abinit/tests/gwr/Refs/t02.abo

1559 lines
80 KiB
Plaintext

.Version 10.0.2.1 of ABINIT, released Apr 2024.
.(MPI version, prepared for a aarch64_darwin22.6.0_gnu12.2 computer)
.Copyright (C) 1998-2025 ABINIT group .
ABINIT comes with ABSOLUTELY NO WARRANTY.
It is free software, and you are welcome to redistribute it
under certain conditions (GNU General Public License,
see ~abinit/COPYING or http://www.gnu.org/copyleft/gpl.txt).
ABINIT is a project of the Universite Catholique de Louvain,
Corning Inc. and other collaborators, see ~abinit/doc/developers/contributors.txt .
Please read https://docs.abinit.org/theory/acknowledgments for suggested
acknowledgments of the ABINIT effort.
For more information, see https://www.abinit.org .
.Starting date : Fri 12 Apr 2024.
- ( at 13h31 )
- input file -> /Users/giantomassi/git_repos/abinit/_build/tests/Test_suite/gwr_t02/t02.abi
- output file -> t02.abo
- root for input files -> t02i
- root for output files -> t02o
DATASET 1 : space group Fd -3 m (#227); Bravais cF (face-center cubic)
================================================================================
Values of the parameters that define the memory need for DATASET 1.
intxc = 0 ionmov = 0 iscf = 7 lmnmax = 6
lnmax = 6 mgfft = 15 mpssoang = 3 mqgrid = 3001
natom = 2 nloc_mem = 1 nspden = 2 nspinor = 1
nsppol = 2 nsym = 48 n1xccc = 2501 ntypat = 1
occopt = 1 xclevel = 2
- mband = 6 mffmem = 1 mkmem = 3
mpw = 113 nfft = 3375 nkpt = 3
================================================================================
P This job should need less than 2.592 Mbytes of memory.
Rough estimation (10% accuracy) of disk space for files :
_ WF disk file : 0.064 Mbytes ; DEN or POT disk file : 0.053 Mbytes.
================================================================================
DATASET 2 : space group Fd -3 m (#227); Bravais cF (face-center cubic)
================================================================================
Values of the parameters that define the memory need for DATASET 2.
intxc = 0 ionmov = 0 iscf = 7 lmnmax = 6
lnmax = 6 mgfft = 15 mpssoang = 3 mqgrid = 3001
natom = 2 nloc_mem = 1 nspden = 2 nspinor = 1
nsppol = 2 nsym = 48 n1xccc = 2501 ntypat = 1
occopt = 1 xclevel = 2
- mband = 40 mffmem = 1 mkmem = 3
mpw = 113 nfft = 3375 nkpt = 3
================================================================================
P This job should need less than 2.948 Mbytes of memory.
Rough estimation (10% accuracy) of disk space for files :
_ WF disk file : 0.416 Mbytes ; DEN or POT disk file : 0.053 Mbytes.
================================================================================
DATASET 3 : space group Fd -3 m (#227); Bravais cF (face-center cubic)
================================================================================
Values of the parameters that define the memory need for DATASET 3.
intxc = 0 ionmov = 0 iscf = 7 lmnmax = 6
lnmax = 6 mgfft = 15 mpssoang = 3 mqgrid = 3001
natom = 2 nloc_mem = 1 nspden = 2 nspinor = 1
nsppol = 2 nsym = 48 n1xccc = 2501 ntypat = 1
occopt = 1 xclevel = 2
- mband = 30 mffmem = 1 mkmem = 3
mpw = 113 nfft = 3375 nkpt = 3
================================================================================
P This job should need less than 2.843 Mbytes of memory.
Rough estimation (10% accuracy) of disk space for files :
_ WF disk file : 0.312 Mbytes ; DEN or POT disk file : 0.053 Mbytes.
================================================================================
DATASET 4 : space group Fd -3 m (#227); Bravais cF (face-center cubic)
================================================================================
Values of the parameters that define the memory need for DATASET 4.
intxc = 0 ionmov = 0 iscf = 7 lmnmax = 6
lnmax = 6 mgfft = 15 mpssoang = 3 mqgrid = 3001
natom = 2 nloc_mem = 1 nspden = 2 nspinor = 1
nsppol = 2 nsym = 48 n1xccc = 2501 ntypat = 1
occopt = 1 xclevel = 2
- mband = 30 mffmem = 1 mkmem = 3
mpw = 113 nfft = 3375 nkpt = 3
================================================================================
P This job should need less than 2.843 Mbytes of memory.
Rough estimation (10% accuracy) of disk space for files :
_ WF disk file : 0.312 Mbytes ; DEN or POT disk file : 0.053 Mbytes.
================================================================================
--------------------------------------------------------------------------------
------------- Echo of variables that govern the present computation ------------
--------------------------------------------------------------------------------
-
- outvars: echo of selected default values
- iomode0 = 0 , fftalg0 =312 , wfoptalg0 = 0
-
- outvars: echo of global parameters not present in the input file
- max_nthreads = 0
-
-outvars: echo values of preprocessed input variables --------
- iomode 1
acell 1.0260000000E+01 1.0260000000E+01 1.0260000000E+01 Bohr
amu 2.80855000E+01
bdgw3 4 5 4 5 4 5 4 5
diemac 1.20000000E+01
ecut 4.00000000E+00 Hartree
ecuteps1 0.00000000E+00 Hartree
ecuteps2 0.00000000E+00 Hartree
ecuteps3 4.00000000E+00 Hartree
ecuteps4 4.00000000E+00 Hartree
ecutsigx1 0.00000000E+00 Hartree
ecutsigx2 0.00000000E+00 Hartree
ecutsigx3 4.00000000E+00 Hartree
ecutsigx4 0.00000000E+00 Hartree
- fftalg 312
freqspmax1 0.00000000E+00 Hartree
freqspmax2 0.00000000E+00 Hartree
freqspmax3 1.83746627E-01 Hartree
freqspmax4 0.00000000E+00 Hartree
freqspmin1 -0.00000000E+00 Hartree
freqspmin2 -0.00000000E+00 Hartree
freqspmin3 -1.83746627E-01 Hartree
freqspmin4 -0.00000000E+00 Hartree
getden1 0
getden2 0
getden3 0
getden4 1
getwfk1 0
getwfk2 0
getwfk3 0
getwfk4 2
gwr_boxcutmin1 1.00000000E+00
gwr_boxcutmin2 1.00000000E+00
gwr_boxcutmin3 1.10000000E+00
gwr_boxcutmin4 1.10000000E+00
- gwr_ucsc_batch1 -1 -1
- gwr_ucsc_batch2 -1 -1
- gwr_ucsc_batch3 4 2
- gwr_ucsc_batch4 -1 -1
gwr_ntau1 12
gwr_ntau2 12
gwr_ntau3 6
gwr_ntau4 6
istwfk 1 1 1
ixc 11
jdtset 1 2 3 4
kpt 0.00000000E+00 0.00000000E+00 0.00000000E+00
5.00000000E-01 0.00000000E+00 0.00000000E+00
5.00000000E-01 5.00000000E-01 0.00000000E+00
kptgw3 0.00000000E+00 0.00000000E+00 0.00000000E+00
5.00000000E-01 0.00000000E+00 0.00000000E+00
kptrlatt 2 0 0 0 2 0 0 0 2
kptrlen 1.45098311E+01
P mkmem 3
natom 2
nband1 6
nband2 40
nband3 30
nband4 30
ndtset 4
nfreqsp1 0
nfreqsp2 0
nfreqsp3 50
nfreqsp4 0
ngfft 15 15 15
nkpt 3
nkptgw1 0
nkptgw2 0
nkptgw3 2
nkptgw4 0
nspden 2
nsppol 2
nstep 20
nsym 48
ntypat 1
occ1 1.000000 1.000000 1.000000 1.000000 0.000000 0.000000
1.000000 1.000000 1.000000 1.000000 0.000000 0.000000
occ2 1.000000 1.000000 1.000000 1.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000
1.000000 1.000000 1.000000 1.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000
occ3 1.000000 1.000000 1.000000 1.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
1.000000 1.000000 1.000000 1.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
occ4 1.000000 1.000000 1.000000 1.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
1.000000 1.000000 1.000000 1.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
optdriver1 0
optdriver2 6
optdriver3 6
optdriver4 6
prtsuscep1 0
prtsuscep2 0
prtsuscep3 1
prtsuscep4 0
prtvol1 0
prtvol2 0
prtvol3 1
prtvol4 0
rprim 0.0000000000E+00 5.0000000000E-01 5.0000000000E-01
5.0000000000E-01 0.0000000000E+00 5.0000000000E-01
5.0000000000E-01 5.0000000000E-01 0.0000000000E+00
spgroup 227
spinmagntarget 0.00000000E+00
symrel 1 0 0 0 1 0 0 0 1 -1 0 0 0 -1 0 0 0 -1
0 -1 1 0 -1 0 1 -1 0 0 1 -1 0 1 0 -1 1 0
-1 0 0 -1 0 1 -1 1 0 1 0 0 1 0 -1 1 -1 0
0 1 -1 1 0 -1 0 0 -1 0 -1 1 -1 0 1 0 0 1
-1 0 0 -1 1 0 -1 0 1 1 0 0 1 -1 0 1 0 -1
0 -1 1 1 -1 0 0 -1 0 0 1 -1 -1 1 0 0 1 0
1 0 0 0 0 1 0 1 0 -1 0 0 0 0 -1 0 -1 0
0 1 -1 0 0 -1 1 0 -1 0 -1 1 0 0 1 -1 0 1
-1 0 1 -1 1 0 -1 0 0 1 0 -1 1 -1 0 1 0 0
0 -1 0 1 -1 0 0 -1 1 0 1 0 -1 1 0 0 1 -1
1 0 -1 0 0 -1 0 1 -1 -1 0 1 0 0 1 0 -1 1
0 1 0 0 0 1 1 0 0 0 -1 0 0 0 -1 -1 0 0
1 0 -1 0 1 -1 0 0 -1 -1 0 1 0 -1 1 0 0 1
0 -1 0 0 -1 1 1 -1 0 0 1 0 0 1 -1 -1 1 0
-1 0 1 -1 0 0 -1 1 0 1 0 -1 1 0 0 1 -1 0
0 1 0 1 0 0 0 0 1 0 -1 0 -1 0 0 0 0 -1
0 0 -1 0 1 -1 1 0 -1 0 0 1 0 -1 1 -1 0 1
1 -1 0 0 -1 1 0 -1 0 -1 1 0 0 1 -1 0 1 0
0 0 1 1 0 0 0 1 0 0 0 -1 -1 0 0 0 -1 0
-1 1 0 -1 0 0 -1 0 1 1 -1 0 1 0 0 1 0 -1
0 0 1 0 1 0 1 0 0 0 0 -1 0 -1 0 -1 0 0
1 -1 0 0 -1 0 0 -1 1 -1 1 0 0 1 0 0 1 -1
0 0 -1 1 0 -1 0 1 -1 0 0 1 -1 0 1 0 -1 1
-1 1 0 -1 0 1 -1 0 0 1 -1 0 1 0 -1 1 0 0
timopt 1
tnons 0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000
0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000
0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000
0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000
0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000
0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000
0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000
0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000
0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000
0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000
0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000
0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000
0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000
0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000
0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000
0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000
0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000
0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000
0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000
0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000
0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000
0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000
0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000
0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000
tolvrs1 1.00000000E-08
tolvrs2 0.00000000E+00
tolvrs3 0.00000000E+00
tolvrs4 0.00000000E+00
typat 1 1
wtk 0.12500 0.50000 0.37500
xangst 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
1.3573395400E+00 1.3573395400E+00 1.3573395400E+00
xcart 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
2.5650000000E+00 2.5650000000E+00 2.5650000000E+00
xred 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
2.5000000000E-01 2.5000000000E-01 2.5000000000E-01
znucl 14.00000
================================================================================
chkinp: Checking input parameters for consistency, jdtset= 1.
