abinit/tests/gpu_omp/Refs/t21.abo

2089 lines
101 KiB
Plaintext

.Version 9.11.2 of ABINIT
.(MPI version, prepared for a x86_64_linux_gnu9.3 computer)
.Copyright (C) 1998-2022 ABINIT group .
ABINIT comes with ABSOLUTELY NO WARRANTY.
It is free software, and you are welcome to redistribute it
under certain conditions (GNU General Public License,
see ~abinit/COPYING or http://www.gnu.org/copyleft/gpl.txt).
ABINIT is a project of the Universite Catholique de Louvain,
Corning Inc. and other collaborators, see ~abinit/doc/developers/contributors.txt .
Please read https://docs.abinit.org/theory/acknowledgments for suggested
acknowledgments of the ABINIT effort.
For more information, see https://www.abinit.org .
.Starting date : Sat 15 Jul 2023.
- ( at 12h08 )
- input file -> /home/marc/work/abinit/abinit-git/tests/Test_suite/gpu_omp_t21/t21.abi
- output file -> t21.abo
- root for input files -> t21i
- root for output files -> t21o
- inpspheads : Reading pseudopotential header in XML form from
- /home/marc/work/abinit/abinit-git/tests/Pspdir/Psdj_paw_pw_std/Al.xml
- inpspheads : Reading pseudopotential header in XML form from
- /home/marc/work/abinit/abinit-git/tests/Pspdir/As.LDA_PW-JTH_sp.xml
DATASET 1 : space group F-4 3 m (#216); Bravais cF (face-center cubic)
================================================================================
Values of the parameters that define the memory need for DATASET 1.
intxc = 0 ionmov = 0 iscf = 17 lmnmax = 8
lnmax = 4 mgfft = 15 mpssoang = 2 mqgrid = 3001
natom = 2 nloc_mem = 2 nspden = 1 nspinor = 1
nsppol = 1 nsym = 24 n1xccc = 1 ntypat = 2
occopt = 1 xclevel = 1
- mband = 4 mffmem = 1 mkmem = 2
mpw = 95 nfft = 3375 nkpt = 2
PAW method is used; the additional fine FFT grid is defined by:
mgfftf= 18 nfftf = 5832
================================================================================
P This job should need less than 3.445 Mbytes of memory.
Rough estimation (10% accuracy) of disk space for files :
_ WF disk file : 0.014 Mbytes ; DEN or POT disk file : 0.046 Mbytes.
================================================================================
DATASET 2 : space group F-4 3 m (#216); Bravais cF (face-center cubic)
================================================================================
Values of the parameters that define the memory need for DATASET 2.
intxc = 0 ionmov = 0 iscf = 17 lmnmax = 8
lnmax = 4 mgfft = 15 mpssoang = 2 mqgrid = 3001
natom = 2 nloc_mem = 2 nspden = 1 nspinor = 1
nsppol = 1 nsym = 24 n1xccc = 1 ntypat = 2
occopt = 1 xclevel = 1
- mband = 4 mffmem = 1 mkmem = 16
mpw = 95 nfft = 3375 nkpt = 16
PAW method is used; the additional fine FFT grid is defined by:
mgfftf= 18 nfftf = 5832
================================================================================
P This job should need less than 3.604 Mbytes of memory.
Rough estimation (10% accuracy) of disk space for files :
_ WF disk file : 0.095 Mbytes ; DEN or POT disk file : 0.046 Mbytes.
================================================================================
DATASET 3 : space group F-4 3 m (#216); Bravais cF (face-center cubic)
================================================================================
Values of the parameters that define the memory need for DATASET 3 (RF).
intxc = 0 iscf = 7 lmnmax = 8 lnmax = 4
mgfft = 15 mpssoang = 2 mqgrid = 3001 natom = 2
nloc_mem = 2 nspden = 1 nspinor = 1 nsppol = 1
nsym = 24 n1xccc = 1 ntypat = 2 occopt = 1
xclevel = 1
- mband = 4 mffmem = 1 mkmem = 16
- mkqmem = 16 mk1mem = 16 mpw = 95
nfft = 3375 nkpt = 16
================================================================================
P This job should need less than 1.824 Mbytes of memory.
Rough estimation (10% accuracy) of disk space for files :
_ WF disk file : 0.095 Mbytes ; DEN or POT disk file : 0.028 Mbytes.
================================================================================
DATASET 4 : space group F-4 3 m (#216); Bravais cF (face-center cubic)
================================================================================
Values of the parameters that define the memory need for DATASET 4 (RF).
intxc = 0 iscf = 7 lmnmax = 8 lnmax = 4
mgfft = 15 mpssoang = 2 mqgrid = 3001 natom = 2
nloc_mem = 2 nspden = 1 nspinor = 1 nsppol = 1
nsym = 24 n1xccc = 1 ntypat = 2 occopt = 1
xclevel = 1
- mband = 4 mffmem = 1 mkmem = 16
- mkqmem = 16 mk1mem = 16 mpw = 95
nfft = 3375 nkpt = 16
================================================================================
P This job should need less than 1.913 Mbytes of memory.
Rough estimation (10% accuracy) of disk space for files :
_ WF disk file : 0.095 Mbytes ; DEN or POT disk file : 0.028 Mbytes.
================================================================================
--------------------------------------------------------------------------------
------------- Echo of variables that govern the present computation ------------
--------------------------------------------------------------------------------
-
- outvars: echo of selected default values
- iomode0 = 0 , fftalg0 =312 , wfoptalg0 = 10
-
- outvars: echo of global parameters not present in the input file
- max_nthreads = 0
-
-outvars: echo values of preprocessed input variables --------
acell 1.0640000000E+01 1.0640000000E+01 1.0640000000E+01 Bohr
amu 2.69815390E+01 7.49215900E+01
bandpp 4
ecut 3.50000000E+00 Hartree
- fftalg 312
getddk1 0
getddk2 0
getddk3 0
getddk4 3
getden1 0
getden2 1
getden3 2
getden4 2
getwfk1 0
getwfk2 1
getwfk3 2
getwfk4 2
- gpu_option 2
-invol_blk_sliced 0
iscf1 17
iscf2 17
iscf3 7
iscf4 7
ixc 7
jdtset 1 2 3 4
kpt1 -2.50000000E-01 5.00000000E-01 0.00000000E+00
-2.50000000E-01 0.00000000E+00 0.00000000E+00
kpt2 -2.50000000E-01 5.00000000E-01 0.00000000E+00
5.00000000E-01 -2.50000000E-01 0.00000000E+00
-2.50000000E-01 -2.50000000E-01 2.50000000E-01
-2.50000000E-01 0.00000000E+00 0.00000000E+00
-2.50000000E-01 2.50000000E-01 2.50000000E-01
5.00000000E-01 5.00000000E-01 2.50000000E-01
-2.50000000E-01 5.00000000E-01 5.00000000E-01
0.00000000E+00 -2.50000000E-01 0.00000000E+00
2.50000000E-01 -2.50000000E-01 2.50000000E-01
5.00000000E-01 -2.50000000E-01 5.00000000E-01
-2.50000000E-01 -2.50000000E-01 -2.50000000E-01
