 27.928E-10; max= 98.373E-10
reduced coordinates (array xred) for 2 atoms
0.000000000000 0.000000000000 0.000000000000
0.250000000000 0.250000000000 0.250000000000
cartesian coordinates (angstrom) at end:
1 0.00000000000000 0.00000000000000 0.00000000000000
2 0.88253506645871 0.88253506645871 0.88253506645871
length scales= 6.670998313100 6.670998313100 6.670998313100 bohr
= 3.530140265835 3.530140265835 3.530140265835 angstroms
prteigrs : about to open file t60_MPI4o_DS32_EIG
Eigenvalues (hartree) for nkpt= 8 k points:
kpt# 1, nband= 10, wtk= 0.12500, kpt= 0.1000 0.0000 0.0000 (reduced coord)
-0.30536 0.45331 0.50482 0.50482 0.77489 0.77671 0.77671 1.01392
1.21993 1.38433
prteigrs : prtvol=0 or 1, do not print more k-points.
Eigenvalues ( eV ) for nkpt= 8 k points:
kpt# 1, nband= 10, wtk= 0.12500, kpt= 0.1000 0.0000 0.0000 (reduced coord)
-8.30935 12.33527 13.73682 13.73682 21.08576 21.13545 21.13545 27.59022
33.19587 37.66963
prteigrs : prtvol=0 or 1, do not print more k-points.
================================================================================
== DATASET 33 ==================================================================
- mpi_nproc: 4, omp_nthreads: -1 (-1 if OMP is not activated)
--- !DatasetInfo
iteration_state: {dtset: 33, }
dimensions: {natom: 2, nkpt: 8, mband: 10, nsppol: 1, nspinor: 1, nspden: 1, mpw: 116, }
cutoff_energies: {ecut: 10.0, pawecutdg: -1.0, }
electrons: {nelect: 8.00000000E+00, charge: 0.00000000E+00, occopt: 1.00000000E+00, tsmear: 1.00000000E-02, }
meta: {optdriver: 1, rfphon: 1, }
...
mkfilename : getwfk/=0, take file _WFK from output of DATASET 31.
mkfilename : getwfq/=0, take file _WFQ from output of DATASET 32.
Exchange-correlation functional for the present dataset will be:
LDA: new Teter (4/93) with spin-polarized option - ixc=1
Citation for XC functional:
S. Goedecker, M. Teter, J. Huetter, PRB 54, 1703 (1996)
Real(R)+Recip(G) space primitive vectors, cartesian coordinates (Bohr,Bohr^-1):
R(1)= 0.0000000 3.3354992 3.3354992 G(1)= -0.1499026 0.1499026 0.1499026
R(2)= 3.3354992 0.0000000 3.3354992 G(2)= 0.1499026 -0.1499026 0.1499026
R(3)= 3.3354992 3.3354992 0.0000000 G(3)= 0.1499026 0.1499026 -0.1499026
Unit cell volume ucvol= 7.4218556E+01 bohr^3
Angles (23,13,12)= 6.00000000E+01 6.00000000E+01 6.00000000E+01 degrees
setup1 : take into account q-point for computing boxcut.
getcut: wavevector= 0.1000 0.0000 0.0000 ngfft= 15 15 15
ecut(hartree)= 10.000 => boxcut(ratio)= 2.06385
--------------------------------------------------------------------------------
==> initialize data related to q vector <==
The list of irreducible perturbations for this q vector is:
1) idir= 1 ipert= 1
2) idir= 2 ipert= 1
3) idir= 3 ipert= 1
4) idir= 1 ipert= 2
5) idir= 2 ipert= 2
6) idir= 3 ipert= 2
================================================================================
--------------------------------------------------------------------------------
Perturbation wavevector (in red.coord.) 0.100000 0.000000 0.000000
Perturbation : displacement of atom 1 along direction 1
The set of symmetries contains only one element for this perturbation.
symkpt : not enough symmetry to change the number of k points.
--------------------------------------------------------------------------------
--------------------------------------------------------------------------------
Initialisation of the first-order wave-functions :
ireadwf= 0
--- !BeginCycle
iteration_state: {dtset: 33, }
solver: {iscf: 7, nstep: 50, nline: 4, wfoptalg: 0, }
tolerances: {tolwfr: 1.00E-08, }
...
iter 2DEtotal(Ha) deltaE(Ha) residm vres2
-ETOT 1 4546.5768703680 4.302E+03 9.896E-01 1.053E+08
ETOT 2 5913.4022244811 1.367E+03 3.797E+00 1.351E+08
ETOT 3 20.256606691453 -5.893E+03 1.358E+00 9.974E+04
ETOT 4 15.915786192772 -4.341E+00 5.957E-04 1.387E+03
ETOT 5 15.773796768663 -1.420E-01 2.282E-05 1.367E+02
ETOT 6 15.766665343437 -7.131E-03 2.903E-07 2.121E-02
ETOT 7 15.766663049036 -2.294E-06 9.949E-09 8.517E-03
At SCF step 7 max residual= 9.95E-09 < tolwfr= 1.00E-08 =>converged.