This is a calculation with spin-up and spin-down wavefunctions, ... nsppol= 2
in which the target spin-polarization is zero. ... spinmagntarget= 0.00
Tip ... It might be possible that the ground state is either non-spin-polarized, or antiferromagnetic.
In the former case, it is advantageous to use nsppol=1 and nspden=1,
while in the latter case, it is advantageous to use nsppol=1 and nspden=2.
chkinp: Checking input parameters for consistency, jdtset= 2.
This is a calculation with spin-up and spin-down wavefunctions, ... nsppol= 2
in which the target spin-polarization is zero. ... spinmagntarget= 0.00
Tip ... It might be possible that the ground state is either non-spin-polarized, or antiferromagnetic.
In the former case, it is advantageous to use nsppol=1 and nspden=1,
while in the latter case, it is advantageous to use nsppol=1 and nspden=2.
chkinp: Checking input parameters for consistency, jdtset= 3.
This is a calculation with spin-up and spin-down wavefunctions, ... nsppol= 2
in which the target spin-polarization is zero. ... spinmagntarget= 0.00
Tip ... It might be possible that the ground state is either non-spin-polarized, or antiferromagnetic.
In the former case, it is advantageous to use nsppol=1 and nspden=1,
while in the latter case, it is advantageous to use nsppol=1 and nspden=2.
chkinp: Checking input parameters for consistency, jdtset= 4.
This is a calculation with spin-up and spin-down wavefunctions, ... nsppol= 2
in which the target spin-polarization is zero. ... spinmagntarget= 0.00
Tip ... It might be possible that the ground state is either non-spin-polarized, or antiferromagnetic.
In the former case, it is advantageous to use nsppol=1 and nspden=1,
while in the latter case, it is advantageous to use nsppol=1 and nspden=2.
================================================================================
== DATASET 1 ==================================================================
- mpi_nproc: 1, omp_nthreads: -1 (-1 if OMP is not activated)
--- !DatasetInfo
iteration_state: {dtset: 1, }
dimensions: {natom: 2, nkpt: 3, mband: 6, nsppol: 2, nspinor: 1, nspden: 2, mpw: 113, }
cutoff_energies: {ecut: 4.0, pawecutdg: -1.0, }
electrons: {nelect: 8.00000000E+00, charge: 0.00000000E+00, occopt: 1.00000000E+00, tsmear: 1.00000000E-02, }
meta: {optdriver: 0, ionmov: 0, optcell: 0, iscf: 7, paral_kgb: 0, }
...
Exchange-correlation functional for the present dataset will be:
GGA: Perdew-Burke-Ernzerhof functional - ixc=11
Citation for XC functional:
J.P.Perdew, K.Burke, M.Ernzerhof, PRL 77, 3865 (1996)
Real(R)+Recip(G) space primitive vectors, cartesian coordinates (Bohr,Bohr^-1):
R(1)= 0.0000000 5.1300000 5.1300000 G(1)= -0.0974659 0.0974659 0.0974659
R(2)= 5.1300000 0.0000000 5.1300000 G(2)= 0.0974659 -0.0974659 0.0974659
R(3)= 5.1300000 5.1300000 0.0000000 G(3)= 0.0974659 0.0974659 -0.0974659
Unit cell volume ucvol= 2.7001139E+02 bohr^3
Angles (23,13,12)= 6.00000000E+01 6.00000000E+01 6.00000000E+01 degrees
getcut: wavevector= 0.0000 0.0000 0.0000 ngfft= 15 15 15
ecut(hartree)= 4.000 => boxcut(ratio)= 2.15429
--- Pseudopotential description ------------------------------------------------
- pspini: atom type 1 psp file is /Users/giantomassi/git_repos/abinit/tests/Pspdir/Psdj_nc_sr_04_pbe_std_psp8/Si.psp8
- pspatm: opening atomic psp file /Users/giantomassi/git_repos/abinit/tests/Pspdir/Psdj_nc_sr_04_pbe_std_psp8/Si.psp8
- Si ONCVPSP-3.2.3.1 r_core= 1.60303 1.72197 1.91712
- 14.00000 4.00000 170510 znucl, zion, pspdat
8 11 2 4 600 0.00000 pspcod,pspxc,lmax,lloc,mmax,r2well
5.99000000000000 4.00000000000000 0.00000000000000 rchrg,fchrg,qchrg
nproj 2 2 2
extension_switch 1
pspatm : epsatm= 9.34321699
--- l ekb(1:nproj) -->
0 5.168965 0.829883
1 2.571282 0.578307
2 -2.427311 -0.488097
pspatm: atomic psp has been read and splines computed
1.49491472E+02 ecore*ucvol(ha*bohr**3)
--------------------------------------------------------------------------------
_setup2: Arith. and geom. avg. npw (full set) are 108.625 108.613
================================================================================
--- !BeginCycle
iteration_state: {dtset: 1, }
solver: {iscf: 7, nstep: 20, nline: 4, wfoptalg: 0, }
tolerances: {tolvrs: 1.00E-08, }
...
iter Etot(hartree) deltaE(h) residm vres2
ETOT 1 -8.3065585710600 -8.307E+00 2.835E-03 2.506E+00
ETOT 2 -8.3092522919542 -2.694E-03 1.276E-05 3.800E-02
ETOT 3 -8.3092786346611 -2.634E-05 5.586E-07 7.279E-04
ETOT 4 -8.3092786882415 -5.358E-08 3.990E-08 2.141E-05
ETOT 5 -8.3092786937511 -5.510E-09 7.251E-10 6.805E-07
ETOT 6 -8.3092786939796 -2.284E-10 8.366E-11 1.164E-08
ETOT 7 -8.3092786939837 -4.173E-12 2.058E-12 2.777E-11
At SCF step 7 vres2 = 2.78E-11 < tolvrs= 1.00E-08 =>converged.
Cartesian components of stress tensor (hartree/bohr^3)
sigma(1 1)= 3.50696805E-05 sigma(3 2)= 0.00000000E+00
sigma(2 2)= 3.50696805E-05 sigma(3 1)= 0.00000000E+00
sigma(3 3)= 3.50696805E-05 sigma(2 1)= 0.00000000E+00
--- !ResultsGS
iteration_state: {dtset: 1, }
comment : Summary of ground state results
lattice_vectors:
- [ 0.0000000, 5.1300000, 5.1300000, ]
- [ 5.1300000, 0.0000000, 5.1300000, ]
- [ 5.1300000, 5.1300000, 0.0000000, ]
lattice_lengths: [ 7.25492, 7.25492, 7.25492, ]
lattice_angles: [ 60.000, 60.000, 60.000, ] # degrees, (23, 13, 12)
lattice_volume: 2.7001139E+02
convergence: {deltae: -4.173E-12, res2: 2.777E-11, residm: 2.058E-12, diffor: null, }
etotal : -8.30927869E+00
entropy : 0.00000000E+00
fermie : 1.70857527E-01
cartesian_stress_tensor: # hartree/bohr^3
- [ 3.50696805E-05, 0.00000000E+00, 0.00000000E+00, ]
- [ 0.00000000E+00, 3.50696805E-05, 0.00000000E+00, ]
- [ 0.00000000E+00, 0.00000000E+00, 3.50696805E-05, ]
pressure_GPa: -1.0318E+00
xred :
- [ 0.0000E+00, 0.0000E+00, 0.0000E+00, Si]
- [ 2.5000E-01, 2.5000E-01, 2.5000E-01, Si]
cartesian_forces: # hartree/bohr
- [ 9.49860012E-45, 7.34834954E-28, 4.19905688E-28, ]
- [ -9.49860012E-45, -7.34834954E-28, -4.19905688E-28, ]
force_length_stats: {min: 8.46346971E-28, max: 8.46346971E-28, mean: 8.46346971E-28, }
...
Integrated electronic and magnetization densities in atomic spheres:
---------------------------------------------------------------------
Radius=ratsph(iatom), smearing ratsm= 0.0000. Diff(up-dn)=approximate z local magnetic moment.