5.00000000E-01 0.00000000E+00 2.50000000E-01
-2.50000000E-01 0.00000000E+00 5.00000000E-01
0.00000000E+00 5.00000000E-01 2.50000000E-01
0.00000000E+00 -2.50000000E-01 5.00000000E-01
0.00000000E+00 0.00000000E+00 2.50000000E-01
kpt3 -2.50000000E-01 5.00000000E-01 0.00000000E+00
5.00000000E-01 -2.50000000E-01 0.00000000E+00
-2.50000000E-01 -2.50000000E-01 2.50000000E-01
-2.50000000E-01 0.00000000E+00 0.00000000E+00
-2.50000000E-01 2.50000000E-01 2.50000000E-01
5.00000000E-01 5.00000000E-01 2.50000000E-01
-2.50000000E-01 5.00000000E-01 5.00000000E-01
0.00000000E+00 -2.50000000E-01 0.00000000E+00
2.50000000E-01 -2.50000000E-01 2.50000000E-01
5.00000000E-01 -2.50000000E-01 5.00000000E-01
-2.50000000E-01 -2.50000000E-01 -2.50000000E-01
5.00000000E-01 0.00000000E+00 2.50000000E-01
-2.50000000E-01 0.00000000E+00 5.00000000E-01
0.00000000E+00 5.00000000E-01 2.50000000E-01
0.00000000E+00 -2.50000000E-01 5.00000000E-01
0.00000000E+00 0.00000000E+00 2.50000000E-01
kpt4 -2.50000000E-01 5.00000000E-01 0.00000000E+00
5.00000000E-01 -2.50000000E-01 0.00000000E+00
-2.50000000E-01 -2.50000000E-01 2.50000000E-01
-2.50000000E-01 0.00000000E+00 0.00000000E+00
-2.50000000E-01 2.50000000E-01 2.50000000E-01
5.00000000E-01 5.00000000E-01 2.50000000E-01
-2.50000000E-01 5.00000000E-01 5.00000000E-01
0.00000000E+00 -2.50000000E-01 0.00000000E+00
2.50000000E-01 -2.50000000E-01 2.50000000E-01
5.00000000E-01 -2.50000000E-01 5.00000000E-01
-2.50000000E-01 -2.50000000E-01 -2.50000000E-01
5.00000000E-01 0.00000000E+00 2.50000000E-01
-2.50000000E-01 0.00000000E+00 5.00000000E-01
0.00000000E+00 5.00000000E-01 2.50000000E-01
0.00000000E+00 -2.50000000E-01 5.00000000E-01
0.00000000E+00 0.00000000E+00 2.50000000E-01
kptopt1 1
kptopt2 2
kptopt3 2
kptopt4 2
kptrlatt 2 -2 2 -2 2 2 -2 -2 2
kptrlen 2.12800000E+01
P mkmem1 2
P mkmem2 16
P mkmem3 16
P mkmem4 16
P mkqmem1 2
P mkqmem2 16
P mkqmem3 16
P mkqmem4 16
P mk1mem1 2
P mk1mem2 16
P mk1mem3 16
P mk1mem4 16
natom 2
nband1 4
nband2 4
nband3 4
nband4 4
ndtset 4
ngfft 15 15 15
ngfftdg 18 18 18
nkpt1 2
nkpt2 16
nkpt3 16
nkpt4 16
nline1 4
nline2 4
nline3 100
nline4 4
nstep1 100
nstep2 100
nstep3 1
nstep4 100
nsym 24
ntypat 2
occ1 2.000000 2.000000 2.000000 2.000000
occ2 2.000000 2.000000 2.000000 2.000000
occ3 2.000000 2.000000 2.000000 2.000000
occ4 2.000000 2.000000 2.000000 2.000000
optdriver1 0
optdriver2 0
optdriver3 1
optdriver4 1
pawecutdg 7.00000000E+00 Hartree
pawxcdev 0
prepanl1 0
prepanl2 0
prepanl3 0
prepanl4 1
prtpot1 0
prtpot2 0
prtpot3 1
prtpot4 1
rfddk1 0
rfddk2 0
rfddk3 1
rfddk4 0
rfelfd1 0
rfelfd2 0
rfelfd3 0
rfelfd4 3
rfphon1 0
rfphon2 0
rfphon3 0
rfphon4 1
rprim 0.0000000000E+00 5.0000000000E-01 5.0000000000E-01
5.0000000000E-01 0.0000000000E+00 5.0000000000E-01
5.0000000000E-01 5.0000000000E-01 0.0000000000E+00
shiftk 5.00000000E-01 5.00000000E-01 5.00000000E-01
spgroup 216
symrel 1 0 0 0 1 0 0 0 1 0 -1 1 0 -1 0 1 -1 0
-1 0 0 -1 0 1 -1 1 0 0 1 -1 1 0 -1 0 0 -1
-1 0 0 -1 1 0 -1 0 1 0 -1 1 1 -1 0 0 -1 0
1 0 0 0 0 1 0 1 0 0 1 -1 0 0 -1 1 0 -1
-1 0 1 -1 1 0 -1 0 0 0 -1 0 1 -1 0 0 -1 1
1 0 -1 0 0 -1 0 1 -1 0 1 0 0 0 1 1 0 0
1 0 -1 0 1 -1 0 0 -1 0 -1 0 0 -1 1 1 -1 0
-1 0 1 -1 0 0 -1 1 0 0 1 0 1 0 0 0 0 1
0 0 -1 0 1 -1 1 0 -1 1 -1 0 0 -1 1 0 -1 0
0 0 1 1 0 0 0 1 0 -1 1 0 -1 0 0 -1 0 1
0 0 1 0 1 0 1 0 0 1 -1 0 0 -1 0 0 -1 1
0 0 -1 1 0 -1 0 1 -1 -1 1 0 -1 0 1 -1 0 0
tolrde1 5.00000000E-03
tolrde2 5.00000000E-03
tolrde3 1.00000000E-30
tolrde4 5.00000000E-03
tolvrs1 1.00000000E-08
tolvrs2 0.00000000E+00
tolvrs3 0.00000000E+00
tolvrs4 0.00000000E+00
tolwfr1 0.00000000E+00
tolwfr2 1.00000000E-22
tolwfr3 1.00000000E-20
tolwfr4 1.00000000E-20
typat 1 2
- useylm 1
wtk1 0.75000 0.25000
wtk2 0.06250 0.06250 0.06250 0.06250 0.06250 0.06250
0.06250 0.06250 0.06250 0.06250 0.06250 0.06250
0.06250 0.06250 0.06250 0.06250
wtk3 0.06250 0.06250 0.06250 0.06250 0.06250 0.06250
0.06250 0.06250 0.06250 0.06250 0.06250 0.06250
0.06250 0.06250 0.06250 0.06250
wtk4 0.06250 0.06250 0.06250 0.06250 0.06250 0.06250
0.06250 0.06250 0.06250 0.06250 0.06250 0.06250
0.06250 0.06250 0.06250 0.06250
xangst 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
1.4076113748E+00 1.4076113748E+00 1.4076113748E+00
xcart 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
2.6600000000E+00 2.6600000000E+00 2.6600000000E+00
xred 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
2.5000000000E-01 2.5000000000E-01 2.5000000000E-01
znucl 13.00000 33.00000
================================================================================
chkinp: Checking input parameters for consistency, jdtset= 1.
chkinp: Checking input parameters for consistency, jdtset= 2.
chkinp: Checking input parameters for consistency, jdtset= 3.
chkinp: Checking input parameters for consistency, jdtset= 4.
================================================================================
== DATASET 1 ==================================================================
- mpi_nproc: 1, omp_nthreads: -1 (-1 if OMP is not activated)
--- !DatasetInfo
iteration_state: {dtset: 1, }
dimensions: {natom: 2, nkpt: 2, mband: 4, nsppol: 1, nspinor: 1, nspden: 1, mpw: 95, }
cutoff_energies: {ecut: 3.5, pawecutdg: 7.0, }
electrons: {nelect: 8.00000000E+00, charge: 0.00000000E+00, occopt: 1.00000000E+00, tsmear: 1.00000000E-02, }
meta: {optdriver: 0, ionmov: 0, optcell: 0, iscf: 17, paral_kgb: 0, }
...
Exchange-correlation functional for the present dataset will be:
LDA: Perdew-Wang 92 LSD fit to Ceperley-Alder data - ixc=7
Citation for XC functional:
J.P.Perdew and Y.Wang, PRB 45, 13244 (1992)
Real(R)+Recip(G) space primitive vectors, cartesian coordinates (Bohr,Bohr^-1):
R(1)= 0.0000000 5.3200000 5.3200000 G(1)= -0.0939850 0.0939850 0.0939850
R(2)= 5.3200000 0.0000000 5.3200000 G(2)= 0.0939850 -0.0939850 0.0939850
R(3)= 5.3200000 5.3200000 0.0000000 G(3)= 0.0939850 0.0939850 -0.0939850
Unit cell volume ucvol= 3.0113754E+02 bohr^3
Angles (23,13,12)= 6.00000000E+01 6.00000000E+01 6.00000000E+01 degrees
Coarse grid specifications (used for wave-functions):
getcut: wavevector= 0.0000 0.0000 0.0000 ngfft= 15 15 15
ecut(hartree)= 3.500 => boxcut(ratio)= 2.22079
getcut : COMMENT -
Note that boxcut > 2.2 ; recall that boxcut=Gcut(box)/Gcut(sphere) = 2
is sufficient for exact treatment of convolution.