================================================================================
----iterations are completed or convergence reached----
Mean square residual over all n,k,spin= 41.339E-10; max= 99.491E-10
Thirteen components of 2nd-order total energy (hartree) are
1,2,3: 0th-order hamiltonian combined with 1st-order wavefunctions
kin0= 2.09770150E+02 eigvalue= -1.59868095E+01 local= -9.02120519E+01
4,5,6: 1st-order hamiltonian combined with 1st and 0th-order wfs
loc psp = -1.95719432E+02 Hartree= 6.61259414E+01 xc= -8.65281854E+00
note that "loc psp" includes a xc core correction that could be resolved
7,8,9: eventually, occupation + non-local contributions
edocc= 1.46108730E+01 enl0= 5.30882517E+01 enl1= -2.61776666E+02
1-9 gives the relaxation energy (to be shifted if some occ is /=2.0)
erelax= -2.28752561E+02
10,11,12 Non-relaxation contributions : frozen-wavefunctions and Ewald
fr.local= 3.35599239E+01 fr.nonlo= 1.52999597E+02 Ewald= 6.00140250E+01
13,14 Frozen wf xc core corrections (1) and (2)
frxc 1 = -1.12473455E+01 frxc 2 = 9.19302446E+00
Resulting in :
2DEtotal= 0.1576666305E+02 Ha. Also 2DEtotal= 0.429032720419E+03 eV
(2DErelax= -2.2875256150E+02 Ha. 2DEnonrelax= 2.4451922455E+02 Ha)
( non-var. 2DEtotal : 1.5771175501E+01 Ha)
--------------------------------------------------------------------------------
Perturbation wavevector (in red.coord.) 0.100000 0.000000 0.000000
Perturbation : displacement of atom 1 along direction 2
The set of symmetries contains only one element for this perturbation.
symkpt : not enough symmetry to change the number of k points.
--------------------------------------------------------------------------------
--------------------------------------------------------------------------------
Initialisation of the first-order wave-functions :
ireadwf= 0
--- !BeginCycle
iteration_state: {dtset: 33, }
solver: {iscf: 7, nstep: 50, nline: 4, wfoptalg: 0, }
tolerances: {tolwfr: 1.00E-08, }
...
iter 2DEtotal(Ha) deltaE(Ha) residm vres2
-ETOT 1 23.171260586059 -1.817E+02 4.109E-01 4.153E+03
ETOT 2 15.019976436060 -8.151E+00 7.344E-03 8.340E+01
ETOT 3 14.802086010234 -2.179E-01 1.718E-04 5.787E-01
ETOT 4 14.800980723702 -1.105E-03 4.994E-07 7.723E-02
ETOT 5 14.800976580560 -4.143E-06 8.668E-09 8.208E-02
At SCF step 5 max residual= 8.67E-09 < tolwfr= 1.00E-08 =>converged.
================================================================================
----iterations are completed or convergence reached----
Mean square residual over all n,k,spin= 21.382E-10; max= 86.675E-10
Thirteen components of 2nd-order total energy (hartree) are
1,2,3: 0th-order hamiltonian combined with 1st-order wavefunctions
kin0= 2.09763862E+02 eigvalue= -1.57840836E+01 local= -9.01001517E+01
4,5,6: 1st-order hamiltonian combined with 1st and 0th-order wfs
loc psp = -1.06392400E+02 Hartree= 2.39615252E+01 xc= -8.79076110E+00
note that "loc psp" includes a xc core correction that could be resolved
7,8,9: eventually, occupation + non-local contributions
edocc= 1.76223985E+01 enl0= 5.33911365E+01 enl1= -2.73734486E+02
1-9 gives the relaxation energy (to be shifted if some occ is /=2.0)
erelax= -1.90062961E+02
10,11,12 Non-relaxation contributions : frozen-wavefunctions and Ewald
fr.local= 3.35599774E+01 fr.nonlo= 1.52999758E+02 Ewald= 2.03585251E+01
13,14 Frozen wf xc core corrections (1) and (2)
frxc 1 = -1.12473446E+01 frxc 2 = 9.19302166E+00
Resulting in :
2DEtotal= 0.1480097658E+02 Ha. Also 2DEtotal= 0.402755055236E+03 eV
(2DErelax= -1.9006296080E+02 Ha. 2DEnonrelax= 2.0486393738E+02 Ha)
( non-var. 2DEtotal : 1.4800494331E+01 Ha)
--------------------------------------------------------------------------------
Perturbation wavevector (in red.coord.) 0.100000 0.000000 0.000000
Perturbation : displacement of atom 1 along direction 3
The set of symmetries contains only one element for this perturbation.
symkpt : not enough symmetry to change the number of k points.
--------------------------------------------------------------------------------
--------------------------------------------------------------------------------
Initialisation of the first-order wave-functions :
ireadwf= 0
--- !BeginCycle
iteration_state: {dtset: 33, }
solver: {iscf: 7, nstep: 50, nline: 4, wfoptalg: 0, }
tolerances: {tolwfr: 1.00E-08, }
...
iter 2DEtotal(Ha) deltaE(Ha) residm vres2
-ETOT 1 23.186980613410 -1.817E+02 3.290E-01 4.153E+03
ETOT 2 15.038268206108 -8.149E+00 7.311E-03 8.337E+01
ETOT 3 14.820825327868 -2.174E-01 1.252E-04 7.156E-01
ETOT 4 14.819724380141 -1.101E-03 4.503E-07 2.174E-01
ETOT 5 14.819718724448 -5.656E-06 9.591E-09 1.917E-01
At SCF step 5 max residual= 9.59E-09 < tolwfr= 1.00E-08 =>converged.