Atom Radius up_density dn_density Total(up+dn) Diff(up-dn)
1 2.00000 0.892533 0.892533 1.785065 0.000000
2 2.00000 0.864548 0.864548 1.729097 0.000000
---------------------------------------------------------------------
Sum: 1.757081 1.757081 3.514162 0.000000
Total magnetization (from the atomic spheres): 0.000000
Total magnetization (exact up - dn): 0.000000
================================================================================
----iterations are completed or convergence reached----
Mean square residual over all n,k,spin= 21.007E-14; max= 20.578E-13
reduced coordinates (array xred) for 2 atoms
0.000000000000 0.000000000000 0.000000000000
0.250000000000 0.250000000000 0.250000000000
rms dE/dt= 5.4566E-27; max dE/dt= 8.6165E-27; dE/dt below (all hartree)
1 -0.000000000000 -0.000000000000 0.000000000000
2 0.000000000000 0.000000000000 0.000000000000
cartesian coordinates (angstrom) at end:
1 0.00000000000000 0.00000000000000 0.00000000000000
2 1.35733954003335 1.35733954003335 1.35733954003335
cartesian forces (hartree/bohr) at end:
1 0.00000000000000 0.00000000000000 0.00000000000000
2 -0.00000000000000 -0.00000000000000 -0.00000000000000
frms,max,avg= 4.8863865E-28 7.3483495E-28 0.000E+00 0.000E+00 0.000E+00 h/b
cartesian forces (eV/Angstrom) at end:
1 0.00000000000000 0.00000000000000 0.00000000000000
2 -0.00000000000000 -0.00000000000000 -0.00000000000000
frms,max,avg= 2.5126808E-26 3.7786729E-26 0.000E+00 0.000E+00 0.000E+00 e/A
length scales= 10.260000000000 10.260000000000 10.260000000000 bohr
= 5.429358160133 5.429358160133 5.429358160133 angstroms
prteigrs : about to open file t02o_DS1_EIG
Fermi (or HOMO) energy (hartree) = 0.17086 Average Vxc (hartree)= -0.33585
Eigenvalues (hartree) for nkpt= 3 k points, SPIN UP:
kpt# 1, nband= 6, wtk= 0.12500, kpt= 0.0000 0.0000 0.0000 (reduced coord)
-0.25677 0.17086 0.17086 0.17086 0.26105 0.26105
prteigrs : prtvol=0 or 1, do not print more k-points.
Eigenvalues (hartree) for nkpt= 3 k points, SPIN DOWN:
kpt# 1, nband= 6, wtk= 0.12500, kpt= 0.0000 0.0000 0.0000 (reduced coord)
-0.25677 0.17086 0.17086 0.17086 0.26105 0.26105
prteigrs : prtvol=0 or 1, do not print more k-points.
--- !EnergyTerms
iteration_state : {dtset: 1, }
comment : Components of total free energy in Hartree
kinetic : 3.21092942397775E+00
hartree : 6.01381218199243E-01
xc : -3.11931684967465E+00
Ewald energy : -8.40046478618609E+00
psp_core : 5.53648753925927E-01
local_psp : -2.29956831556485E+00
non_local_psp : 1.14411186133893E+00
total_energy : -8.30927869398374E+00
total_energy_eV : -2.26106972141711E+02
band_energy : -1.02992159875345E-02
...
Cartesian components of stress tensor (hartree/bohr^3)
sigma(1 1)= 3.50696805E-05 sigma(3 2)= 0.00000000E+00
sigma(2 2)= 3.50696805E-05 sigma(3 1)= 0.00000000E+00
sigma(3 3)= 3.50696805E-05 sigma(2 1)= 0.00000000E+00
-Cartesian components of stress tensor (GPa) [Pressure= -1.0318E+00 GPa]
- sigma(1 1)= 1.03178545E+00 sigma(3 2)= 0.00000000E+00
- sigma(2 2)= 1.03178545E+00 sigma(3 1)= 0.00000000E+00
- sigma(3 3)= 1.03178545E+00 sigma(2 1)= 0.00000000E+00
================================================================================
== DATASET 2 ==================================================================
- mpi_nproc: 1, omp_nthreads: -1 (-1 if OMP is not activated)
--- !DatasetInfo
iteration_state: {dtset: 2, }
dimensions: {natom: 2, nkpt: 3, mband: 40, nsppol: 2, nspinor: 1, nspden: 2, mpw: 113, }
cutoff_energies: {ecut: 4.0, pawecutdg: -1.0, }
electrons: {nelect: 8.00000000E+00, charge: 0.00000000E+00, occopt: 1.00000000E+00, tsmear: 1.00000000E-02, }
meta: {optdriver: 6, }
...
mkfilename: getden from: t02o_DS1_DEN
Exchange-correlation functional for the present dataset will be:
GGA: Perdew-Burke-Ernzerhof functional - ixc=11
Citation for XC functional:
J.P.Perdew, K.Burke, M.Ernzerhof, PRL 77, 3865 (1996)
.Using double precision arithmetic; gwpc = 8
- Reading GS density from: t02o_DS1_DEN
--------------------------------------------------------------------------------
Total charge density [el/Bohr^3]
) Maximum= 9.7811E-02 at reduced coord. 0.1333 0.1333 0.6000
) Minimum= 1.9174E-03 at reduced coord. 0.7333 0.7333 0.7333
Integrated= 8.0000E+00
Spin up density [el/Bohr^3]
) Maximum= 4.8906E-02 at reduced coord. 0.1333 0.1333 0.6000
) Minimum= 9.5871E-04 at reduced coord. 0.7333 0.7333 0.7333
Integrated= 4.0000E+00
Spin down density [el/Bohr^3]
) Maximum= 4.8906E-02 at reduced coord. 0.1333 0.1333 0.6000
) Minimum= 9.5871E-04 at reduced coord. 0.7333 0.7333 0.7333
Integrated= 4.0000E+00
Magnetization (spin up - spin down) [el/Bohr^3]
) Maximum= 0.0000E+00 at reduced coord. 0.9333 0.9333 0.9333
) Minimum= 0.0000E+00 at reduced coord. 0.0000 0.0000 0.0000
Integrated= 0.0000E+00
Relative magnetization (=zeta, between -1 and 1)
) Maximum= 0.0000E+00 at reduced coord. 0.9333 0.9333 0.9333
) Minimum= 0.0000E+00 at reduced coord. 0.0000 0.0000 0.0000
=== KS gaps after direct diagonalization ===
>>>> For spin 1
Indirect band gap semiconductor
Fundamental gap: 0.903 (eV)
VBM: 4.649 (eV) at k: [ 0.0000E+00, 0.0000E+00, 0.0000E+00]
CBM: 5.552 (eV) at k: [ 5.0000E-01, 5.0000E-01, 0.0000E+00]
Direct gap: 2.454 (eV) at k: [ 0.0000E+00, 0.0000E+00, 0.0000E+00]
>>>> For spin 2
Indirect band gap semiconductor
Fundamental gap: 0.903 (eV)
VBM: 4.649 (eV) at k: [ 0.0000E+00, 0.0000E+00, 0.0000E+00]
CBM: 5.552 (eV) at k: [ 5.0000E-01, 5.0000E-01, 0.0000E+00]
Direct gap: 2.454 (eV) at k: [ 0.0000E+00, 0.0000E+00, 0.0000E+00]
================================================================================
== DATASET 3 ==================================================================
- mpi_nproc: 1, omp_nthreads: -1 (-1 if OMP is not activated)
--- !DatasetInfo
iteration_state: {dtset: 3, }
dimensions: {natom: 2, nkpt: 3, mband: 30, nsppol: 2, nspinor: 1, nspden: 2, mpw: 113, }
cutoff_energies: {ecut: 4.0, pawecutdg: -1.0, }
electrons: {nelect: 8.00000000E+00, charge: 0.00000000E+00, occopt: 1.00000000E+00, tsmear: 1.00000000E-02, }
meta: {optdriver: 6, }
...
mkfilename: getwfk from: t02o_DS2_WFK
mkfilename: getden from: t02o_DS1_DEN
Exchange-correlation functional for the present dataset will be:
GGA: Perdew-Burke-Ernzerhof functional - ixc=11
Citation for XC functional:
J.P.Perdew, K.Burke, M.Ernzerhof, PRL 77, 3865 (1996)
.Using double precision arithmetic; gwpc = 8
- Reading GS density from: t02o_DS1_DEN
--------------------------------------------------------------------------------
Total charge density [el/Bohr^3]
) Maximum= 9.7811E-02 at reduced coord. 0.1333 0.1333 0.6000
) Minimum= 1.9174E-03 at reduced coord. 0.7333 0.7333 0.7333
Integrated= 8.0000E+00
Spin up density [el/Bohr^3]
) Maximum= 4.8906E-02 at reduced coord. 0.1333 0.1333 0.6000
) Minimum= 9.5871E-04 at reduced coord. 0.7333 0.7333 0.7333
Integrated= 4.0000E+00
Spin down density [el/Bohr^3]
) Maximum= 4.8906E-02 at reduced coord. 0.1333 0.1333 0.6000
) Minimum= 9.5871E-04 at reduced coord. 0.7333 0.7333 0.7333
Integrated= 4.0000E+00
Magnetization (spin up - spin down) [el/Bohr^3]
) Maximum= 0.0000E+00 at reduced coord. 0.9333 0.9333 0.9333
) Minimum= 0.0000E+00 at reduced coord. 0.0000 0.0000 0.0000
Integrated= 0.0000E+00
Relative magnetization (=zeta, between -1 and 1)
) Maximum= 0.0000E+00 at reduced coord. 0.9333 0.9333 0.9333
) Minimum= 0.0000E+00 at reduced coord. 0.0000 0.0000 0.0000
- Reading GS states from WFK file: t02o_DS2_WFK
Mapping kBZ --> kIBZ
Legend: bz = TS(ibz) + g0 where isym is the index of the symrec operation S and itim is 1 if TR is used.