Such a large boxcut is a waste : you could raise ecut
e.g. ecut= 4.315406 Hartrees makes boxcut=2
Fine grid specifications (used for densities):
getcut: wavevector= 0.0000 0.0000 0.0000 ngfft= 18 18 18
ecut(hartree)= 7.000 => boxcut(ratio)= 2.01497
--- Pseudopotential description ------------------------------------------------
- pspini: atom type 1 psp file is /home/buildbot/ABINIT/alps_gnu_9.3_openmpi/trunk__gonze3/tests/Pspdir/Psdj_paw_pw_std/Al.xml
- pspatm: opening atomic psp file /home/buildbot/ABINIT/alps_gnu_9.3_openmpi/trunk__gonze3/tests/Pspdir/Psdj_paw_pw_std/Al.xml
- pspatm : Reading pseudopotential header in XML form from /home/buildbot/ABINIT/alps_gnu_9.3_openmpi/trunk__gonze3/tests/Pspdir/Psdj_paw_pw_std/Al.xml
Pseudopotential format is: paw10
basis_size (lnmax)= 4 (lmn_size= 8), orbitals= 0 0 1 1
Spheres core radius: rc_sph= 1.90363307
1 radial meshes are used:
- mesh 1: r(i)=AA*[exp(BB*(i-1))-1], size=2001 , AA= 0.46377E-03 BB= 0.60291E-02
Shapefunction is SIN type: shapef(r)=[sin(pi*r/rshp)/(pi*r/rshp)]**2
Radius for shape functions = 1.60786206
mmax= 2001
Radial grid used for partial waves is grid 1
Radial grid used for projectors is grid 1
Radial grid used for (t)core density is grid 1
Radial grid used for Vloc is grid 1
Radial grid used for pseudo valence density is grid 1
Mesh size for Vloc has been set to 1771 to avoid numerical noise.
Compensation charge density is not taken into account in XC energy/potential
pspatm: atomic psp has been read and splines computed
- pspini: atom type 2 psp file is /home/buildbot/ABINIT/alps_gnu_9.3_openmpi/trunk__gonze3/tests/Pspdir/As.LDA_PW-JTH_sp.xml
- pspatm: opening atomic psp file /home/buildbot/ABINIT/alps_gnu_9.3_openmpi/trunk__gonze3/tests/Pspdir/As.LDA_PW-JTH_sp.xml
- pspatm : Reading pseudopotential header in XML form from /home/buildbot/ABINIT/alps_gnu_9.3_openmpi/trunk__gonze3/tests/Pspdir/As.LDA_PW-JTH_sp.xml
Pseudopotential format is: paw10
basis_size (lnmax)= 4 (lmn_size= 8), orbitals= 0 0 1 1
Spheres core radius: rc_sph= 2.10391912
1 radial meshes are used:
- mesh 1: r(i)=AA*[exp(BB*(i-1))-1], size=1500 , AA= 0.25579E-03 BB= 0.84411E-02
Shapefunction is BESSEL type: shapef(r,l)=aa(1,l)*jl(q(1,l)*r)+aa(2,l)*jl(q(2,l)*r)
Radius for shape functions = 1.80731519
mmax= 1500
Radial grid used for partial waves is grid 1
Radial grid used for projectors is grid 1
Radial grid used for (t)core density is grid 1
Radial grid used for Vloc is grid 1
Radial grid used for pseudo valence density is grid 1
Mesh size for Vloc has been set to 1335 to avoid numerical noise.
Compensation charge density is not taken into account in XC energy/potential
pspatm: atomic psp has been read and splines computed
2.52339172E+02 ecore*ucvol(ha*bohr**3)
--------------------------------------------------------------------------------
_setup2: Arith. and geom. avg. npw (full set) are 94.250 94.249
================================================================================
--- !BeginCycle
iteration_state: {dtset: 1, }
solver: {iscf: 17, nstep: 100, nline: 4, wfoptalg: 10, }
tolerances: {tolvrs: 1.00E-08, }
...
iter Etot(hartree) deltaE(h) residm nres2
ETOT 1 -8.6521047442957 -8.652E+00 1.724E-02 2.065E-01
ETOT 2 -8.6592336734277 -7.129E-03 9.097E-07 3.646E-02
ETOT 3 -8.6579570996570 1.277E-03 4.208E-06 7.602E-04
ETOT 4 -8.6579681568008 -1.106E-05 1.596E-08 1.256E-04
ETOT 5 -8.6579725631552 -4.406E-06 2.571E-09 3.269E-06
ETOT 6 -8.6579725775254 -1.437E-08 5.277E-10 2.145E-07
ETOT 7 -8.6579725753073 2.218E-09 2.354E-11 5.845E-09
At SCF step 7 nres2 = 5.85E-09 < tolvrs= 1.00E-08 =>converged.
Cartesian components of stress tensor (hartree/bohr^3)
sigma(1 1)= 6.89261129E-05 sigma(3 2)= 0.00000000E+00
sigma(2 2)= 6.89261129E-05 sigma(3 1)= 0.00000000E+00
sigma(3 3)= 6.89261129E-05 sigma(2 1)= 0.00000000E+00
--- !ResultsGS
iteration_state: {dtset: 1, }
comment : Summary of ground state results
lattice_vectors:
- [ 0.0000000, 5.3200000, 5.3200000, ]
- [ 5.3200000, 0.0000000, 5.3200000, ]
- [ 5.3200000, 5.3200000, 0.0000000, ]
lattice_lengths: [ 7.52362, 7.52362, 7.52362, ]
lattice_angles: [ 60.000, 60.000, 60.000, ] # degrees, (23, 13, 12)
lattice_volume: 3.0113754E+02
convergence: {deltae: 2.218E-09, res2: 5.845E-09, residm: 2.354E-11, diffor: null, }
etotal : -8.65797258E+00
entropy : 0.00000000E+00
fermie : 5.69007269E-02
cartesian_stress_tensor: # hartree/bohr^3
- [ 6.89261129E-05, 0.00000000E+00, 0.00000000E+00, ]
- [ 0.00000000E+00, 6.89261129E-05, 0.00000000E+00, ]
- [ 0.00000000E+00, 0.00000000E+00, 6.89261129E-05, ]
pressure_GPa: -2.0279E+00
xred :
- [ 0.0000E+00, 0.0000E+00, 0.0000E+00, Al]
- [ 2.5000E-01, 2.5000E-01, 2.5000E-01, As]
cartesian_forces: # hartree/bohr
- [ 4.04909056E-28, 4.04909056E-28, -1.21472717E-27, ]
- [ -4.04909056E-28, -4.04909056E-28, 1.21472717E-27, ]
force_length_stats: {min: 1.34293141E-27, max: 1.34293141E-27, mean: 1.34293141E-27, }
...
Integrated electronic density in atomic spheres:
------------------------------------------------
Atom Sphere_radius Integrated_density
1 1.90363 0.73966693
2 2.10392 2.76439157
PAW TEST:
==== Compensation charge inside spheres ============
The following values must be close to each other ...
Compensation charge over spherical meshes = -0.439684881992516
Compensation charge over fine fft grid = -0.439624410169365
==== Results concerning PAW augmentation regions ====
Total pseudopotential strength Dij (hartree):
Atom # 1
0.36253 0.00100 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
0.00100 49.63069 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
0.00000 0.00000 0.07835 0.00000 0.00000 -0.08268 0.00000 0.00000
0.00000 0.00000 0.00000 0.07835 0.00000 0.00000 -0.08268 0.00000
0.00000 0.00000 0.00000 0.00000 0.07835 0.00000 0.00000 -0.08268
0.00000 0.00000 -0.08268 0.00000 0.00000 34.84898 0.00000 0.00000
0.00000 0.00000 0.00000 -0.08268 0.00000 0.00000 34.84898 0.00000
0.00000 0.00000 0.00000 0.00000 -0.08268 0.00000 0.00000 34.84898
Atom # 2
-0.00911 0.07484 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
0.07484 -0.38791 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
0.00000 0.00000 -0.07989 0.00000 0.00000 -0.26456 0.00000 0.00000
0.00000 0.00000 0.00000 -0.07989 0.00000 0.00000 -0.26456 0.00000
0.00000 0.00000 0.00000 0.00000 -0.07989 0.00000 0.00000 -0.26456
0.00000 0.00000 -0.26456 0.00000 0.00000 -0.96362 0.00000 0.00000
0.00000 0.00000 0.00000 -0.26456 0.00000 0.00000 -0.96362 0.00000
0.00000 0.00000 0.00000 0.00000 -0.26456 0.00000 0.00000 -0.96362
Augmentation waves occupancies Rhoij:
Atom # 1
1.28469 0.00169 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
0.00169 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
0.00000 0.00000 0.84934 0.00000 0.00000 -0.00046 0.00000 0.00000
0.00000 0.00000 0.00000 0.84934 0.00000 0.00000 -0.00046 0.00000
0.00000 0.00000 0.00000 0.00000 0.84934 0.00000 0.00000 -0.00046
0.00000 0.00000 -0.00046 0.00000 0.00000 0.00000 0.00000 0.00000
0.00000 0.00000 0.00000 -0.00046 0.00000 0.00000 0.00000 0.00000
0.00000 0.00000 0.00000 0.00000 -0.00046 0.00000 0.00000 0.00000
Atom # 2
1.44773 0.01685 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
0.01685 0.00041 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
0.00000 0.00000 1.84918 0.00000 0.00000 -0.09409 0.00000 0.00000
0.00000 0.00000 0.00000 1.84918 0.00000 0.00000 -0.09409 0.00000
0.00000 0.00000 0.00000 0.00000 1.84918 0.00000 0.00000 -0.09409
0.00000 0.00000 -0.09409 0.00000 0.00000 0.00526 0.00000 0.00000
0.00000 0.00000 0.00000 -0.09409 0.00000 0.00000 0.00526 0.00000
0.00000 0.00000 0.00000 0.00000 -0.09409 0.00000 0.00000 0.00526
================================================================================
----iterations are completed or convergence reached----
Mean square residual over all n,k,spin= 80.658E-13; max= 23.538E-12
reduced coordinates (array xred) for 2 atoms
0.000000000000 0.000000000000 0.000000000000
0.250000000000 0.250000000000 0.250000000000
rms dE/dt= 6.0928E-27; max dE/dt= 8.6165E-27; dE/dt below (all hartree)
1 0.000000000000 0.000000000000 -0.000000000000
2 0.000000000000 0.000000000000 0.000000000000
cartesian coordinates (angstrom) at end:
1 0.00000000000000 0.00000000000000 0.00000000000000
2 1.40761137484940 1.40761137484940 1.40761137484940
cartesian forces (hartree/bohr) at end:
1 0.00000000000000 0.00000000000000 -0.00000000000000
2 -0.00000000000000 -0.00000000000000 0.00000000000000
frms,max,avg= 7.7534181E-28 1.2147272E-27 0.000E+00 0.000E+00 0.000E+00 h/b
cartesian forces (eV/Angstrom) at end:
1 0.00000000000000 0.00000000000000 -0.00000000000000
2 -0.00000000000000 -0.00000000000000 0.00000000000000
frms,max,avg= 3.9869676E-26 6.2463777E-26 0.000E+00 0.000E+00 0.000E+00 e/A
length scales= 10.640000000000 10.640000000000 10.640000000000 bohr
= 5.630445499398 5.630445499398 5.630445499398 angstroms
prteigrs : about to open file t21o_DS1_EIG
Fermi (or HOMO) energy (hartree) = 0.05690 Average Vxc (hartree)= -0.34513
Eigenvalues (hartree) for nkpt= 2 k points:
kpt# 1, nband= 4, wtk= 0.75000, kpt= -0.2500 0.5000 0.0000 (reduced coord)
-0.30515 -0.11439 -0.02897 0.01367
prteigrs : prtvol=0 or 1, do not print more k-points.