================================================================================
----iterations are completed or convergence reached----
Mean square residual over all n,k,spin= 25.174E-10; max= 95.907E-10
Thirteen components of 2nd-order total energy (hartree) are
1,2,3: 0th-order hamiltonian combined with 1st-order wavefunctions
kin0= 2.10983792E+02 eigvalue= -1.60774076E+01 local= -9.05884321E+01
4,5,6: 1st-order hamiltonian combined with 1st and 0th-order wfs
loc psp = -1.06419089E+02 Hartree= 2.39604897E+01 xc= -8.79009498E+00
note that "loc psp" includes a xc core correction that could be resolved
7,8,9: eventually, occupation + non-local contributions
edocc= 1.70113019E+01 enl0= 5.35467975E+01 enl1= -2.73671651E+02
1-9 gives the relaxation energy (to be shifted if some occ is /=2.0)
erelax= -1.90044293E+02
10,11,12 Non-relaxation contributions : frozen-wavefunctions and Ewald
fr.local= 3.35599879E+01 fr.nonlo= 1.52999823E+02 Ewald= 2.03585251E+01
13,14 Frozen wf xc core corrections (1) and (2)
frxc 1 = -1.12473443E+01 frxc 2 = 9.19302052E+00
Resulting in :
2DEtotal= 0.1481971872E+02 Ha. Also 2DEtotal= 0.403265054908E+03 eV
(2DErelax= -1.9004429346E+02 Ha. 2DEnonrelax= 2.0486401219E+02 Ha)
( non-var. 2DEtotal : 1.4818642182E+01 Ha)
--------------------------------------------------------------------------------
Perturbation wavevector (in red.coord.) 0.100000 0.000000 0.000000
Perturbation : displacement of atom 2 along direction 1
The set of symmetries contains only one element for this perturbation.
symkpt : not enough symmetry to change the number of k points.
--------------------------------------------------------------------------------
--------------------------------------------------------------------------------
Initialisation of the first-order wave-functions :
ireadwf= 0
--- !BeginCycle
iteration_state: {dtset: 33, }
solver: {iscf: 7, nstep: 50, nline: 4, wfoptalg: 0, }
tolerances: {tolwfr: 1.00E-08, }
...
iter 2DEtotal(Ha) deltaE(Ha) residm vres2
-ETOT 1 4546.6112454907 4.302E+03 8.484E-01 1.053E+08
ETOT 2 5913.4990791495 1.367E+03 3.817E+00 1.351E+08
ETOT 3 20.258233201457 -5.893E+03 1.358E+00 9.973E+04
ETOT 4 15.918020926246 -4.340E+00 5.858E-04 1.387E+03
ETOT 5 15.776055515104 -1.420E-01 2.282E-05 1.367E+02
ETOT 6 15.768924476500 -7.131E-03 2.688E-07 2.077E-02
ETOT 7 15.768922203421 -2.273E-06 9.754E-09 8.559E-03
At SCF step 7 max residual= 9.75E-09 < tolwfr= 1.00E-08 =>converged.
================================================================================
----iterations are completed or convergence reached----
Mean square residual over all n,k,spin= 41.319E-10; max= 97.540E-10
Thirteen components of 2nd-order total energy (hartree) are
1,2,3: 0th-order hamiltonian combined with 1st-order wavefunctions
kin0= 2.09970830E+02 eigvalue= -1.60274847E+01 local= -9.06269293E+01
4,5,6: 1st-order hamiltonian combined with 1st and 0th-order wfs
loc psp = -1.95742356E+02 Hartree= 6.61278442E+01 xc= -8.65317275E+00
note that "loc psp" includes a xc core correction that could be resolved
7,8,9: eventually, occupation + non-local contributions
edocc= 1.44951104E+01 enl0= 5.34532865E+01 enl1= -2.61745634E+02
1-9 gives the relaxation energy (to be shifted if some occ is /=2.0)
erelax= -2.28748506E+02
10,11,12 Non-relaxation contributions : frozen-wavefunctions and Ewald
fr.local= 3.35586249E+01 fr.nonlo= 1.52997747E+02 Ewald= 6.00140250E+01
13,14 Frozen wf xc core corrections (1) and (2)
frxc 1 = -1.12462267E+01 frxc 2 = 9.19325775E+00
Resulting in :
2DEtotal= 0.1576892220E+02 Ha. Also 2DEtotal= 0.429094195136E+03 eV
(2DErelax= -2.2874850566E+02 Ha. 2DEnonrelax= 2.4451742786E+02 Ha)
( non-var. 2DEtotal : 1.5773432592E+01 Ha)
--------------------------------------------------------------------------------
Perturbation wavevector (in red.coord.) 0.100000 0.000000 0.000000
Perturbation : displacement of atom 2 along direction 2
The set of symmetries contains only one element for this perturbation.
symkpt : not enough symmetry to change the number of k points.
--------------------------------------------------------------------------------
--------------------------------------------------------------------------------
Initialisation of the first-order wave-functions :
ireadwf= 0
--- !BeginCycle
iteration_state: {dtset: 33, }
solver: {iscf: 7, nstep: 50, nline: 4, wfoptalg: 0, }
tolerances: {tolwfr: 1.00E-08, }
...
iter 2DEtotal(Ha) deltaE(Ha) residm vres2
-ETOT 1 23.183168230540 -1.817E+02 3.175E-01 4.154E+03
ETOT 2 15.030962438955 -8.152E+00 7.136E-03 8.336E+01
ETOT 3 14.813010853073 -2.180E-01 1.595E-04 5.177E-01
ETOT 4 14.811904192786 -1.107E-03 3.091E-07 1.832E-02
ETOT 5 14.811899491911 -4.701E-06 9.457E-09 1.380E-02
At SCF step 5 max residual= 9.46E-09 < tolwfr= 1.00E-08 =>converged.