BZ IBZ ibz isym itim g0
1 [ 0.0000E+00, 0.0000E+00, 0.0000E+00] [ 0.0000E+00, 0.0000E+00, 0.0000E+00] 1 1 0 [0, 0, 0]
2 [ 5.0000E-01, 0.0000E+00, 0.0000E+00] [ 5.0000E-01, 0.0000E+00, 0.0000E+00] 2 1 0 [0, 0, 0]
3 [ 5.0000E-01, 5.0000E-01, 5.0000E-01] [ 5.0000E-01, 0.0000E+00, 0.0000E+00] 2 5 0 [1, 1, 1]
4 [ 0.0000E+00, 0.0000E+00, 5.0000E-01] [ 5.0000E-01, 0.0000E+00, 0.0000E+00] 2 3 0 [0, 0, 0]
5 [ 0.0000E+00, 5.0000E-01, 0.0000E+00] [ 5.0000E-01, 0.0000E+00, 0.0000E+00] 2 7 0 [0, 0, 0]
6 [ 5.0000E-01, 5.0000E-01, 0.0000E+00] [ 5.0000E-01, 5.0000E-01, 0.0000E+00] 3 1 0 [0, 0, 0]
7 [ 5.0000E-01, 0.0000E+00, 5.0000E-01] [ 5.0000E-01, 5.0000E-01, 0.0000E+00] 3 9 0 [1, 0, 1]
8 [ 0.0000E+00, 5.0000E-01, 5.0000E-01] [ 5.0000E-01, 5.0000E-01, 0.0000E+00] 3 17 0 [0, 0, 0]
Mapping qBZ --> qIBZ
Legend: bz = TS(ibz) + g0 where isym is the index of the symrec operation S and itim is 1 if TR is used.
BZ IBZ ibz isym itim g0
1 [ 0.0000E+00, 0.0000E+00, 0.0000E+00] [ 0.0000E+00, 0.0000E+00, 0.0000E+00] 1 1 0 [0, 0, 0]
2 [ 5.0000E-01, 0.0000E+00, 0.0000E+00] [ 5.0000E-01, 0.0000E+00, 0.0000E+00] 2 1 0 [0, 0, 0]
3 [ 5.0000E-01, 5.0000E-01, 5.0000E-01] [ 5.0000E-01, 0.0000E+00, 0.0000E+00] 2 5 0 [1, 1, 1]
4 [ 0.0000E+00, 0.0000E+00, 5.0000E-01] [ 5.0000E-01, 0.0000E+00, 0.0000E+00] 2 3 0 [0, 0, 0]
5 [ 0.0000E+00, 5.0000E-01, 0.0000E+00] [ 5.0000E-01, 0.0000E+00, 0.0000E+00] 2 7 0 [0, 0, 0]
6 [ 5.0000E-01, 5.0000E-01, 0.0000E+00] [ 5.0000E-01, 5.0000E-01, 0.0000E+00] 3 1 0 [0, 0, 0]
7 [ 5.0000E-01, 0.0000E+00, 5.0000E-01] [ 5.0000E-01, 5.0000E-01, 0.0000E+00] 3 9 0 [1, 0, 1]
8 [ 0.0000E+00, 5.0000E-01, 5.0000E-01] [ 5.0000E-01, 5.0000E-01, 0.0000E+00] 3 17 0 [0, 0, 0]
=== Kohn-Sham gaps and band edges from IBZ mesh ===
>>>> For spin 1
Indirect band gap semiconductor
Fundamental gap: 0.903 (eV)
VBM: -0.451 (eV) at k: [ 0.0000E+00, 0.0000E+00, 0.0000E+00]
CBM: 0.451 (eV) at k: [ 5.0000E-01, 5.0000E-01, 0.0000E+00]
Direct gap: 2.454 (eV) at k: [ 0.0000E+00, 0.0000E+00, 0.0000E+00]
>>>> For spin 2
Indirect band gap semiconductor
Fundamental gap: 0.903 (eV)
VBM: -0.451 (eV) at k: [ 0.0000E+00, 0.0000E+00, 0.0000E+00]
CBM: 0.451 (eV) at k: [ 5.0000E-01, 5.0000E-01, 0.0000E+00]
Direct gap: 2.454 (eV) at k: [ 0.0000E+00, 0.0000E+00, 0.0000E+00]
- Optimizing MPI grid with mem_per_cpu_mb: 2.048000E+03 [Mb]
- Use `abinit run.abi --mem-per-cpu=4G` to set mem_per_cpu_mb in the submission script
- np_k np_g np_t np_s memb_per_cpu efficiency speedup
- 1 1 1 1 6.71869E+01 1.00000E+00 1.00000E+00
-
- Selected MPI grid:
- np_k np_g np_t np_s memb_per_cpu efficiency speedup
- 1 1 1 1 6.71869E+01 1.00000E+00 1.00000E+00
- Resident memory in Mb for G(g,g',+/-tau) and chi(g,g',tau):
- G_k(g,g,tau): 28.1
- Chi_q(g,g,tau): 3.5
- u_k(g,b): 0.3
- Temporary memory allocated inside the tau loops:
- G_k(r,g): 28.2
- chi_q(r,g): 7.1
- FFT uc_batch_size: 4
- FFT sc_batch_size: 2
==== Info on the gwr_t object ====
--- !GWR_params
iteration_state: {dtset: 3, }
gwr_task: G0W0
nband: 30
ntau: 6
ngkpt: [2, 2, 2, ]
ngqpt: [2, 2, 2, ]
chi_algo: supercell
sigma_algo: supercell
nkibz: 3
nqibz: 3
inclvkb: 2
q0: [ 1.00000000E-05, 2.00000000E-05, 3.00000000E-05, ]
gw_icutcoul: 6
green_mpw: 113
tchi_mpw: 113
g_ngfft: [8, 8, 8, 8, 8, 8, ]
gwr_boxcutmin: 1.10000000E+00
P gwr_np_kgts: [1, 1, 1, 1, ]
P np_kibz: [1, 1, 1, ]
P np_qibz: [1, 1, 1, ]
min_transition_energy_eV: 3.31672820E-02
max_transition_energy_eV: 1.89598636E+00
eratio: 5.71643574E+01
ft_max_err_t2w_cos: 1.69754599E-02
ft_max_err_w2t_cos: 5.30899553E-04
ft_max_err_t2w_sin: 3.37574028E-01
cosft_duality_error: 7.86621924E-04
Minimax imaginary tau/omega mesh: !Tabular | # tau, weight(tau), omega, weight(omega)
1 2.14326E-01 5.65695E-01 1.17768E-02 2.46618E-02
2 1.28479E+00 1.69884E+00 4.26018E-02 4.02801E-02
3 4.04689E+00 4.16332E+00 1.02353E-01 8.69439E-02
4 1.06328E+01 9.74339E+00 2.42819E-01 2.15922E-01
5 2.57181E+01 2.20388E+01 6.17144E-01 6.09741E-01
6 6.02384E+01 5.21457E+01 1.86465E+00 2.44711E+00
...
Computing chi0 head and wings with inclvkb: 2
Using KS orbitals and KS energies...
Head of the irreducible polarizability for q --> 0
q0_len: 1.000000E-03 (Bohr^-1)
iomega (eV) [100] [010] [001] x y z
3.20463E-01 -3.27927E-06 -3.27927E-06 -3.27927E-06 -3.27927E-06 -3.27927E-06 -3.27927E-06
1.15925E+00 -2.92615E-06 -2.92615E-06 -2.92615E-06 -2.92614E-06 -2.92615E-06 -2.92615E-06
2.78517E+00 -1.93674E-06 -1.93674E-06 -1.93674E-06 -1.93673E-06 -1.93674E-06 -1.93674E-06
6.60744E+00 -7.12771E-07 -7.12771E-07 -7.12771E-07 -7.12770E-07 -7.12772E-07 -7.12772E-07
1.67933E+01 -1.42760E-07 -1.42760E-07 -1.42760E-07 -1.42759E-07 -1.42761E-07 -1.42761E-07
5.07396E+01 -1.67325E-08 -1.67325E-08 -1.67325E-08 -1.67320E-08 -1.67327E-08 -1.67327E-08
Computing diagonal matrix elements of Sigma_x
Using KS orbitals and KS energies...
Building Green's functions from KS orbitals and KS energies...