--- !EnergyTerms
iteration_state : {dtset: 1, }
comment : Components of total free energy in Hartree
kinetic : 3.13490834829957E+00
hartree : 8.01652028741965E-01
xc : -7.46395247128208E+00
Ewald energy : -8.45598635435666E+00
psp_core : 8.37953233227450E-01
local_psp : -1.94393221434956E+00
spherical_terms : 4.43145156196115E+00
total_energy : -8.65790586775817E+00
total_energy_eV : -2.35593599991314E+02
...
--- !EnergyTermsDC
iteration_state : {dtset: 1, }
comment : '"Double-counting" decomposition of free energy'
band_energy : -7.94192261889607E-01
Ewald energy : -8.45598635435666E+00
psp_core : 8.37953233227450E-01
xc_dc : -4.38355005122127E+00
spherical_terms : 4.13780285893284E+00
total_energy_dc : -8.65797257530726E+00
total_energy_dc_eV : -2.35595415196039E+02
...
Cartesian components of stress tensor (hartree/bohr^3)
sigma(1 1)= 6.89261129E-05 sigma(3 2)= 0.00000000E+00
sigma(2 2)= 6.89261129E-05 sigma(3 1)= 0.00000000E+00
sigma(3 3)= 6.89261129E-05 sigma(2 1)= 0.00000000E+00
-Cartesian components of stress tensor (GPa) [Pressure= -2.0279E+00 GPa]
- sigma(1 1)= 2.02787591E+00 sigma(3 2)= 0.00000000E+00
- sigma(2 2)= 2.02787591E+00 sigma(3 1)= 0.00000000E+00
- sigma(3 3)= 2.02787591E+00 sigma(2 1)= 0.00000000E+00
================================================================================
== DATASET 2 ==================================================================
- mpi_nproc: 1, omp_nthreads: -1 (-1 if OMP is not activated)
--- !DatasetInfo
iteration_state: {dtset: 2, }
dimensions: {natom: 2, nkpt: 16, mband: 4, nsppol: 1, nspinor: 1, nspden: 1, mpw: 95, }
cutoff_energies: {ecut: 3.5, pawecutdg: 7.0, }
electrons: {nelect: 8.00000000E+00, charge: 0.00000000E+00, occopt: 1.00000000E+00, tsmear: 1.00000000E-02, }
meta: {optdriver: 0, ionmov: 0, optcell: 0, iscf: 17, paral_kgb: 0, }
...
mkfilename : getwfk/=0, take file _WFK from output of DATASET 1.
mkfilename : getden/=0, take file _DEN from output of DATASET 1.
Exchange-correlation functional for the present dataset will be:
LDA: Perdew-Wang 92 LSD fit to Ceperley-Alder data - ixc=7
Citation for XC functional:
J.P.Perdew and Y.Wang, PRB 45, 13244 (1992)
Real(R)+Recip(G) space primitive vectors, cartesian coordinates (Bohr,Bohr^-1):
R(1)= 0.0000000 5.3200000 5.3200000 G(1)= -0.0939850 0.0939850 0.0939850
R(2)= 5.3200000 0.0000000 5.3200000 G(2)= 0.0939850 -0.0939850 0.0939850
R(3)= 5.3200000 5.3200000 0.0000000 G(3)= 0.0939850 0.0939850 -0.0939850
Unit cell volume ucvol= 3.0113754E+02 bohr^3
Angles (23,13,12)= 6.00000000E+01 6.00000000E+01 6.00000000E+01 degrees
Coarse grid specifications (used for wave-functions):
getcut: wavevector= 0.0000 0.0000 0.0000 ngfft= 15 15 15
ecut(hartree)= 3.500 => boxcut(ratio)= 2.22079
getcut : COMMENT -
Note that boxcut > 2.2 ; recall that boxcut=Gcut(box)/Gcut(sphere) = 2
is sufficient for exact treatment of convolution.
Such a large boxcut is a waste : you could raise ecut
e.g. ecut= 4.315406 Hartrees makes boxcut=2
Fine grid specifications (used for densities):
getcut: wavevector= 0.0000 0.0000 0.0000 ngfft= 18 18 18
ecut(hartree)= 7.000 => boxcut(ratio)= 2.01497
--------------------------------------------------------------------------------
-inwffil : will read wavefunctions from disk file t21o_DS1_WFK
_setup2: Arith. and geom. avg. npw (full set) are 94.250 94.249
================================================================================
--- !BeginCycle
iteration_state: {dtset: 2, }
solver: {iscf: 17, nstep: 100, nline: 4, wfoptalg: 10, }
tolerances: {tolwfr: 1.00E-22, }
...
iter Etot(hartree) deltaE(h) residm nres2
ETOT 1 -8.6579725754620 -8.658E+00 1.171E-15 4.048E-10
ETOT 2 -8.6579725754256 3.640E-11 3.636E-16 1.359E-11
ETOT 3 -8.6579725754246 9.397E-13 5.411E-15 1.709E-12
ETOT 4 -8.6579725754246 -1.421E-14 3.370E-16 3.558E-14
ETOT 5 -8.6579725754245 1.386E-13 1.928E-18 2.903E-15
ETOT 6 -8.6579725754246 -1.172E-13 1.021E-19 1.116E-16
ETOT 7 -8.6579725754245 1.634E-13 4.665E-21 2.137E-18
ETOT 8 -8.6579725754246 -1.208E-13 1.235E-21 1.414E-19
ETOT 9 -8.6579725754244 1.350E-13 1.870E-22 2.301E-20
ETOT 10 -8.6579725754247 -2.220E-13 6.959E-23 2.728E-21
At SCF step 10 max residual= 6.96E-23 < tolwfr= 1.00E-22 =>converged.