================================================================================
----iterations are completed or convergence reached----
Mean square residual over all n,k,spin= 25.315E-10; max= 94.571E-10
Thirteen components of 2nd-order total energy (hartree) are
1,2,3: 0th-order hamiltonian combined with 1st-order wavefunctions
kin0= 2.09783495E+02 eigvalue= -1.57967592E+01 local= -9.01646123E+01
4,5,6: 1st-order hamiltonian combined with 1st and 0th-order wfs
loc psp = -1.06434900E+02 Hartree= 2.39631075E+01 xc= -8.79070311E+00
note that "loc psp" includes a xc core correction that could be resolved
7,8,9: eventually, occupation + non-local contributions
edocc= 1.75641120E+01 enl0= 5.34916868E+01 enl1= -2.73665289E+02
1-9 gives the relaxation energy (to be shifted if some occ is /=2.0)
erelax= -1.90049863E+02
10,11,12 Non-relaxation contributions : frozen-wavefunctions and Ewald
fr.local= 3.35586404E+01 fr.nonlo= 1.52997562E+02 Ewald= 2.03585251E+01
13,14 Frozen wf xc core corrections (1) and (2)
frxc 1 = -1.12462277E+01 frxc 2 = 9.19326216E+00
Resulting in :
2DEtotal= 0.1481189949E+02 Ha. Also 2DEtotal= 0.403052282770E+03 eV
(2DErelax= -1.9004986255E+02 Ha. 2DEnonrelax= 2.0486176204E+02 Ha)
( non-var. 2DEtotal : 1.4811667377E+01 Ha)
--------------------------------------------------------------------------------
Perturbation wavevector (in red.coord.) 0.100000 0.000000 0.000000
Perturbation : displacement of atom 2 along direction 3
The set of symmetries contains only one element for this perturbation.
symkpt : not enough symmetry to change the number of k points.
--------------------------------------------------------------------------------
--------------------------------------------------------------------------------
Initialisation of the first-order wave-functions :
ireadwf= 0
--- !BeginCycle
iteration_state: {dtset: 33, }
solver: {iscf: 7, nstep: 50, nline: 4, wfoptalg: 0, }
tolerances: {tolwfr: 1.00E-08, }
...
iter 2DEtotal(Ha) deltaE(Ha) residm vres2
-ETOT 1 23.176992160453 -1.817E+02 4.109E-01 4.152E+03
ETOT 2 15.030130232735 -8.147E+00 7.310E-03 8.324E+01
ETOT 3 14.812774348059 -2.174E-01 1.255E-04 6.152E-01
ETOT 4 14.811671903347 -1.102E-03 4.896E-07 1.149E-01
ETOT 5 14.811667438522 -4.465E-06 1.000E-08 1.183E-01
At SCF step 5 max residual= 1.00E-08 < tolwfr= 1.00E-08 =>converged.
================================================================================
----iterations are completed or convergence reached----
Mean square residual over all n,k,spin= 24.237E-10; max= 99.996E-10
Thirteen components of 2nd-order total energy (hartree) are
1,2,3: 0th-order hamiltonian combined with 1st-order wavefunctions
kin0= 2.10739265E+02 eigvalue= -1.60336757E+01 local= -9.02914868E+01
4,5,6: 1st-order hamiltonian combined with 1st and 0th-order wfs
loc psp = -1.06414279E+02 Hartree= 2.39602341E+01 xc= -8.79005807E+00
note that "loc psp" includes a xc core correction that could be resolved
7,8,9: eventually, occupation + non-local contributions
edocc= 1.71231028E+01 enl0= 5.33440121E+01 enl1= -2.73687161E+02
1-9 gives the relaxation energy (to be shifted if some occ is /=2.0)
erelax= -1.90050047E+02
10,11,12 Non-relaxation contributions : frozen-wavefunctions and Ewald
fr.local= 3.35586399E+01 fr.nonlo= 1.52997514E+02 Ewald= 2.03585251E+01
13,14 Frozen wf xc core corrections (1) and (2)
frxc 1 = -1.12462280E+01 frxc 2 = 9.19326340E+00
Resulting in :
2DEtotal= 0.1481166744E+02 Ha. Also 2DEtotal= 0.403045968276E+03 eV
(2DErelax= -1.9005004717E+02 Ha. 2DEnonrelax= 2.0486171461E+02 Ha)
( non-var. 2DEtotal : 1.4810994518E+01 Ha)
Components of the Sternheimer part only of the second-order derivatives of the electronic energy,
EIGR2D, in Ha unit.
For automatic tests, printing the matrix for the first k-point, first band, first atom.
1 1 1 1 -1.0879791937E+00 0.0000000000E+00
1 1 2 1 -5.2725723695E-01 5.2905487844E-06
1 1 3 1 -5.2736979391E-01 9.1492489220E-06
2 1 1 1 -5.2725723695E-01 -5.2905487844E-06
2 1 2 1 -1.0545789621E+00 0.0000000000E+00
2 1 3 1 -5.2721665689E-01 8.6311918772E-06
3 1 1 1 -5.2736979391E-01 -9.1492489220E-06
3 1 2 1 -5.2721665689E-01 -8.6311918772E-06
3 1 3 1 -1.0549064172E+00 0.0000000000E+00
Components of second-order derivatives of the electronic energy, EIGI2D.
For automatic tests, printing the matrix for the first k-point, first band, first atom.