Trace of: gt_kibz for ipm: 1 , spin: 1 for testing purposes:
(ik_ibz, itau) table
1 2 3 4 5 6
1 -22.312 -11.817 -4.709 -1.809 -0.487 -0.036
-0.000 -0.000 -0.000 0.000 0.000 0.000
2 -22.377 -11.594 -3.921 -1.284 -0.320 -0.024
0.000 0.000 0.000 -0.000 -0.000 0.000
3 -22.370 -11.524 -3.809 -1.778 -1.306 -0.736
-0.000 -0.000 0.000 0.000 0.000 -0.000
Trace of: gt_kibz for ipm: 2 , spin: 1 for testing purposes:
(ik_ibz, itau) table
1 2 3 4 5 6
1 3.899 3.502 2.971 2.524 1.958 1.105
-0.000 0.000 -0.000 -0.000 -0.000 0.000
2 3.842 3.180 2.114 1.093 0.389 0.043
-0.000 -0.000 0.000 0.000 -0.000 -0.000
3 3.825 3.073 1.810 0.611 0.079 0.001
-0.000 0.000 0.000 0.000 0.000 -0.000
Trace of: gt_kibz for ipm: 1 , spin: 2 for testing purposes:
(ik_ibz, itau) table
1 2 3 4 5 6
1 -22.312 -11.817 -4.709 -1.809 -0.487 -0.036
-0.000 -0.000 -0.000 0.000 0.000 0.000
2 -22.377 -11.594 -3.921 -1.284 -0.320 -0.024
0.000 0.000 0.000 -0.000 -0.000 0.000
3 -22.370 -11.524 -3.809 -1.778 -1.306 -0.736
-0.000 -0.000 0.000 0.000 0.000 -0.000
Trace of: gt_kibz for ipm: 2 , spin: 2 for testing purposes:
(ik_ibz, itau) table
1 2 3 4 5 6
1 3.899 3.502 2.971 2.524 1.958 1.105
-0.000 0.000 -0.000 -0.000 -0.000 0.000
2 3.842 3.180 2.114 1.093 0.389 0.043
-0.000 -0.000 0.000 0.000 -0.000 -0.000
3 3.825 3.073 1.810 0.611 0.079 0.001
-0.000 0.000 0.000 0.000 0.000 -0.000
Trace of: tchi_qibz for spin: 1 for testing purposes:
(iq_ibz, itau) table
1 2 3 4 5 6
1 -0.350 -0.151 -0.034 -0.006 -0.001 -0.000
0.000 0.000 0.000 0.000 0.000 0.000
2 -0.351 -0.153 -0.035 -0.007 -0.001 -0.000
0.000 0.000 0.000 0.000 0.000 0.000
3 -0.352 -0.154 -0.035 -0.007 -0.001 -0.000
0.000 0.000 0.000 0.000 0.000 0.000
Trace of: tchi_qibz for spin: 2 for testing purposes:
(iq_ibz, itau) table
1 2 3 4 5 6
1 -0.350 -0.151 -0.034 -0.006 -0.001 -0.000
0.000 0.000 0.000 0.000 0.000 0.000
2 -0.351 -0.153 -0.035 -0.007 -0.001 -0.000
0.000 0.000 0.000 0.000 0.000 0.000
3 -0.352 -0.154 -0.035 -0.007 -0.001 -0.000
0.000 0.000 0.000 0.000 0.000 0.000
Trace of: tchi_qibz for spin: 1 for testing purposes:
(iq_ibz, iomega) table
1 2 3 4 5 6
1 -2.698 -2.621 -2.377 -1.912 -1.173 -0.328
-0.000 -0.000 -0.000 -0.000 0.000 -0.000
2 -2.781 -2.678 -2.402 -1.934 -1.174 -0.327
0.000 0.000 0.000 0.000 0.000 0.000
3 -2.872 -2.672 -2.407 -1.946 -1.176 -0.327
0.000 0.000 0.000 0.000 0.000 0.000
Trace of: tchi_qibz for spin: 2 for testing purposes:
(iq_ibz, iomega) table
1 2 3 4 5 6
1 -2.698 -2.621 -2.377 -1.912 -1.173 -0.328
-0.000 -0.000 -0.000 -0.000 0.000 -0.000
2 -2.781 -2.678 -2.402 -1.934 -1.174 -0.327
0.000 0.000 0.000 0.000 0.000 0.000
3 -2.872 -2.672 -2.407 -1.946 -1.176 -0.327
0.000 0.000 0.000 0.000 0.000 0.000
Building correlated screening Wc ...
--- !EMACRO_WITHOUT_LOCAL_FIELDS
iteration_state: {dtset: 3, }
'epsilon_{iw, q -> Gamma}(0,0)': !Tabular |
1.17768006E-02 4.22084772E+01 3.13025843E-19
4.26018109E-02 3.77710136E+01 1.72830194E-18
1.02353099E-01 2.53377279E+01 6.34606184E-18
2.42819016E-01 9.95693685E+00 6.67821113E-20
6.17143992E-01 2.79396730E+00 -7.87300964E-19
1.86464526E+00 1.21026207E+00 1.14808614E-20
...
--- !EMACRO_WITH_LOCAL_FIELDS
iteration_state: {dtset: 3, }
'epsilon_{iw, q -> Gamma}(0,0)': !Tabular |
1.17768006E-02 2.71463706E-02 0.00000000E+00
4.26018109E-02 3.00159494E-02 0.00000000E+00
1.02353099E-01 4.33612935E-02 0.00000000E+00
2.42819016E-01 1.05358832E-01 0.00000000E+00
6.17143992E-01 3.62991852E-01 0.00000000E+00
1.86464526E+00 8.26951066E-01 0.00000000E+00
...
Trace of: wc_qibz for spin: 1 for testing purposes:
(iq_ibz, iomega) table
1 2 3 4 5 6
1 -1.704 -1.696 -1.663 -1.539 -1.087 -0.299
0.000 0.000 0.000 0.000 0.000 0.000
2 -0.443 -0.435 -0.413 -0.359 -0.233 -0.063
0.000 0.000 0.000 0.000 0.000 0.000
3 -0.422 -0.410 -0.388 -0.334 -0.215 -0.059
0.000 0.000 0.000 0.000 0.000 0.000
Trace of: wc_qibz for spin: 2 for testing purposes:
(iq_ibz, iomega) table
1 2 3 4 5 6
1 -1.704 -1.696 -1.663 -1.539 -1.087 -0.299
0.000 0.000 0.000 0.000 0.000 0.000
2 -0.443 -0.435 -0.413 -0.359 -0.233 -0.063
0.000 0.000 0.000 0.000 0.000 0.000
3 -0.422 -0.410 -0.388 -0.334 -0.215 -0.059
0.000 0.000 0.000 0.000 0.000 0.000
================================================================================
QP results (energies in eV)
Notations:
E0: Kohn-Sham energy
<VxcDFT>: Matrix elements of Vxc[n_val] without non-linear core correction (if any)
SigX: Matrix elements of Sigma_x
SigC(E0): Matrix elements of Sigma_c at E0
Z: Renormalization factor
E-E0: Difference between the QP and the KS energy.
E-Eprev: Difference between QP energy at iteration i and i-1
E: Quasi-particle energy
Occ(E): Occupancy of QP state
--- !GWR_SelfEnergy_ee
iteration_state: {dtset: 3, }
kpoint : [ 0.000, 0.000, 0.000, ]
spin : 1
gwr_scf_iteration: 1
gwr_task : G0W0
QP_VBM_band: 4
QP_CBM_band: 5
KS_gap : 2.454
QP_gap : 3.274
Delta_QP_KS: 0.820
data: !Tabular |
Band E0 <VxcDFT> SigX SigC(E0) Z E-E0 E-Eprev E Occ(E)
2 -0.451 -11.382 -13.466 2.176 0.816 0.074 0.074 -0.377 1.000
3 -0.451 -11.382 -13.466 2.176 0.816 0.074 0.074 -0.377 1.000
4 -0.451 -11.382 -13.466 2.176 0.816 0.075 0.075 -0.377 1.000
5 2.003 -9.974 -4.987 -3.886 0.813 0.895 0.895 2.898 0.000
6 2.003 -9.974 -4.987 -3.882 0.813 0.898 0.898 2.901 0.000
7 2.003 -9.974 -4.987 -3.884 0.813 0.896 0.896 2.899 0.000
...
--- !GWR_SelfEnergy_ee
iteration_state: {dtset: 3, }
kpoint : [ 0.500, 0.000, 0.000, ]
spin : 1
gwr_scf_iteration: 1
gwr_task : G0W0
QP_VBM_band: 3
QP_CBM_band: 5
KS_gap : 3.497
QP_gap : 4.281
Delta_QP_KS: 0.784
data: !Tabular |
Band E0 <VxcDFT> SigX SigC(E0) Z E-E0 E-Eprev E Occ(E)
3 -1.736 -11.091 -13.334 2.275 0.805 0.026 0.026 -1.711 1.000
4 -1.736 -11.091 -13.334 2.274 0.804 0.025 0.025 -1.711 1.000
5 1.761 -9.965 -5.012 -3.960 0.816 0.810 0.810 2.571 0.000
...
--- !GWR_SelfEnergy_ee
iteration_state: {dtset: 3, }
kpoint : [ 0.000, 0.000, 0.000, ]
spin : 2
gwr_scf_iteration: 1
gwr_task : G0W0
QP_VBM_band: 4
QP_CBM_band: 5
KS_gap : 2.454
QP_gap : 3.274
Delta_QP_KS: 0.820
data: !Tabular |
Band E0 <VxcDFT> SigX SigC(E0) Z E-E0 E-Eprev E Occ(E)
2 -0.451 -11.382 -13.466 2.176 0.816 0.074 0.074 -0.377 1.000
3 -0.451 -11.382 -13.466 2.176 0.816 0.074 0.074 -0.377 1.000
4 -0.451 -11.382 -13.466 2.176 0.816 0.075 0.075 -0.377 1.000
5 2.003 -9.974 -4.987 -3.886 0.813 0.895 0.895 2.898 0.000
6 2.003 -9.974 -4.987 -3.882 0.813 0.898 0.898 2.901 0.000
7 2.003 -9.974 -4.987 -3.884 0.813 0.896 0.896 2.899 0.000
...
--- !GWR_SelfEnergy_ee
iteration_state: {dtset: 3, }
kpoint : [ 0.500, 0.000, 0.000, ]
spin : 2
gwr_scf_iteration: 1
gwr_task : G0W0
QP_VBM_band: 3
QP_CBM_band: 5
KS_gap : 3.497
QP_gap : 4.281
Delta_QP_KS: 0.784
data: !Tabular |
Band E0 <VxcDFT> SigX SigC(E0) Z E-E0 E-Eprev E Occ(E)
3 -1.736 -11.091 -13.334 2.275 0.805 0.026 0.026 -1.711 1.000
4 -1.736 -11.091 -13.334 2.274 0.804 0.025 0.025 -1.711 1.000
5 1.761 -9.965 -5.012 -3.960 0.816 0.810 0.810 2.571 0.000
...