Cartesian components of stress tensor (hartree/bohr^3)
sigma(1 1)= 6.88749155E-05 sigma(3 2)= 0.00000000E+00
sigma(2 2)= 6.88749155E-05 sigma(3 1)= 0.00000000E+00
sigma(3 3)= 6.88749155E-05 sigma(2 1)= 0.00000000E+00
--- !ResultsGS
iteration_state: {dtset: 2, }
comment : Summary of ground state results
lattice_vectors:
- [ 0.0000000, 5.3200000, 5.3200000, ]
- [ 5.3200000, 0.0000000, 5.3200000, ]
- [ 5.3200000, 5.3200000, 0.0000000, ]
lattice_lengths: [ 7.52362, 7.52362, 7.52362, ]
lattice_angles: [ 60.000, 60.000, 60.000, ] # degrees, (23, 13, 12)
lattice_volume: 3.0113754E+02
convergence: {deltae: -2.220E-13, res2: 2.728E-21, residm: 6.959E-23, diffor: null, }
etotal : -8.65797258E+00
entropy : 0.00000000E+00
fermie : 5.69021946E-02
cartesian_stress_tensor: # hartree/bohr^3
- [ 6.88749155E-05, 0.00000000E+00, 0.00000000E+00, ]
- [ 0.00000000E+00, 6.88749155E-05, 0.00000000E+00, ]
- [ 0.00000000E+00, 0.00000000E+00, 6.88749155E-05, ]
pressure_GPa: -2.0264E+00
xred :
- [ 0.0000E+00, 0.0000E+00, 0.0000E+00, Al]
- [ 2.5000E-01, 2.5000E-01, 2.5000E-01, As]
cartesian_forces: # hartree/bohr
- [ -0.00000000E+00, -0.00000000E+00, -0.00000000E+00, ]
- [ -0.00000000E+00, -0.00000000E+00, -0.00000000E+00, ]
force_length_stats: {min: 0.00000000E+00, max: 0.00000000E+00, mean: 0.00000000E+00, }
...
Integrated electronic density in atomic spheres:
------------------------------------------------
Atom Sphere_radius Integrated_density
1 1.90363 0.73967204
2 2.10392 2.76438213
PAW TEST:
==== Compensation charge inside spheres ============
The following values must be close to each other ...
Compensation charge over spherical meshes = -0.439664672183042
Compensation charge over fine fft grid = -0.439625222046840
==== Results concerning PAW augmentation regions ====
Total pseudopotential strength Dij (hartree):
Atom # 1
0.36252 0.00100 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
0.00100 49.63063 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
0.00000 0.00000 0.07835 0.00000 0.00000 -0.08267 0.00000 0.00000
0.00000 0.00000 0.00000 0.07835 0.00000 0.00000 -0.08267 0.00000
0.00000 0.00000 0.00000 0.00000 0.07835 0.00000 0.00000 -0.08267
0.00000 0.00000 -0.08267 0.00000 0.00000 34.84892 0.00000 0.00000
0.00000 0.00000 0.00000 -0.08267 0.00000 0.00000 34.84892 0.00000
0.00000 0.00000 0.00000 0.00000 -0.08267 0.00000 0.00000 34.84892
Atom # 2
-0.00912 0.07483 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
0.07483 -0.38803 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
0.00000 0.00000 -0.07989 0.00000 0.00000 -0.26456 0.00000 0.00000
0.00000 0.00000 0.00000 -0.07989 0.00000 0.00000 -0.26456 0.00000
0.00000 0.00000 0.00000 0.00000 -0.07989 0.00000 0.00000 -0.26456
0.00000 0.00000 -0.26456 0.00000 0.00000 -0.96362 0.00000 0.00000
0.00000 0.00000 0.00000 -0.26456 0.00000 0.00000 -0.96362 0.00000
0.00000 0.00000 0.00000 0.00000 -0.26456 0.00000 0.00000 -0.96362
Augmentation waves occupancies Rhoij:
Atom # 1
1.28471 0.00169 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
0.00169 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
0.00000 0.00000 0.84935 0.00000 0.00000 -0.00046 0.00000 0.00000
0.00000 0.00000 0.00000 0.84935 0.00000 0.00000 -0.00046 0.00000
0.00000 0.00000 0.00000 0.00000 0.84935 0.00000 0.00000 -0.00046
0.00000 0.00000 -0.00046 0.00000 0.00000 0.00000 0.00000 0.00000
0.00000 0.00000 0.00000 -0.00046 0.00000 0.00000 0.00000 0.00000
0.00000 0.00000 0.00000 0.00000 -0.00046 0.00000 0.00000 0.00000
Atom # 2
1.44773 0.01685 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
0.01685 0.00041 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
0.00000 0.00000 1.84917 0.00000 0.00000 -0.09409 0.00000 0.00000
0.00000 0.00000 0.00000 1.84917 0.00000 0.00000 -0.09409 0.00000
0.00000 0.00000 0.00000 0.00000 1.84917 0.00000 0.00000 -0.09409
0.00000 0.00000 -0.09409 0.00000 0.00000 0.00526 0.00000 0.00000
0.00000 0.00000 0.00000 -0.09409 0.00000 0.00000 0.00526 0.00000
0.00000 0.00000 0.00000 0.00000 -0.09409 0.00000 0.00000 0.00526
================================================================================
----iterations are completed or convergence reached----
Mean square residual over all n,k,spin= 45.005E-24; max= 69.593E-24
reduced coordinates (array xred) for 2 atoms
0.000000000000 0.000000000000 0.000000000000
0.250000000000 0.250000000000 0.250000000000
rms dE/dt= 0.0000E+00; max dE/dt= 0.0000E+00; dE/dt below (all hartree)
1 0.000000000000 0.000000000000 0.000000000000
2 0.000000000000 0.000000000000 0.000000000000
cartesian coordinates (angstrom) at end:
1 0.00000000000000 0.00000000000000 0.00000000000000
2 1.40761137484940 1.40761137484940 1.40761137484940
cartesian forces (hartree/bohr) at end:
1 -0.00000000000000 -0.00000000000000 -0.00000000000000
2 -0.00000000000000 -0.00000000000000 -0.00000000000000
frms,max,avg= 0.0000000E+00 0.0000000E+00 0.000E+00 0.000E+00 0.000E+00 h/b
cartesian forces (eV/Angstrom) at end:
1 -0.00000000000000 -0.00000000000000 -0.00000000000000
2 -0.00000000000000 -0.00000000000000 -0.00000000000000
frms,max,avg= 0.0000000E+00 0.0000000E+00 0.000E+00 0.000E+00 0.000E+00 e/A
length scales= 10.640000000000 10.640000000000 10.640000000000 bohr
= 5.630445499398 5.630445499398 5.630445499398 angstroms
prteigrs : about to open file t21o_DS2_EIG
Fermi (or HOMO) energy (hartree) = 0.05690 Average Vxc (hartree)= -0.34513
Eigenvalues (hartree) for nkpt= 16 k points:
kpt# 1, nband= 4, wtk= 0.06250, kpt= -0.2500 0.5000 0.0000 (reduced coord)
-0.30515 -0.11439 -0.02897 0.01367
prteigrs : prtvol=0 or 1, do not print more k-points.
--- !EnergyTerms
iteration_state : {dtset: 2, }
comment : Components of total free energy in Hartree
kinetic : 3.13490250710856E+00
hartree : 8.01664300617773E-01
xc : -7.46393962029502E+00
Ewald energy : -8.45598635435666E+00
psp_core : 8.37953233227450E-01
local_psp : -1.94398752720754E+00
spherical_terms : 4.43142088547233E+00
total_energy : -8.65797257543311E+00
total_energy_eV : -2.35595415199463E+02
...
--- !EnergyTermsDC
iteration_state : {dtset: 2, }
comment : '"Double-counting" decomposition of free energy'
band_energy : -7.94183358981508E-01
Ewald energy : -8.45598635435666E+00
psp_core : 8.37953233227450E-01
xc_dc : -4.38356248696033E+00
spherical_terms : 4.13780639164639E+00
total_energy_dc : -8.65797257542467E+00
total_energy_dc_eV : -2.35595415199233E+02
...
Cartesian components of stress tensor (hartree/bohr^3)
sigma(1 1)= 6.88749155E-05 sigma(3 2)= 0.00000000E+00
sigma(2 2)= 6.88749155E-05 sigma(3 1)= 0.00000000E+00
sigma(3 3)= 6.88749155E-05 sigma(2 1)= 0.00000000E+00
-Cartesian components of stress tensor (GPa) [Pressure= -2.0264E+00 GPa]
- sigma(1 1)= 2.02636963E+00 sigma(3 2)= 0.00000000E+00
- sigma(2 2)= 2.02636963E+00 sigma(3 1)= 0.00000000E+00
- sigma(3 3)= 2.02636963E+00 sigma(2 1)= 0.00000000E+00
================================================================================
== DATASET 3 ==================================================================
- mpi_nproc: 1, omp_nthreads: -1 (-1 if OMP is not activated)
--- !DatasetInfo
iteration_state: {dtset: 3, }
dimensions: {natom: 2, nkpt: 16, mband: 4, nsppol: 1, nspinor: 1, nspden: 1, mpw: 95, }
cutoff_energies: {ecut: 3.5, pawecutdg: 7.0, }
electrons: {nelect: 8.00000000E+00, charge: 0.00000000E+00, occopt: 1.00000000E+00, tsmear: 1.00000000E-02, }
meta: {optdriver: 1, rfddk: 1, }
...
mkfilename : getwfk/=0, take file _WFK from output of DATASET 2.
mkfilename : getden/=0, take file _DEN from output of DATASET 2.