1 1 1 1 6.5941784164E+00 0.0000000000E+00
1 1 2 1 5.9455295378E-03 1.1092217810E-03
1 1 3 1 6.6621010770E-03 4.3008954934E-03
2 1 1 1 5.9455295378E-03 -1.1092217810E-03
2 1 2 1 5.5472709616E-06 0.0000000000E+00
2 1 3 1 6.7302342906E-06 2.7571825367E-06
3 1 1 1 6.6621010770E-03 -4.3008954934E-03
3 1 2 1 6.7302342906E-06 -2.7571825367E-06
3 1 3 1 9.5358798070E-06 0.0000000000E+00
================================================================================
---- first-order wavefunction calculations are completed ----
==> Compute Derivative Database <==
2nd-order matrix (non-cartesian coordinates, masses not included,
asr not included )
j1 j2 matrix element
dir pert dir pert real part imaginary part
1 1 1 1 15.7711755013 0.0000000000
1 1 2 1 7.4107584125 -0.0110023843
1 1 3 1 7.4242842344 -0.0183978735
1 1 1 2 -15.6813916577 3.1746438450
1 1 2 2 -8.7008126768 1.1365101186
1 1 3 2 -8.6949859179 1.1440646424
2 1 1 1 7.4022694987 0.0011889950
2 1 2 1 14.8004943313 0.0000000000
2 1 3 1 7.4076987595 -0.0021634345
2 1 1 2 -8.6973320277 1.1330679297
2 1 2 2 -17.3957743578 2.2727689065
2 1 3 2 -8.6982495587 1.1375177389
3 1 1 1 7.4151777435 0.0007963930
3 1 2 1 7.4079832522 0.0021706766
3 1 3 1 14.8186421816 -0.0000000000
3 1 1 2 -8.6994776806 1.1316637029
3 1 2 2 -8.6977114432 1.1337272380
3 1 3 2 -17.3904734250 2.2679303019
1 2 1 1 -15.6814028091 -3.1746800152
1 2 2 1 -8.6875395589 -1.1421304406
1 2 3 1 -8.6877382982 -1.1484554462
1 2 1 2 15.7734325921 0.0000000000
1 2 2 2 7.4164044610 0.0047731173
1 2 3 2 7.4195740442 0.0176620189
2 2 1 1 -8.7059077506 -1.1349507961
2 2 2 1 -17.3953388299 -2.2727808564
2 2 3 1 -8.6970443963 -1.1337357772
2 2 1 2 7.4116979160 -0.0027357544
2 2 2 2 14.8116673769 0.0000000000
2 2 3 2 7.4068800420 0.0037242697
3 2 1 1 -8.7031454236 -1.1303471222
3 2 2 1 -8.6983667260 -1.1375170760
3 2 3 1 -17.3898324835 -2.2679513967
3 2 1 2 7.4132750019 -0.0033342149
3 2 2 2 7.4070946240 -0.0037273770
3 2 3 2 14.8109945184 0.0000000000
Dynamical matrix, in cartesian coordinates,
if specified in the inputs, asr has been imposed
j1 j2 matrix element
dir pert dir pert real part imaginary part
1 1 1 1 0.6865613709 0.0006161965
1 1 2 1 -0.0213335594 0.0001134048
1 1 3 1 -0.0215284951 -0.0000241783
1 1 1 2 -0.7431313148 0.1222698962
1 1 2 2 -0.0385707061 -0.0206397539
1 1 3 2 -0.0385228909 -0.0202531383
2 1 1 1 -0.0209115138 -0.0005544340
2 1 2 1 0.6876300801 -0.0001751673
2 1 3 1 0.0217315778 0.0001575231
2 1 1 2 -0.0383446555 -0.0202527872
2 1 2 2 -0.7430640191 0.1224713859
2 1 3 2 0.0382210768 0.0201390154
3 1 1 1 -0.0211597755 -0.0007668600
3 1 2 1 0.0217593327 -0.0001571977
3 1 3 1 0.6864420914 0.0001748418
3 1 1 2 -0.0387035006 -0.0199280898
3 1 2 2 0.0385793696 0.0205416358
3 1 3 2 -0.7432294538 0.1221949818
1 2 1 1 -0.7432810168 -0.1220339457
1 2 2 1 -0.0386637567 0.0207701524
1 2 3 1 -0.0389795799 0.0200989156
1 2 1 2 0.6864628049 -0.0003678081
1 2 2 2 -0.0214038026 -0.0002585764
1 2 3 2 -0.0212214735 -0.0000142176
2 2 1 1 -0.0380307638 0.0197863982
2 2 2 1 -0.7430775483 -0.1223732419
2 2 3 1 0.0384546772 -0.0200949967
2 2 1 2 -0.0211110700 0.0003501387
2 2 2 2 0.6873110493 0.0002762457
2 2 3 2 0.0216428056 -0.0003031415
3 2 1 1 -0.0380946567 0.0199461886
3 2 2 1 0.0383216022 -0.0205861489
3 2 3 1 -0.7431927600 -0.1222958825
3 2 1 2 -0.0210195976 0.0006581317
3 2 2 2 0.0217143750 0.0003030019
3 2 3 2 0.6870977265 -0.0002761061
Phonon wavevector (reduced coordinates) : 0.10000 0.00000 0.00000
Phonon energies in Hartree :
-2.371328E-03 -2.363483E-03 1.414870E-03 8.040561E-03 8.147908E-03
8.149257E-03
Phonon energies in meV :
- -6.452711E+01 -6.431363E+01 3.850058E+01 2.187948E+02 2.217159E+02
- 2.217526E+02
Phonon frequencies in cm-1 :
- -5.204463E+02 -5.187245E+02 3.105282E+02 1.764699E+03 1.788259E+03
- 1.788555E+03
Phonon frequencies in Thz :
- -1.560259E+01 -1.555097E+01 9.309400E+00 5.290435E+01 5.361066E+01
- 5.361953E+01
Phonon energies in Kelvin :
- -7.488052E+02 -7.463279E+02 4.467802E+02 2.539005E+03 2.572903E+03
- 2.573329E+03
Components of second-order derivatives of the electronic energy, EIGR2D.
For automatic tests, printing the matrix for the first k-point, first band, first atom.
1 1 1 1 -3.1063132804E+01 0.0000000000E+00
1 1 2 1 -8.6948922679E-01 -4.8419709732E-03
1 1 3 1 -8.7264454130E-01 -1.9066550698E-02
2 1 1 1 -8.6948922679E-01 4.8419709732E-03
2 1 2 1 -1.6861822047E+00 0.0000000000E+00
2 1 3 1 -8.4314965164E-01 -1.5818188206E-05
3 1 1 1 -8.7264454130E-01 1.9066550698E-02
3 1 2 1 -8.4314965164E-01 1.5818188206E-05
3 1 3 1 -1.6862518948E+00 0.0000000000E+00
Components of second-order derivatives of the electronic energy, EIGI2D.