=== Kohn-Sham gaps and band edges from IBZ mesh ===
>>>> For spin 1
Indirect band gap semiconductor
Fundamental gap: 0.903 (eV)
VBM: -0.451 (eV) at k: [ 0.0000E+00, 0.0000E+00, 0.0000E+00]
CBM: 0.451 (eV) at k: [ 5.0000E-01, 5.0000E-01, 0.0000E+00]
Direct gap: 2.454 (eV) at k: [ 0.0000E+00, 0.0000E+00, 0.0000E+00]
>>>> For spin 2
Indirect band gap semiconductor
Fundamental gap: 0.903 (eV)
VBM: -0.451 (eV) at k: [ 0.0000E+00, 0.0000E+00, 0.0000E+00]
CBM: 0.451 (eV) at k: [ 5.0000E-01, 5.0000E-01, 0.0000E+00]
Direct gap: 2.454 (eV) at k: [ 0.0000E+00, 0.0000E+00, 0.0000E+00]
=== QP gaps and band edges taking into account Sigma_nk corrections for 2 k-points ===
>>>> For spin 1
Indirect band gap semiconductor
Fundamental gap: 0.828 (eV)
VBM: -0.377 (eV) at k: [ 0.0000E+00, 0.0000E+00, 0.0000E+00]
CBM: 0.451 (eV) at k: [ 5.0000E-01, 5.0000E-01, 0.0000E+00]
Direct gap: 3.274 (eV) at k: [ 0.0000E+00, 0.0000E+00, 0.0000E+00]
>>>> For spin 2
Indirect band gap semiconductor
Fundamental gap: 0.828 (eV)
VBM: -0.377 (eV) at k: [ 0.0000E+00, 0.0000E+00, 0.0000E+00]
CBM: 0.451 (eV) at k: [ 5.0000E-01, 5.0000E-01, 0.0000E+00]
Direct gap: 3.274 (eV) at k: [ 0.0000E+00, 0.0000E+00, 0.0000E+00]
================================================================================
== DATASET 4 ==================================================================
- mpi_nproc: 1, omp_nthreads: -1 (-1 if OMP is not activated)
--- !DatasetInfo
iteration_state: {dtset: 4, }
dimensions: {natom: 2, nkpt: 3, mband: 30, nsppol: 2, nspinor: 1, nspden: 2, mpw: 113, }
cutoff_energies: {ecut: 4.0, pawecutdg: -1.0, }
electrons: {nelect: 8.00000000E+00, charge: 0.00000000E+00, occopt: 1.00000000E+00, tsmear: 1.00000000E-02, }
meta: {optdriver: 6, }
...
mkfilename : getwfk/=0, take file _WFK from output of DATASET 2.
mkfilename : getden/=0, take file _DEN from output of DATASET 1.
Exchange-correlation functional for the present dataset will be:
GGA: Perdew-Burke-Ernzerhof functional - ixc=11
Citation for XC functional:
J.P.Perdew, K.Burke, M.Ernzerhof, PRL 77, 3865 (1996)
.Using double precision arithmetic; gwpc = 8
- Reading GS density from: t02o_DS1_DEN
--------------------------------------------------------------------------------
Total charge density [el/Bohr^3]
) Maximum= 9.7811E-02 at reduced coord. 0.1333 0.1333 0.6000
) Minimum= 1.9174E-03 at reduced coord. 0.7333 0.7333 0.7333
Integrated= 8.0000E+00
Spin up density [el/Bohr^3]
) Maximum= 4.8906E-02 at reduced coord. 0.1333 0.1333 0.6000
) Minimum= 9.5871E-04 at reduced coord. 0.7333 0.7333 0.7333
Integrated= 4.0000E+00
Spin down density [el/Bohr^3]
) Maximum= 4.8906E-02 at reduced coord. 0.1333 0.1333 0.6000
) Minimum= 9.5871E-04 at reduced coord. 0.7333 0.7333 0.7333
Integrated= 4.0000E+00
Magnetization (spin up - spin down) [el/Bohr^3]
) Maximum= 0.0000E+00 at reduced coord. 0.9333 0.9333 0.9333
) Minimum= 0.0000E+00 at reduced coord. 0.0000 0.0000 0.0000
Integrated= 0.0000E+00
Relative magnetization (=zeta, between -1 and 1)
) Maximum= 0.0000E+00 at reduced coord. 0.9333 0.9333 0.9333
) Minimum= 0.0000E+00 at reduced coord. 0.0000 0.0000 0.0000
- Reading GS states from WFK file: t02o_DS2_WFK
Mapping kBZ --> kIBZ
Legend: bz = TS(ibz) + g0 where isym is the index of the symrec operation S and itim is 1 if TR is used.
BZ IBZ ibz isym itim g0
1 [ 0.0000E+00, 0.0000E+00, 0.0000E+00] [ 0.0000E+00, 0.0000E+00, 0.0000E+00] 1 1 0 [0, 0, 0]
2 [ 5.0000E-01, 0.0000E+00, 0.0000E+00] [ 5.0000E-01, 0.0000E+00, 0.0000E+00] 2 1 0 [0, 0, 0]
3 [ 5.0000E-01, 5.0000E-01, 5.0000E-01] [ 5.0000E-01, 0.0000E+00, 0.0000E+00] 2 5 0 [1, 1, 1]
4 [ 0.0000E+00, 0.0000E+00, 5.0000E-01] [ 5.0000E-01, 0.0000E+00, 0.0000E+00] 2 3 0 [0, 0, 0]
5 [ 0.0000E+00, 5.0000E-01, 0.0000E+00] [ 5.0000E-01, 0.0000E+00, 0.0000E+00] 2 7 0 [0, 0, 0]
6 [ 5.0000E-01, 5.0000E-01, 0.0000E+00] [ 5.0000E-01, 5.0000E-01, 0.0000E+00] 3 1 0 [0, 0, 0]
7 [ 5.0000E-01, 0.0000E+00, 5.0000E-01] [ 5.0000E-01, 5.0000E-01, 0.0000E+00] 3 9 0 [1, 0, 1]
8 [ 0.0000E+00, 5.0000E-01, 5.0000E-01] [ 5.0000E-01, 5.0000E-01, 0.0000E+00] 3 17 0 [0, 0, 0]
Mapping qBZ --> qIBZ
Legend: bz = TS(ibz) + g0 where isym is the index of the symrec operation S and itim is 1 if TR is used.
BZ IBZ ibz isym itim g0
1 [ 0.0000E+00, 0.0000E+00, 0.0000E+00] [ 0.0000E+00, 0.0000E+00, 0.0000E+00] 1 1 0 [0, 0, 0]
2 [ 5.0000E-01, 0.0000E+00, 0.0000E+00] [ 5.0000E-01, 0.0000E+00, 0.0000E+00] 2 1 0 [0, 0, 0]
3 [ 5.0000E-01, 5.0000E-01, 5.0000E-01] [ 5.0000E-01, 0.0000E+00, 0.0000E+00] 2 5 0 [1, 1, 1]
4 [ 0.0000E+00, 0.0000E+00, 5.0000E-01] [ 5.0000E-01, 0.0000E+00, 0.0000E+00] 2 3 0 [0, 0, 0]
5 [ 0.0000E+00, 5.0000E-01, 0.0000E+00] [ 5.0000E-01, 0.0000E+00, 0.0000E+00] 2 7 0 [0, 0, 0]
6 [ 5.0000E-01, 5.0000E-01, 0.0000E+00] [ 5.0000E-01, 5.0000E-01, 0.0000E+00] 3 1 0 [0, 0, 0]
7 [ 5.0000E-01, 0.0000E+00, 5.0000E-01] [ 5.0000E-01, 5.0000E-01, 0.0000E+00] 3 9 0 [1, 0, 1]
8 [ 0.0000E+00, 5.0000E-01, 5.0000E-01] [ 5.0000E-01, 5.0000E-01, 0.0000E+00] 3 17 0 [0, 0, 0]
=== Kohn-Sham gaps and band edges from IBZ mesh ===
>>>> For spin 1
Indirect band gap semiconductor
Fundamental gap: 0.903 (eV)
VBM: -0.451 (eV) at k: [ 0.0000E+00, 0.0000E+00, 0.0000E+00]
CBM: 0.451 (eV) at k: [ 5.0000E-01, 5.0000E-01, 0.0000E+00]
Direct gap: 2.454 (eV) at k: [ 0.0000E+00, 0.0000E+00, 0.0000E+00]
>>>> For spin 2
Indirect band gap semiconductor
Fundamental gap: 0.903 (eV)
VBM: -0.451 (eV) at k: [ 0.0000E+00, 0.0000E+00, 0.0000E+00]
CBM: 0.451 (eV) at k: [ 5.0000E-01, 5.0000E-01, 0.0000E+00]
Direct gap: 2.454 (eV) at k: [ 0.0000E+00, 0.0000E+00, 0.0000E+00]
- Optimizing MPI grid with mem_per_cpu_mb: 2.048000E+03 [Mb]
- Use `abinit run.abi --mem-per-cpu=4G` to set mem_per_cpu_mb in the submission script
- np_k np_g np_t np_s memb_per_cpu efficiency speedup
- 1 1 1 1 6.71869E+01 1.00000E+00 1.00000E+00
-
- Selected MPI grid:
- np_k np_g np_t np_s memb_per_cpu efficiency speedup
- 1 1 1 1 6.71869E+01 1.00000E+00 1.00000E+00
- Resident memory in Mb for G(g,g',+/-tau) and chi(g,g',tau):
- G_k(g,g,tau): 28.1
- Chi_q(g,g,tau): 3.5
- u_k(g,b): 0.3
- Temporary memory allocated inside the tau loops:
- G_k(r,g): 28.2
- chi_q(r,g): 7.1
- FFT uc_batch_size: 1
- FFT sc_batch_size: 1
==== Info on the gwr_t object ====
--- !GWR_params
iteration_state: {dtset: 4, }
gwr_task: RPA_ENERGY
nband: 30
ntau: 6
ngkpt: [2, 2, 2, ]
ngqpt: [2, 2, 2, ]
chi_algo: supercell
sigma_algo: supercell
nkibz: 3
nqibz: 3
inclvkb: 2
q0: [ 1.00000000E-05, 2.00000000E-05, 3.00000000E-05, ]
gw_icutcoul: 6
green_mpw: 113
tchi_mpw: 113
g_ngfft: [8, 8, 8, 8, 8, 8, ]
gwr_boxcutmin: 1.10000000E+00
P gwr_np_kgts: [1, 1, 1, 1, ]
P np_kibz: [1, 1, 1, ]
P np_qibz: [1, 1, 1, ]
min_transition_energy_eV: 3.31672820E-02
max_transition_energy_eV: 1.89598636E+00
eratio: 5.71643574E+01
ft_max_err_t2w_cos: 1.69754599E-02
ft_max_err_w2t_cos: 5.30899553E-04
ft_max_err_t2w_sin: 3.37574028E-01
cosft_duality_error: 7.86621924E-04
Minimax imaginary tau/omega mesh: !Tabular | # tau, weight(tau), omega, weight(omega)
1 2.14326E-01 5.65695E-01 1.17768E-02 2.46618E-02
2 1.28479E+00 1.69884E+00 4.26018E-02 4.02801E-02
3 4.04689E+00 4.16332E+00 1.02353E-01 8.69439E-02
4 1.06328E+01 9.74339E+00 2.42819E-01 2.15922E-01
5 2.57181E+01 2.20388E+01 6.17144E-01 6.09741E-01
6 6.02384E+01 5.21457E+01 1.86465E+00 2.44711E+00
...