Exchange-correlation functional for the present dataset will be:
LDA: Perdew-Wang 92 LSD fit to Ceperley-Alder data - ixc=7
Citation for XC functional:
J.P.Perdew and Y.Wang, PRB 45, 13244 (1992)
Real(R)+Recip(G) space primitive vectors, cartesian coordinates (Bohr,Bohr^-1):
R(1)= 0.0000000 5.3200000 5.3200000 G(1)= -0.0939850 0.0939850 0.0939850
R(2)= 5.3200000 0.0000000 5.3200000 G(2)= 0.0939850 -0.0939850 0.0939850
R(3)= 5.3200000 5.3200000 0.0000000 G(3)= 0.0939850 0.0939850 -0.0939850
Unit cell volume ucvol= 3.0113754E+02 bohr^3
Angles (23,13,12)= 6.00000000E+01 6.00000000E+01 6.00000000E+01 degrees
Coarse grid specifications (used for wave-functions):
getcut: wavevector= 0.0000 0.0000 0.0000 ngfft= 15 15 15
ecut(hartree)= 3.500 => boxcut(ratio)= 2.22079
getcut : COMMENT -
Note that boxcut > 2.2 ; recall that boxcut=Gcut(box)/Gcut(sphere) = 2
is sufficient for exact treatment of convolution.
Such a large boxcut is a waste : you could raise ecut
e.g. ecut= 4.315406 Hartrees makes boxcut=2
Fine grid specifications (used for densities):
getcut: wavevector= 0.0000 0.0000 0.0000 ngfft= 18 18 18
ecut(hartree)= 7.000 => boxcut(ratio)= 2.01497
--------------------------------------------------------------------------------
==> initialize data related to q vector <==
The list of irreducible perturbations for this q vector is:
1) idir= 1 ipert= 3
2) idir= 2 ipert= 3
3) idir= 3 ipert= 3
================================================================================
--------------------------------------------------------------------------------
Perturbation wavevector (in red.coord.) 0.000000 0.000000 0.000000
Perturbation : derivative vs k along direction 1
dfpt_looppert : COMMENT -
In a d/dk calculation, iscf is set to -3 automatically.
The set of symmetries contains only one element for this perturbation.
symkpt : not enough symmetry to change the number of k points.
--------------------------------------------------------------------------------
--------------------------------------------------------------------------------
Initialisation of the first-order wave-functions :
ireadwf= 0
--- !BeginCycle
iteration_state: {dtset: 3, }
solver: {iscf: 7, nstep: 1, nline: 100, wfoptalg: 10, }
tolerances: {tolwfr: 1.00E-20, }
...
iter 2DEtotal(Ha) deltaE(Ha) residm vres2
-ETOT 1 -10.077233700110 -1.008E+01 7.436E-21 0.000E+00
At SCF step 1 max residual= 7.44E-21 < tolwfr= 1.00E-20 =>converged.
================================================================================
----iterations are completed or convergence reached----
Mean square residual over all n,k,spin= 23.231E-22; max= 74.356E-22
dfpt_looppert : ek2= 1.6738545539E+01
f-sum rule ratio= 1.2435656025E+00
prteigrs : about to open file t21t_1WF1_EIG
Expectation of eigenvalue derivatives (hartree) for nkpt= 16 k points:
(in case of degenerate eigenvalues, averaged derivative)
kpt# 1, nband= 4, wtk= 0.06250, kpt= -0.2500 0.5000 0.0000 (reduced coord)
-0.06289 -0.06339 0.17738 0.15431
prteigrs : prtvol=0 or 1, do not print more k-points.
Nine components of 2nd-order total energy (hartree) are
1,2,3: 0th-order hamiltonian combined with 1st-order wavefunctions
kin0= 3.03912790E+01 eigvalue= -1.54745152E+00 local= -2.73659318E+01
4,5,6: 1st-order hamiltonian combined with 1st and 0th-order wfs
kin1= -2.08154795E+01 Hartree= 0.00000000E+00 xc= 0.00000000E+00
7,8,9: eventually, occupation + non-local contributions
edocc= 0.00000000E+00 enl0= 8.56177627E+00 enl1= 6.98573840E-01
10: eventually, PAW "on-site" Hxc contribution: epaw1= 0.00000000E+00
1-10 gives the relaxation energy (to be shifted if some occ is /=2.0)
erelax= -1.00772337E+01
11 Contribution from 1st-order change of wavefunctions overlap
eovl1 = -1.87808861E-02
No Ewald or frozen-wf contrib.: the relaxation energy is the total one
2DEtotal= -0.1007723370E+02 Ha. Also 2DEtotal= -0.274215474461E+03 eV
( non-var. 2DEtotal : -1.0077233700E+01 Ha)
--------------------------------------------------------------------------------
Perturbation wavevector (in red.coord.) 0.000000 0.000000 0.000000
Perturbation : derivative vs k along direction 2
The set of symmetries contains only one element for this perturbation.
symkpt : not enough symmetry to change the number of k points.
--------------------------------------------------------------------------------
--------------------------------------------------------------------------------
Initialisation of the first-order wave-functions :
ireadwf= 0
--- !BeginCycle
iteration_state: {dtset: 3, }
solver: {iscf: 7, nstep: 1, nline: 100, wfoptalg: 10, }
tolerances: {tolwfr: 1.00E-20, }
...
iter 2DEtotal(Ha) deltaE(Ha) residm vres2
-ETOT 1 -10.077233699957 -1.008E+01 7.436E-21 0.000E+00
At SCF step 1 max residual= 7.44E-21 < tolwfr= 1.00E-20 =>converged.
================================================================================
----iterations are completed or convergence reached----
Mean square residual over all n,k,spin= 24.599E-22; max= 74.356E-22
dfpt_looppert : ek2= 1.6738545539E+01
f-sum rule ratio= 1.2435656025E+00
prteigrs : about to open file t21t_1WF1_EIG
Expectation of eigenvalue derivatives (hartree) for nkpt= 16 k points:
(in case of degenerate eigenvalues, averaged derivative)
kpt# 1, nband= 4, wtk= 0.06250, kpt= -0.2500 0.5000 0.0000 (reduced coord)
-0.09379 0.15614 0.19564 -0.04225
prteigrs : prtvol=0 or 1, do not print more k-points.
Nine components of 2nd-order total energy (hartree) are
1,2,3: 0th-order hamiltonian combined with 1st-order wavefunctions
kin0= 3.03912790E+01 eigvalue= -1.54745152E+00 local= -2.73659318E+01
4,5,6: 1st-order hamiltonian combined with 1st and 0th-order wfs
kin1= -2.08154795E+01 Hartree= 0.00000000E+00 xc= 0.00000000E+00
7,8,9: eventually, occupation + non-local contributions
edocc= 0.00000000E+00 enl0= 8.56177627E+00 enl1= 6.98573840E-01
10: eventually, PAW "on-site" Hxc contribution: epaw1= 0.00000000E+00
1-10 gives the relaxation energy (to be shifted if some occ is /=2.0)
erelax= -1.00772337E+01
11 Contribution from 1st-order change of wavefunctions overlap
eovl1 = -1.87808861E-02
No Ewald or frozen-wf contrib.: the relaxation energy is the total one
2DEtotal= -0.1007723370E+02 Ha. Also 2DEtotal= -0.274215474456E+03 eV
( non-var. 2DEtotal : -1.0077233700E+01 Ha)
--------------------------------------------------------------------------------
Perturbation wavevector (in red.coord.) 0.000000 0.000000 0.000000
Perturbation : derivative vs k along direction 3
The set of symmetries contains only one element for this perturbation.
symkpt : not enough symmetry to change the number of k points.
--------------------------------------------------------------------------------
--------------------------------------------------------------------------------
Initialisation of the first-order wave-functions :
ireadwf= 0
--- !BeginCycle
iteration_state: {dtset: 3, }
solver: {iscf: 7, nstep: 1, nline: 100, wfoptalg: 10, }
tolerances: {tolwfr: 1.00E-20, }
...
iter 2DEtotal(Ha) deltaE(Ha) residm vres2
-ETOT 1 -10.077233699803 -1.008E+01 7.436E-21 0.000E+00
At SCF step 1 max residual= 7.44E-21 < tolwfr= 1.00E-20 =>converged.