For automatic tests, printing the matrix for the first k-point, first band, first atom.
1 1 1 1 6.5941784164E+00 0.0000000000E+00
1 1 2 1 5.9455295378E-03 1.1092217810E-03
1 1 3 1 6.6621010770E-03 4.3008954934E-03
2 1 1 1 5.9455295378E-03 -1.1092217810E-03
2 1 2 1 5.5472709616E-06 0.0000000000E+00
2 1 3 1 6.7302342906E-06 2.7571825367E-06
3 1 1 1 6.6621010770E-03 -4.3008954934E-03
3 1 2 1 6.7302342906E-06 -2.7571825367E-06
3 1 3 1 9.5358798070E-06 0.0000000000E+00
================================================================================
---- T=0 shift of eigenenergies due to electron-phonon interation at q ----
Warning : the total shift must be computed through anaddb,
here, only the contribution of one q point is printed.
Print first the electronic eigenvalues, then the q-dependent Fan shift of eigenvalues.
Eigenvalues (hartree) for nkpt= 8 k points:
kpt# 1, nband= 10, wtk= 0.12500, kpt= 0.0000 0.0000 0.0000 (reduced coord)
-0.31566 0.52104 0.52104 0.52104 0.75482 0.75482 0.75482 0.99990
1.19500 1.48731
prteigrs : prtvol=0 or 1, do not print more k-points.
Eigenvalues ( eV ) for nkpt= 8 k points:
kpt# 1, nband= 10, wtk= 0.12500, kpt= 0.0000 0.0000 0.0000 (reduced coord)
-8.58957 14.17819 14.17819 14.17819 20.53957 20.53957 20.53957 27.20859
32.51758 40.47171
prteigrs : prtvol=0 or 1, do not print more k-points.
Fan corrections to eigenvalues at T=0 (hartree) for nkpt= 8 k points:
(in case of degenerate eigenvalues, averaged derivative)
kpt# 1, nband= 10, wtk= 0.12500, kpt= 0.0000 0.0000 0.0000 (reduced coord)
-0.05266 0.09106 0.08933 0.00987 -0.13231 -0.07896 -0.07965 -0.12566
-0.05059 0.01013
prteigrs : prtvol=0 or 1, do not print more k-points.
Fan corrections to eigenvalues at T=0 ( eV ) for nkpt= 8 k points:
kpt# 1, nband= 10, wtk= 0.12500, kpt= 0.0000 0.0000 0.0000 (reduced coord)
-1.43286 2.47778 2.43071 0.26866 -3.60036 -2.14873 -2.16752 -3.41950
-1.37668 0.27577
prteigrs : prtvol=0 or 1, do not print more k-points.
== END DATASET(S) ==============================================================
================================================================================
-outvars: echo values of variables after computation --------
acell 6.6709983131E+00 6.6709983131E+00 6.6709983131E+00 Bohr
amu 1.20110000E+01
bdeigrf 10
diemac 6.00000000E+00
ecut 1.00000000E+01 Hartree
elph2_imagden 3.67493254E-03 Hartree
enunit 2
etotal11 -1.1692125618E+01
etotal13 1.7649158459E+01
etotal21 -1.1692125618E+01
etotal23 1.3528207776E+01
etotal31 -1.1692125618E+01
etotal33 1.4811667439E+01
fcart11 -4.3507877945E-07 -2.4383180231E-06 -1.9087398469E-06
4.3507877945E-07 2.4383180231E-06 1.9087398469E-06
fcart13 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
fcart21 -4.3507877945E-07 -2.4383180231E-06 -1.9087398469E-06
4.3507877945E-07 2.4383180231E-06 1.9087398469E-06
fcart23 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
fcart31 -4.3507877945E-07 -2.4383180231E-06 -1.9087398469E-06
4.3507877945E-07 2.4383180231E-06 1.9087398469E-06
fcart33 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
- fftalg 512
getden11 0
getden12 -1
getden13 0
getden21 0
getden22 -1
getden23 0
getden31 0
getden32 -1
getden33 0
getwfk11 0
getwfk12 0
getwfk13 -2
getwfk21 0
getwfk22 0
getwfk23 -2
getwfk31 0
getwfk32 0
getwfk33 -2
getwfq11 0
getwfq12 0
getwfq13 -1
getwfq21 0
getwfq22 0
getwfq23 -1
getwfq31 0
getwfq32 0
getwfq33 -1
ieig2rf11 0
ieig2rf12 0
ieig2rf13 4
ieig2rf21 0
ieig2rf22 0
ieig2rf23 4
ieig2rf31 0
ieig2rf32 0
ieig2rf33 4
iscf11 7
iscf12 -2
iscf13 7
iscf21 7
iscf22 -2
iscf23 7
iscf31 7
iscf32 -2
iscf33 7
istwfk11 1 1 1 1 1 1 1 1
istwfk12 1 1 1 1 1 1 1 1
istwfk13 1 1 1 1 1 1 1 1
istwfk21 1 1 1 1 1 1 1 1
istwfk22 1 1 0 0 1 1 0 0
istwfk23 1 1 1 1 1 1 1 1
istwfk31 1 1 1 1 1 1 1 1
istwfk32 0 0 0 0 0 0 0 0
istwfk33 1 1 1 1 1 1 1 1
jdtset 11 12 13 21 22 23 31 32 33
kpt 0.00000000E+00 0.00000000E+00 0.00000000E+00
5.00000000E-01 0.00000000E+00 0.00000000E+00
0.00000000E+00 5.00000000E-01 0.00000000E+00
5.00000000E-01 5.00000000E-01 0.00000000E+00
0.00000000E+00 0.00000000E+00 5.00000000E-01
5.00000000E-01 0.00000000E+00 5.00000000E-01
0.00000000E+00 5.00000000E-01 5.00000000E-01
5.00000000E-01 5.00000000E-01 5.00000000E-01
kptopt 3
kptrlatt 2 0 0 0 2 0 0 0 2
kptrlen 9.43421629E+00
P mkmem 2
P mkqmem 2
P mk1mem 2
natom 2
nband 10
nbdbuf 2
ndtset 9
ngfft 15 15 15
nkpt 8
nqpt11 0
nqpt12 1
nqpt13 1
nqpt21 0
nqpt22 1
nqpt23 1
nqpt31 0
nqpt32 1
nqpt33 1
nstep 50