Computing chi0 head and wings with inclvkb: 2
Using KS orbitals and KS energies...
Building Green's functions from KS orbitals and KS energies...
ecut_chi ecut_chi^(-3/2) RPA Ec (eV) RPA Ec (Ha)
3.20000000E+00 1.74692811E-01 -8.39057370E+00 -3.08347923E-01
3.40000000E+00 1.59507690E-01 -8.40407847E+00 -3.08844214E-01
3.60000000E+00 1.46401744E-01 -8.42943080E+00 -3.09775896E-01
3.80000000E+00 1.34997152E-01 -8.43450038E+00 -3.09962199E-01
4.00000000E+00 1.25000000E-01 -8.45489953E+00 -3.10711854E-01
oo 0 -8.61213558E+00 -3.16490173E-01
== END DATASET(S) ==============================================================
================================================================================
-outvars: echo values of variables after computation --------
- iomode 1
acell 1.0260000000E+01 1.0260000000E+01 1.0260000000E+01 Bohr
amu 2.80855000E+01
bdgw3 4 5 4 5 4 5 4 5
diemac 1.20000000E+01
ecut 4.00000000E+00 Hartree
ecuteps1 0.00000000E+00 Hartree
ecuteps2 0.00000000E+00 Hartree
ecuteps3 4.00000000E+00 Hartree
ecuteps4 4.00000000E+00 Hartree
ecutsigx1 0.00000000E+00 Hartree
ecutsigx2 0.00000000E+00 Hartree
ecutsigx3 4.00000000E+00 Hartree
ecutsigx4 0.00000000E+00 Hartree
etotal1 -8.3092786940E+00
etotal2 0.0000000000E+00
etotal3 0.0000000000E+00
etotal4 0.0000000000E+00
fcart1 9.4986001169E-45 7.3483495369E-28 4.1990568782E-28
-9.4986001169E-45 -7.3483495369E-28 -4.1990568782E-28
fcart2 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
fcart3 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
fcart4 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
- fftalg 312
freqspmax1 0.00000000E+00 Hartree
freqspmax2 0.00000000E+00 Hartree
freqspmax3 1.83746627E-01 Hartree
freqspmax4 0.00000000E+00 Hartree
freqspmin1 -0.00000000E+00 Hartree
freqspmin2 -0.00000000E+00 Hartree
freqspmin3 -1.83746627E-01 Hartree
freqspmin4 -0.00000000E+00 Hartree
getden1 0
getden2 0
getden3 0
getden4 1
getwfk1 0
getwfk2 0
getwfk3 0
getwfk4 2
gwr_boxcutmin1 1.00000000E+00
gwr_boxcutmin2 1.00000000E+00
gwr_boxcutmin3 1.10000000E+00
gwr_boxcutmin4 1.10000000E+00
- gwr_ucsc_batch1 -1 -1
- gwr_ucsc_batch2 -1 -1
- gwr_ucsc_batch3 4 2
- gwr_ucsc_batch4 -1 -1
gwr_ntau1 12
gwr_ntau2 12
gwr_ntau3 6
gwr_ntau4 6
istwfk 1 1 1
ixc 11
jdtset 1 2 3 4
kpt 0.00000000E+00 0.00000000E+00 0.00000000E+00
5.00000000E-01 0.00000000E+00 0.00000000E+00
5.00000000E-01 5.00000000E-01 0.00000000E+00
kptgw3 0.00000000E+00 0.00000000E+00 0.00000000E+00
5.00000000E-01 0.00000000E+00 0.00000000E+00
kptrlatt 2 0 0 0 2 0 0 0 2
kptrlen 1.45098311E+01
P mkmem 3
natom 2
nband1 6
nband2 40
nband3 30
nband4 30
ndtset 4
nfreqsp1 0
nfreqsp2 0
nfreqsp3 50
nfreqsp4 0
ngfft 15 15 15
nkpt 3
nkptgw1 0
nkptgw2 0
nkptgw3 2
nkptgw4 0
nspden 2
nsppol 2
nstep 20
nsym 48
ntypat 1
occ1 1.000000 1.000000 1.000000 1.000000 0.000000 0.000000
1.000000 1.000000 1.000000 1.000000 0.000000 0.000000
occ2 1.000000 1.000000 1.000000 1.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000
1.000000 1.000000 1.000000 1.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000
occ3 1.000000 1.000000 1.000000 1.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
1.000000 1.000000 1.000000 1.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
occ4 1.000000 1.000000 1.000000 1.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
1.000000 1.000000 1.000000 1.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
optdriver1 0
optdriver2 6
optdriver3 6
optdriver4 6
prtsuscep1 0
prtsuscep2 0
prtsuscep3 1
prtsuscep4 0
prtvol1 0
prtvol2 0
prtvol3 1
prtvol4 0
rprim 0.0000000000E+00 5.0000000000E-01 5.0000000000E-01
5.0000000000E-01 0.0000000000E+00 5.0000000000E-01
5.0000000000E-01 5.0000000000E-01 0.0000000000E+00
spgroup 227
spinmagntarget 0.00000000E+00
strten1 3.5069680493E-05 3.5069680493E-05 3.5069680493E-05
0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
strten2 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
strten3 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
strten4 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
symrel 1 0 0 0 1 0 0 0 1 -1 0 0 0 -1 0 0 0 -1
0 -1 1 0 -1 0 1 -1 0 0 1 -1 0 1 0 -1 1 0
-1 0 0 -1 0 1 -1 1 0 1 0 0 1 0 -1 1 -1 0
0 1 -1 1 0 -1 0 0 -1 0 -1 1 -1 0 1 0 0 1
-1 0 0 -1 1 0 -1 0 1 1 0 0 1 -1 0 1 0 -1
0 -1 1 1 -1 0 0 -1 0 0 1 -1 -1 1 0 0 1 0
1 0 0 0 0 1 0 1 0 -1 0 0 0 0 -1 0 -1 0
0 1 -1 0 0 -1 1 0 -1 0 -1 1 0 0 1 -1 0 1
-1 0 1 -1 1 0 -1 0 0 1 0 -1 1 -1 0 1 0 0
0 -1 0 1 -1 0 0 -1 1 0 1 0 -1 1 0 0 1 -1
1 0 -1 0 0 -1 0 1 -1 -1 0 1 0 0 1 0 -1 1
0 1 0 0 0 1 1 0 0 0 -1 0 0 0 -1 -1 0 0
1 0 -1 0 1 -1 0 0 -1 -1 0 1 0 -1 1 0 0 1
0 -1 0 0 -1 1 1 -1 0 0 1 0 0 1 -1 -1 1 0
-1 0 1 -1 0 0 -1 1 0 1 0 -1 1 0 0 1 -1 0
0 1 0 1 0 0 0 0 1 0 -1 0 -1 0 0 0 0 -1
0 0 -1 0 1 -1 1 0 -1 0 0 1 0 -1 1 -1 0 1
1 -1 0 0 -1 1 0 -1 0 -1 1 0 0 1 -1 0 1 0
0 0 1 1 0 0 0 1 0 0 0 -1 -1 0 0 0 -1 0
-1 1 0 -1 0 0 -1 0 1 1 -1 0 1 0 0 1 0 -1
0 0 1 0 1 0 1 0 0 0 0 -1 0 -1 0 -1 0 0
1 -1 0 0 -1 0 0 -1 1 -1 1 0 0 1 0 0 1 -1
0 0 -1 1 0 -1 0 1 -1 0 0 1 -1 0 1 0 -1 1
-1 1 0 -1 0 1 -1 0 0 1 -1 0 1 0 -1 1 0 0
timopt 1
tnons 0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000
0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000
0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000
0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000
0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000
0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000
0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000
0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000
0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000
0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000
0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000
0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000
0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000
0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000
0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000
0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000
0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000
0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000
0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000
0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000
0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000
0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000
0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000
0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000
tolvrs1 1.00000000E-08
tolvrs2 0.00000000E+00
tolvrs3 0.00000000E+00
tolvrs4 0.00000000E+00
typat 1 1
wtk 0.12500 0.50000 0.37500
xangst 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
1.3573395400E+00 1.3573395400E+00 1.3573395400E+00
xcart 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
2.5650000000E+00 2.5650000000E+00 2.5650000000E+00
xred 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
2.5000000000E-01 2.5000000000E-01 2.5000000000E-01
znucl 14.00000
================================================================================
- Total cpu time (s,m,h): 3.2 0.05 0.001
- Total wall clock time (s,m,h): 3.4 0.06 0.001
-
- For major independent code sections, cpu and wall times (sec),
- as well as % of the time and number of calls for node 0
-
-<BEGIN_TIMER mpi_nprocs = 1, omp_nthreads = 1, mpi_rank = 0>
- cpu_time = 3.2, wall_time = 3.4
-
- routine cpu % wall % number of calls Gflops Speedup Efficacity
- (-1=no count)
- gwr_build_tchi 1.259 38.9 1.272 38.0 2 -1.00 0.99 0.99
- gwr_build_sigmac 0.987 30.5 0.987 29.5 1 -1.00 1.00 1.00
- gwr_init 0.235 7.2 0.240 7.1 3 -1.00 0.98 0.98
- get_dtsets_pspheads 0.145 4.5 0.145 4.3 1 -1.00 1.00 1.00