================================================================================
----iterations are completed or convergence reached----
Mean square residual over all n,k,spin= 23.231E-22; max= 74.356E-22
dfpt_looppert : ek2= 1.6738545539E+01
f-sum rule ratio= 1.2435656025E+00
prteigrs : about to open file t21t_1WF1_EIG
Expectation of eigenvalue derivatives (hartree) for nkpt= 16 k points:
(in case of degenerate eigenvalues, averaged derivative)
kpt# 1, nband= 4, wtk= 0.06250, kpt= -0.2500 0.5000 0.0000 (reduced coord)
0.07834 -0.04638 -0.18651 -0.05603
prteigrs : prtvol=0 or 1, do not print more k-points.
Nine components of 2nd-order total energy (hartree) are
1,2,3: 0th-order hamiltonian combined with 1st-order wavefunctions
kin0= 3.03912790E+01 eigvalue= -1.54745152E+00 local= -2.73659318E+01
4,5,6: 1st-order hamiltonian combined with 1st and 0th-order wfs
kin1= -2.08154795E+01 Hartree= 0.00000000E+00 xc= 0.00000000E+00
7,8,9: eventually, occupation + non-local contributions
edocc= 0.00000000E+00 enl0= 8.56177627E+00 enl1= 6.98573840E-01
10: eventually, PAW "on-site" Hxc contribution: epaw1= 0.00000000E+00
1-10 gives the relaxation energy (to be shifted if some occ is /=2.0)
erelax= -1.00772337E+01
11 Contribution from 1st-order change of wavefunctions overlap
eovl1 = -1.87808861E-02
No Ewald or frozen-wf contrib.: the relaxation energy is the total one
2DEtotal= -0.1007723370E+02 Ha. Also 2DEtotal= -0.274215474452E+03 eV
( non-var. 2DEtotal : -1.0077233700E+01 Ha)
================================================================================
---- first-order wavefunction calculations are completed ----
respfn : d/dk was computed, but no 2DTE, so no DDB output.
================================================================================
== DATASET 4 ==================================================================
- mpi_nproc: 1, omp_nthreads: -1 (-1 if OMP is not activated)
--- !DatasetInfo
iteration_state: {dtset: 4, }
dimensions: {natom: 2, nkpt: 16, mband: 4, nsppol: 1, nspinor: 1, nspden: 1, mpw: 95, }
cutoff_energies: {ecut: 3.5, pawecutdg: 7.0, }
electrons: {nelect: 8.00000000E+00, charge: 0.00000000E+00, occopt: 1.00000000E+00, tsmear: 1.00000000E-02, }
meta: {optdriver: 1, rfelfd: 3, rfphon: 1, }
...
mkfilename : getwfk/=0, take file _WFK from output of DATASET 2.
mkfilename : getddk/=0, take file _1WF from output of DATASET 3.
mkfilename : getden/=0, take file _DEN from output of DATASET 2.
Exchange-correlation functional for the present dataset will be:
LDA: Perdew-Wang 92 LSD fit to Ceperley-Alder data - ixc=7
Citation for XC functional:
J.P.Perdew and Y.Wang, PRB 45, 13244 (1992)
Real(R)+Recip(G) space primitive vectors, cartesian coordinates (Bohr,Bohr^-1):
R(1)= 0.0000000 5.3200000 5.3200000 G(1)= -0.0939850 0.0939850 0.0939850
R(2)= 5.3200000 0.0000000 5.3200000 G(2)= 0.0939850 -0.0939850 0.0939850
R(3)= 5.3200000 5.3200000 0.0000000 G(3)= 0.0939850 0.0939850 -0.0939850
Unit cell volume ucvol= 3.0113754E+02 bohr^3
Angles (23,13,12)= 6.00000000E+01 6.00000000E+01 6.00000000E+01 degrees
Coarse grid specifications (used for wave-functions):
getcut: wavevector= 0.0000 0.0000 0.0000 ngfft= 15 15 15
ecut(hartree)= 3.500 => boxcut(ratio)= 2.22079
getcut : COMMENT -
Note that boxcut > 2.2 ; recall that boxcut=Gcut(box)/Gcut(sphere) = 2
is sufficient for exact treatment of convolution.
Such a large boxcut is a waste : you could raise ecut
e.g. ecut= 4.315406 Hartrees makes boxcut=2
Fine grid specifications (used for densities):
getcut: wavevector= 0.0000 0.0000 0.0000 ngfft= 18 18 18
ecut(hartree)= 7.000 => boxcut(ratio)= 2.01497
--------------------------------------------------------------------------------
-open ddk wf file :t21o_DS3_1WF7
-open ddk wf file :t21o_DS3_1WF8
-open ddk wf file :t21o_DS3_1WF9
==> initialize data related to q vector <==
The list of irreducible perturbations for this q vector is:
1) idir= 1 ipert= 1
2) idir= 1 ipert= 2
3) idir= 1 ipert= 4
================================================================================
The perturbation idir= 2 ipert= 1 is
symmetric of a previously calculated perturbation.
So, its SCF calculation is not needed.
The perturbation idir= 3 ipert= 1 is
symmetric of a previously calculated perturbation.
So, its SCF calculation is not needed.
The perturbation idir= 2 ipert= 2 is
symmetric of a previously calculated perturbation.
So, its SCF calculation is not needed.
The perturbation idir= 3 ipert= 2 is
symmetric of a previously calculated perturbation.
So, its SCF calculation is not needed.
--------------------------------------------------------------------------------
Perturbation wavevector (in red.coord.) 0.000000 0.000000 0.000000
Perturbation : displacement of atom 1 along direction 1
symkpt : not enough symmetry to change the number of k points.
--------------------------------------------------------------------------------
--------------------------------------------------------------------------------
Initialisation of the first-order wave-functions :
ireadwf= 0
--- !BeginCycle
iteration_state: {dtset: 4, }
solver: {iscf: 7, nstep: 100, nline: 4, wfoptalg: 10, }
tolerances: {tolwfr: 1.00E-20, }
...
iter 2DEtotal(Ha) deltaE(Ha) residm vres2
-ETOT 1 6.6752699825838 -1.223E+01 1.158E-02 5.501E+02
ETOT 2 5.5744303748813 -1.101E+00 3.298E-04 8.788E+01
ETOT 3 5.3892790297341 -1.852E-01 1.004E-04 1.015E+00
ETOT 4 5.3876009696410 -1.678E-03 9.804E-07 1.583E-02
ETOT 5 5.3875774464671 -2.352E-05 1.291E-08 9.986E-04
ETOT 6 5.3875762439518 -1.203E-06 8.623E-10 5.916E-05
ETOT 7 5.3875761499598 -9.399E-08 9.632E-11 1.798E-06
ETOT 8 5.3875761478366 -2.123E-09 1.494E-12 1.615E-08
ETOT 9 5.3875761478149 -2.175E-11 2.344E-14 1.106E-09
ETOT 10 5.3875761478129 -2.021E-12 1.031E-15 3.065E-11
ETOT 11 5.3875761478128 -2.487E-14 2.723E-17 1.845E-12
ETOT 12 5.3875761478128 -3.375E-14 4.659E-19 8.464E-14
ETOT 13 5.3875761478128 2.309E-14 3.075E-20 6.839E-15
ETOT 14 5.3875761478128 1.066E-14 9.926E-21 6.028E-16
At SCF step 14 max residual= 9.93E-21 < tolwfr= 1.00E-20 =>converged.
-open ddk wf file :t21o_DS3_1WF7
-open ddk wf file :t21o_DS3_1WF8
-open ddk wf file :t21o_DS3_1WF9
================================================================================
----iterations are completed or convergence reached----
Mean square residual over all n,k,spin= 43.956E-22; max= 99.258E-22
Fourteen components of 2nd-order total energy (hartree) are
1,2,3: 0th-order hamiltonian combined with 1st-order wavefunctions
kin0= 1.56262042E+01 eigvalue= 6.31988893E-01 local= -1.19173955E+01
4,5,6: 1st-order hamiltonian combined with 1st and 0th-order wfs
loc psp = -2.86182331E+00 Hartree= 3.68230499E+00 xc= -1.55870175E+00
note that "loc psp" includes a xc core correction that could be resolved
7,8,9: eventually, occupation + non-local contributions
edocc= 0.00000000E+00 enl0= 6.71339438E+00 enl1= -2.38457513E+01
10: eventually, PAW "on-site" Hxc contribution: epaw1= 1.36515041E-02
1-10 gives the relaxation energy (to be shifted if some occ is /=2.0)
erelax= -1.35161279E+01
11,12,13 Non-relaxation contributions : frozen-wavefunctions and Ewald
fr.local= -2.69465144E+01 fr.nonlo= 3.46222980E+01 Ewald= 1.18104987E+01
14,15 Frozen wf xc core corrections (1) and (2)
frxc 1 = -3.61507616E+00 frxc 2 = 3.03249786E+00
16 Contribution from 1st-order change of wavefunctions overlap
eovl1 = -1.62340576E-01
Resulting in :
2DEtotal= 0.5387576148E+01 Ha. Also 2DEtotal= 0.146603402633E+03 eV
(2DErelax= -1.3516127858E+01 Ha. 2DEnonrelax= 1.8903704006E+01 Ha)
( non-var. 2DEtotal : 5.3875761470E+00 Ha)
--------------------------------------------------------------------------------
Perturbation wavevector (in red.coord.) 0.000000 0.000000 0.000000
Perturbation : displacement of atom 2 along direction 1
symkpt : not enough symmetry to change the number of k points.