nsym 1
ntypat 1
occ 2.000000 2.000000 2.000000 2.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000
optdriver11 0
optdriver12 0
optdriver13 1
optdriver21 0
optdriver22 0
optdriver23 1
optdriver31 0
optdriver32 0
optdriver33 1
prtpot11 0
prtpot12 0
prtpot13 1
prtpot21 0
prtpot22 0
prtpot23 1
prtpot31 0
prtpot32 0
prtpot33 1
qpt11 0.00000000E+00 0.00000000E+00 0.00000000E+00
qpt12 0.00000000E+00 0.00000000E+00 0.00000000E+00
qpt13 0.00000000E+00 0.00000000E+00 0.00000000E+00
qpt21 0.00000000E+00 0.00000000E+00 0.00000000E+00
qpt22 0.00000000E+00 5.00000000E-01 0.00000000E+00
qpt23 0.00000000E+00 5.00000000E-01 0.00000000E+00
qpt31 0.00000000E+00 0.00000000E+00 0.00000000E+00
qpt32 1.00000000E-01 0.00000000E+00 0.00000000E+00
qpt33 1.00000000E-01 0.00000000E+00 0.00000000E+00
rfphon11 0
rfphon12 0
rfphon13 1
rfphon21 0
rfphon22 0
rfphon23 1
rfphon31 0
rfphon32 0
rfphon33 1
rprim 0.0000000000E+00 5.0000000000E-01 5.0000000000E-01
5.0000000000E-01 0.0000000000E+00 5.0000000000E-01
5.0000000000E-01 5.0000000000E-01 0.0000000000E+00
smdelta11 0
smdelta12 0
smdelta13 1
smdelta21 0
smdelta22 0
smdelta23 1
smdelta31 0
smdelta32 0
smdelta33 1
spgroup 1
strten11 3.3248327931E-03 3.3248304678E-03 3.3248313103E-03
5.0592649766E-09 -2.0697234035E-08 -2.6500280712E-08
strten13 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
strten21 3.3248327931E-03 3.3248304678E-03 3.3248313103E-03
5.0592649766E-09 -2.0697234035E-08 -2.6500280712E-08
strten23 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
strten31 3.3248327931E-03 3.3248304678E-03 3.3248313103E-03
5.0592649766E-09 -2.0697234035E-08 -2.6500280712E-08
strten33 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
tolwfr 1.00000000E-08
typat 1 1
wtk 0.12500 0.12500 0.12500 0.12500 0.12500 0.12500
0.12500 0.12500
xangst 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
8.8253506646E-01 8.8253506646E-01 8.8253506646E-01
xcart 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
1.6677495783E+00 1.6677495783E+00 1.6677495783E+00
xred 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
2.5000000000E-01 2.5000000000E-01 2.5000000000E-01
znucl 6.00000
================================================================================
The spacegroup number, the magnetic point group, and/or the number of symmetries
have changed between the initial recognition based on the input file
and a postprocessing based on the final acell, rprim, and xred.
More details in the log file.
- Timing analysis has been suppressed with timopt=0
================================================================================
Suggested references for the acknowledgment of ABINIT usage.
The users of ABINIT have little formal obligations with respect to the ABINIT group
(those specified in the GNU General Public License, http://www.gnu.org/copyleft/gpl.txt).
However, it is common practice in the scientific literature,
to acknowledge the efforts of people that have made the research possible.
In this spirit, please find below suggested citations of work written by ABINIT developers,
corresponding to implementations inside of ABINIT that you have used in the present run.
Note also that it will be of great value to readers of publications presenting these results,
to read papers enabling them to understand the theoretical formalism and details
of the ABINIT implementation.
For information on why they are suggested, see also https://docs.abinit.org/theory/acknowledgments.
-
- [1] Verification of first-principles codes: Comparison of total energies, phonon frequencies,
- electron--phonon coupling and zero-point motion correction to the gap between ABINIT and QE/Yambo
- S. Ponce, G. Antonius, P. Boulanger, E. Cannuccia, A. Marini, M. Cote and X. Gonze. Computational Material Science 83, 341 (2014)
- Comment: the temperature-dependence of the electronic structure is computed (or the zero-point renormalisation).
- Strong suggestion to cite this paper in your publications.
- DOI and bibtex : see https://docs.abinit.org/theory/bibliography/#ponce2014
-
- [2] Temperature dependence of the electronic structure of semiconductors and insulators
- S. Ponce, Y. Gillet, J. Laflamme Janssen, A. Marini, M. Verstraete and X. Gonze. J. Chem. Phys. 143, 102813 (2015)
- Comment: the temperature-dependence of the electronic structure is computed (or the zero-point renormalisation).
- Strong suggestion to cite this paper in your publications.