- timing timab 0.104 3.2 0.104 3.1 14 -1.00 1.00 1.00
- gwr_build_head_wings 0.084 2.6 0.084 2.5 2 -1.00 1.00 1.00
- pspini 0.077 2.4 0.077 2.3 4 -1.00 1.00 1.00
- gwr_rpa_energy 0.062 1.9 0.062 1.9 1 -1.00 0.99 0.99
- fourwf%(pot) 0.057 1.8 0.057 1.7 1588 -1.00 1.00 1.00
- ugb_from_diago 0.038 1.2 0.038 1.1 6 -1.00 1.00 1.00
- ewald 0.027 0.8 0.027 0.8 4 -1.00 1.00 1.00
- abinit(outvars) 0.026 0.8 0.035 1.1 1 -1.00 0.73 0.73
- abinit(after driver) 0.025 0.8 0.041 1.2 1 -1.00 0.62 0.62
- gwr_build_wc 0.023 0.7 0.023 0.7 1 -1.00 1.00 1.00
- gwr_build_green 0.020 0.6 0.020 0.6 2 -1.00 1.00 1.00
- others (145) 0.061 1.9 0.066 2.0 -1 -1.00 0.93 0.93
-<END_TIMER>
-
- subtotal 3.230 99.7 3.279 97.8 0.99 0.99
- For major independent code sections, cpu and wall times (sec),
- as well as % of the total time and number of calls
-<BEGIN_TIMER mpi_nprocs = 1, omp_nthreads = 1, mpi_rank = world>
- cpu_time = 3.2, wall_time = 3.4
-
- routine cpu % wall % number of calls Gflops Speedup Efficacity
- (-1=no count)
- gwr_build_tchi 1.259 38.9 1.272 38.0 2 -1.00 0.99 0.99
- gwr_build_sigmac 0.987 30.5 0.987 29.5 1 -1.00 1.00 1.00
- gwr_init 0.235 7.2 0.240 7.1 3 -1.00 0.98 0.98
- get_dtsets_pspheads 0.145 4.5 0.145 4.3 1 -1.00 1.00 1.00
- timing timab 0.104 3.2 0.104 3.1 14 -1.00 1.00 1.00
- gwr_build_head_wings 0.084 2.6 0.084 2.5 2 -1.00 1.00 1.00
- pspini 0.077 2.4 0.077 2.3 4 -1.00 1.00 1.00
- gwr_rpa_energy 0.062 1.9 0.062 1.9 1 -1.00 0.99 0.99
- fourwf%(pot) 0.057 1.8 0.057 1.7 1588 -1.00 1.00 1.00
- ugb_from_diago 0.038 1.2 0.038 1.1 6 -1.00 1.00 1.00
- ewald 0.027 0.8 0.027 0.8 4 -1.00 1.00 1.00
- abinit(outvars) 0.026 0.8 0.035 1.1 1 -1.00 0.73 0.73
- abinit(after driver) 0.025 0.8 0.041 1.2 1 -1.00 0.62 0.62
- gwr_build_wc 0.023 0.7 0.023 0.7 1 -1.00 1.00 1.00
- gwr_build_green 0.020 0.6 0.020 0.6 2 -1.00 1.00 1.00
- others (145) 0.061 1.9 0.066 2.0 -1 -1.00 0.93 0.93
-<END_TIMER>
- subtotal 3.230 99.7 3.279 97.8 0.99 0.99
================================================================================
Suggested references for the acknowledgment of ABINIT usage.
The users of ABINIT have little formal obligations with respect to the ABINIT group
(those specified in the GNU General Public License, http://www.gnu.org/copyleft/gpl.txt).
However, it is common practice in the scientific literature,
to acknowledge the efforts of people that have made the research possible.
In this spirit, please find below suggested citations of work written by ABINIT developers,
corresponding to implementations inside of ABINIT that you have used in the present run.
Note also that it will be of great value to readers of publications presenting these results,
to read papers enabling them to understand the theoretical formalism and details
of the ABINIT implementation.
For information on why they are suggested, see also https://docs.abinit.org/theory/acknowledgments.
-
- [1] The Abinit project: Impact, environment and recent developments.
- Computer Phys. Comm. 248, 107042 (2020).
- X.Gonze, B. Amadon, G. Antonius, F.Arnardi, L.Baguet, J.-M.Beuken,
- J.Bieder, F.Bottin, J.Bouchet, E.Bousquet, N.Brouwer, F.Bruneval,
- G.Brunin, T.Cavignac, J.-B. Charraud, Wei Chen, M.Cote, S.Cottenier,
- J.Denier, G.Geneste, Ph.Ghosez, M.Giantomassi, Y.Gillet, O.Gingras,
- D.R.Hamann, G.Hautier, Xu He, N.Helbig, N.Holzwarth, Y.Jia, F.Jollet,
- W.Lafargue-Dit-Hauret, K.Lejaeghere, M.A.L.Marques, A.Martin, C.Martins,
- H.P.C. Miranda, F.Naccarato, K. Persson, G.Petretto, V.Planes, Y.Pouillon,
- S.Prokhorenko, F.Ricci, G.-M.Rignanese, A.H.Romero, M.M.Schmitt, M.Torrent,
- M.J.van Setten, B.Van Troeye, M.J.Verstraete, G.Zerah and J.W.Zwanzig
- Comment: the fifth generic paper describing the ABINIT project.
- Note that a version of this paper, that is not formatted for Computer Phys. Comm.
- is available at https://www.abinit.org/sites/default/files/ABINIT20.pdf .
- The licence allows the authors to put it on the Web.
- DOI and bibtex: see https://docs.abinit.org/theory/bibliography/#gonze2020
-
- [2] Optimized norm-conserving Vanderbilt pseudopotentials.
- D.R. Hamann, Phys. Rev. B 88, 085117 (2013).
- Comment: Some pseudopotential generated using the ONCVPSP code were used.
- DOI and bibtex: see https://docs.abinit.org/theory/bibliography/#hamann2013
-
- [3] ABINIT: Overview, and focus on selected capabilities
- J. Chem. Phys. 152, 124102 (2020).
- A. Romero, D.C. Allan, B. Amadon, G. Antonius, T. Applencourt, L.Baguet,
- J.Bieder, F.Bottin, J.Bouchet, E.Bousquet, F.Bruneval,
- G.Brunin, D.Caliste, M.Cote,
- J.Denier, C. Dreyer, Ph.Ghosez, M.Giantomassi, Y.Gillet, O.Gingras,
- D.R.Hamann, G.Hautier, F.Jollet, G. Jomard,
- A.Martin,
- H.P.C. Miranda, F.Naccarato, G.Petretto, N.A. Pike, V.Planes,
- S.Prokhorenko, T. Rangel, F.Ricci, G.-M.Rignanese, M.Royo, M.Stengel, M.Torrent,
- M.J.van Setten, B.Van Troeye, M.J.Verstraete, J.Wiktor, J.W.Zwanziger, and X.Gonze.
- Comment: a global overview of ABINIT, with focus on selected capabilities .
- Note that a version of this paper, that is not formatted for J. Chem. Phys
- is available at https://www.abinit.org/sites/default/files/ABINIT20_JPC.pdf .
- The licence allows the authors to put it on the Web.
- DOI and bibtex: see https://docs.abinit.org/theory/bibliography/#romero2020
-
- [4] Recent developments in the ABINIT software package.
- Computer Phys. Comm. 205, 106 (2016).
- X.Gonze, F.Jollet, F.Abreu Araujo, D.Adams, B.Amadon, T.Applencourt,
- C.Audouze, J.-M.Beuken, J.Bieder, A.Bokhanchuk, E.Bousquet, F.Bruneval
- D.Caliste, M.Cote, F.Dahm, F.Da Pieve, M.Delaveau, M.Di Gennaro,
- B.Dorado, C.Espejo, G.Geneste, L.Genovese, A.Gerossier, M.Giantomassi,
- Y.Gillet, D.R.Hamann, L.He, G.Jomard, J.Laflamme Janssen, S.Le Roux,
- A.Levitt, A.Lherbier, F.Liu, I.Lukacevic, A.Martin, C.Martins,
- M.J.T.Oliveira, S.Ponce, Y.Pouillon, T.Rangel, G.-M.Rignanese,
- A.H.Romero, B.Rousseau, O.Rubel, A.A.Shukri, M.Stankovski, M.Torrent,
- M.J.Van Setten, B.Van Troeye, M.J.Verstraete, D.Waroquier, J.Wiktor,
- B.Xu, A.Zhou, J.W.Zwanziger.
- Comment: the fourth generic paper describing the ABINIT project.
- Note that a version of this paper, that is not formatted for Computer Phys. Comm.
- is available at https://www.abinit.org/sites/default/files/ABINIT16.pdf .
- The licence allows the authors to put it on the Web.
- DOI and bibtex: see https://docs.abinit.org/theory/bibliography/#gonze2016
-
- And optionally:
-
- [5] ABINIT: First-principles approach of materials and nanosystem properties.
- Computer Phys. Comm. 180, 2582-2615 (2009).
- X. Gonze, B. Amadon, P.-M. Anglade, J.-M. Beuken, F. Bottin, P. Boulanger, F. Bruneval,
- D. Caliste, R. Caracas, M. Cote, T. Deutsch, L. Genovese, Ph. Ghosez, M. Giantomassi
- S. Goedecker, D.R. Hamann, P. Hermet, F. Jollet, G. Jomard, S. Leroux, M. Mancini, S. Mazevet,
- M.J.T. Oliveira, G. Onida, Y. Pouillon, T. Rangel, G.-M. Rignanese, D. Sangalli, R. Shaltaf,
- M. Torrent, M.J. Verstraete, G. Zerah, J.W. Zwanziger
- Comment: the third generic paper describing the ABINIT project.
- Note that a version of this paper, that is not formatted for Computer Phys. Comm.
- is available at https://www.abinit.org/sites/default/files/ABINIT_CPC_v10.pdf .
- The licence allows the authors to put it on the Web.
- DOI and bibtex: see https://docs.abinit.org/theory/bibliography/#gonze2009
-
- Proc. 0 individual time (sec): cpu= 3.2 wall= 3.4
================================================================================
Calculation completed.
.Delivered 2 WARNINGs and 13 COMMENTs to log file.
+Overall time at end (sec) : cpu= 3.2 wall= 3.4