- DOI and bibtex: see https://docs.abinit.org/theory/bibliography/#ponce2015
-
- [3] The Abinit project: Impact, environment and recent developments.
- Computer Phys. Comm. 248, 107042 (2020).
- X.Gonze, B. Amadon, G. Antonius, F.Arnardi, L.Baguet, J.-M.Beuken,
- J.Bieder, F.Bottin, J.Bouchet, E.Bousquet, N.Brouwer, F.Bruneval,
- G.Brunin, T.Cavignac, J.-B. Charraud, Wei Chen, M.Cote, S.Cottenier,
- J.Denier, G.Geneste, Ph.Ghosez, M.Giantomassi, Y.Gillet, O.Gingras,
- D.R.Hamann, G.Hautier, Xu He, N.Helbig, N.Holzwarth, Y.Jia, F.Jollet,
- W.Lafargue-Dit-Hauret, K.Lejaeghere, M.A.L.Marques, A.Martin, C.Martins,
- H.P.C. Miranda, F.Naccarato, K. Persson, G.Petretto, V.Planes, Y.Pouillon,
- S.Prokhorenko, F.Ricci, G.-M.Rignanese, A.H.Romero, M.M.Schmitt, M.Torrent,
- M.J.van Setten, B.Van Troeye, M.J.Verstraete, G.Zerah and J.W.Zwanzig
- Comment: the fifth generic paper describing the ABINIT project.
- Note that a version of this paper, that is not formatted for Computer Phys. Comm.
- is available at https://www.abinit.org/sites/default/files/ABINIT20.pdf .
- The licence allows the authors to put it on the Web.
- DOI and bibtex: see https://docs.abinit.org/theory/bibliography/#gonze2020
-
- [4] First-principles responses of solids to atomic displacements and homogeneous electric fields:,
- implementation of a conjugate-gradient algorithm. X. Gonze, Phys. Rev. B55, 10337 (1997).
- Comment: Non-vanishing rfphon and/or rfelfd, in the norm-conserving case.
- DOI and bibtex: see https://docs.abinit.org/theory/bibliography/#gonze1997
-
- [5] Dynamical matrices, Born effective charges, dielectric permittivity tensors, and ,
- interatomic force constants from density-functional perturbation theory,
- X. Gonze and C. Lee, Phys. Rev. B55, 10355 (1997).
- Comment: Non-vanishing rfphon and/or rfelfd, in the norm-conserving case.
- DOI and bibtex: see https://docs.abinit.org/theory/bibliography/#gonze1997a
-
- [6] ABINIT: Overview, and focus on selected capabilities
- J. Chem. Phys. 152, 124102 (2020).
- A. Romero, D.C. Allan, B. Amadon, G. Antonius, T. Applencourt, L.Baguet,
- J.Bieder, F.Bottin, J.Bouchet, E.Bousquet, F.Bruneval,
- G.Brunin, D.Caliste, M.Cote,
- J.Denier, C. Dreyer, Ph.Ghosez, M.Giantomassi, Y.Gillet, O.Gingras,
- D.R.Hamann, G.Hautier, F.Jollet, G. Jomard,
- A.Martin,
- H.P.C. Miranda, F.Naccarato, G.Petretto, N.A. Pike, V.Planes,
- S.Prokhorenko, T. Rangel, F.Ricci, G.-M.Rignanese, M.Royo, M.Stengel, M.Torrent,
- M.J.van Setten, B.Van Troeye, M.J.Verstraete, J.Wiktor, J.W.Zwanziger, and X.Gonze.
- Comment: a global overview of ABINIT, with focus on selected capabilities .
- Note that a version of this paper, that is not formatted for J. Chem. Phys
- is available at https://www.abinit.org/sites/default/files/ABINIT20_JPC.pdf .
- The licence allows the authors to put it on the Web.
- DOI and bibtex: see https://docs.abinit.org/theory/bibliography/#romero2020
-
- [7] Recent developments in the ABINIT software package.
- Computer Phys. Comm. 205, 106 (2016).
- X.Gonze, F.Jollet, F.Abreu Araujo, D.Adams, B.Amadon, T.Applencourt,
- C.Audouze, J.-M.Beuken, J.Bieder, A.Bokhanchuk, E.Bousquet, F.Bruneval
- D.Caliste, M.Cote, F.Dahm, F.Da Pieve, M.Delaveau, M.Di Gennaro,
- B.Dorado, C.Espejo, G.Geneste, L.Genovese, A.Gerossier, M.Giantomassi,
- Y.Gillet, D.R.Hamann, L.He, G.Jomard, J.Laflamme Janssen, S.Le Roux,
- A.Levitt, A.Lherbier, F.Liu, I.Lukacevic, A.Martin, C.Martins,
- M.J.T.Oliveira, S.Ponce, Y.Pouillon, T.Rangel, G.-M.Rignanese,
- A.H.Romero, B.Rousseau, O.Rubel, A.A.Shukri, M.Stankovski, M.Torrent,
- M.J.Van Setten, B.Van Troeye, M.J.Verstraete, D.Waroquier, J.Wiktor,
- B.Xu, A.Zhou, J.W.Zwanziger.
- Comment: the fourth generic paper describing the ABINIT project.
- Note that a version of this paper, that is not formatted for Computer Phys. Comm.
- is available at https://www.abinit.org/sites/default/files/ABINIT16.pdf .
- The licence allows the authors to put it on the Web.
- DOI and bibtex: see https://docs.abinit.org/theory/bibliography/#gonze2016
-
- Proc. 0 individual time (sec): cpu= 2.9 wall= 3.0
================================================================================
Calculation completed.
.Delivered 0 WARNINGs and 0 COMMENTs to log file.
+Overall time at end (sec) : cpu= 11.5 wall= 11.8