--------------------------------------------------------------------------------
--------------------------------------------------------------------------------
Initialisation of the first-order wave-functions :
ireadwf= 0
--- !BeginCycle
iteration_state: {dtset: 4, }
solver: {iscf: 7, nstep: 100, nline: 4, wfoptalg: 10, }
tolerances: {tolwfr: 1.00E-20, }
...
iter 2DEtotal(Ha) deltaE(Ha) residm vres2
-ETOT 1 32.577329718372 -6.191E+01 1.356E-01 1.017E+04
ETOT 2 7.9387615592900 -2.464E+01 6.216E-03 1.000E+03
ETOT 3 5.5007923382384 -2.438E+00 1.450E-03 1.394E+01
ETOT 4 5.4715433204810 -2.925E-02 2.430E-05 2.992E-01
ETOT 5 5.4711981625771 -3.452E-04 2.566E-07 4.377E-03
ETOT 6 5.4711943656376 -3.797E-06 2.430E-09 5.530E-04
ETOT 7 5.4711938431277 -5.225E-07 4.826E-10 1.669E-05
ETOT 8 5.4711938239364 -1.919E-08 9.288E-12 1.831E-06
ETOT 9 5.4711938215018 -2.435E-09 2.591E-12 4.709E-08
ETOT 10 5.4711938214099 -9.192E-11 4.447E-14 1.494E-09
ETOT 11 5.4711938214089 -1.052E-12 1.273E-15 8.250E-11
ETOT 12 5.4711938214079 -9.379E-13 5.923E-17 3.899E-12
ETOT 13 5.4711938214078 -1.137E-13 5.152E-18 1.633E-13
ETOT 14 5.4711938214080 1.421E-13 8.492E-20 1.874E-14
ETOT 15 5.4711938214077 -2.416E-13 9.404E-21 1.218E-15
At SCF step 15 max residual= 9.40E-21 < tolwfr= 1.00E-20 =>converged.
-open ddk wf file :t21o_DS3_1WF7
-open ddk wf file :t21o_DS3_1WF8
-open ddk wf file :t21o_DS3_1WF9
================================================================================
----iterations are completed or convergence reached----
Mean square residual over all n,k,spin= 37.051E-22; max= 94.041E-22
Fourteen components of 2nd-order total energy (hartree) are
1,2,3: 0th-order hamiltonian combined with 1st-order wavefunctions
kin0= 9.87847202E+01 eigvalue= 1.18880863E+00 local= -4.97165554E+01
4,5,6: 1st-order hamiltonian combined with 1st and 0th-order wfs
loc psp = -1.29021321E+02 Hartree= 3.87759487E+01 xc= -1.30017809E+01
note that "loc psp" includes a xc core correction that could be resolved
7,8,9: eventually, occupation + non-local contributions
edocc= 0.00000000E+00 enl0= 2.05727763E+00 enl1= -3.81004883E+01
10: eventually, PAW "on-site" Hxc contribution: epaw1= 1.37362155E-02
1-10 gives the relaxation energy (to be shifted if some occ is /=2.0)
erelax= -8.90196547E+01
11,12,13 Non-relaxation contributions : frozen-wavefunctions and Ewald
fr.local= 6.58708227E+01 fr.nonlo= 1.11152951E+01 Ewald= 1.18104987E+01
14,15 Frozen wf xc core corrections (1) and (2)
frxc 1 = -1.86219263E+02 frxc 2 = 1.91913495E+02
16 Contribution from 1st-order change of wavefunctions overlap
eovl1 = -5.45874982E+00
Resulting in :
2DEtotal= 0.5471193821E+01 Ha. Also 2DEtotal= 0.148878755247E+03 eV
(2DErelax= -8.9019654690E+01 Ha. 2DEnonrelax= 9.4490848512E+01 Ha)
( non-var. 2DEtotal : 5.4711938195E+00 Ha)
--------------------------------------------------------------------------------
Perturbation wavevector (in red.coord.) 0.000000 0.000000 0.000000
Perturbation : homogeneous electric field along direction 1
symkpt : not enough symmetry to change the number of k points.
--------------------------------------------------------------------------------
--------------------------------------------------------------------------------
Initialisation of the first-order wave-functions :
ireadwf= 0
- dfpt_looppert: read the DDK wavefunctions from file: t21o_DS3_1WF7
--- !BeginCycle
iteration_state: {dtset: 4, }
solver: {iscf: 7, nstep: 100, nline: 4, wfoptalg: 10, }
tolerances: {tolwfr: 1.00E-20, }
...
iter 2DEtotal(Ha) deltaE(Ha) residm vres2
-ETOT 1 -333.85625300209 -3.339E+02 1.066E+00 4.405E+03
ETOT 2 -344.87767255747 -1.102E+01 2.192E-03 4.445E+02
ETOT 3 -346.03421254359 -1.157E+00 3.407E-04 5.566E+00
ETOT 4 -346.04656168812 -1.235E-02 8.172E-06 2.127E-01
ETOT 5 -346.04680978873 -2.481E-04 2.419E-07 1.274E-02
ETOT 6 -346.04682544242 -1.565E-05 6.693E-09 4.893E-04
ETOT 7 -346.04682583710 -3.947E-07 2.147E-10 3.403E-05
ETOT 8 -346.04682587691 -3.982E-08 1.618E-11 1.111E-06
ETOT 9 -346.04682587842 -1.501E-09 1.150E-12 4.138E-08
ETOT 10 -346.04682587849 -7.304E-11 3.541E-14 1.164E-09
ETOT 11 -346.04682587849 -5.798E-12 6.474E-16 9.103E-11
ETOT 12 -346.04682587849 3.979E-12 1.119E-16 2.423E-12
ETOT 13 -346.04682587849 -8.527E-13 1.828E-18 1.112E-13
ETOT 14 -346.04682587849 1.080E-12 2.821E-20 1.208E-14
ETOT 15 -346.04682587849 -4.547E-13 9.079E-21 1.195E-15
At SCF step 15 max residual= 9.08E-21 < tolwfr= 1.00E-20 =>converged.
-open ddk wf file :t21o_DS3_1WF7
-open ddk wf file :t21o_DS3_1WF8
-open ddk wf file :t21o_DS3_1WF9
================================================================================
----iterations are completed or convergence reached----
Mean square residual over all n,k,spin= 35.202E-22; max= 90.786E-22
Eight components of 2nd-order total energy (hartree) are
1,2,3: 0th-order hamiltonian combined with 1st-order wavefunctions
kin0= 1.26840878E+03 eigvalue= -1.00429517E+02 local= -1.30409058E+03
4,5,6: 1st-order hamiltonian combined with 1st and 0th-order wfs
dotwf= -6.92093652E+02 Hartree= 4.10722000E+01 xc= -2.65241756E+01
7,8,9: eventually, occupation + non-local contributions
edocc= 0.00000000E+00 enl0= 4.65621250E+02 enl1= 0.00000000E+00
10: eventually, PAW "on-site" Hxc contribution: epaw1= 1.98887333E+00
1-10 gives the relaxation energy (to be shifted if some occ is /=2.0)
erelax= -3.46046826E+02
No Ewald or frozen-wf contrib.: the relaxation energy is the total one
2DEtotal= -0.3460468259E+03 Ha. Also 2DEtotal= -0.941641301251E+04 eV
( non-var. 2DEtotal : -3.4604682589E+02 Ha)
--------------------------------------------------------------------------------
Perturbation wavevector (in red.coord.) 0.000000 0.000000 0.000000
Perturbation : homogeneous electric field along direction 2
symkpt : not enough symmetry to change the number of k points.
--------------------------------------------------------------------------------
--------------------------------------------------------------------------------
Initialisation of the first-order wave-functions :
ireadwf= 0
- dfpt_looppert: read the DDK wavefunctions from file: t21o_DS3_1WF8
--- !BeginCycle
iteration_state: {dtset: 4, }
solver: {iscf: 7, nstep: 100, nline: 4, wfoptalg: 10, }
tolerances: {tolwfr: 1.00E-20, }
...
iter 2DEtotal(Ha) deltaE(Ha) residm vres2
-ETOT 1 -333.85595906802 -3.339E+02 1.066E+00 4.406E+03
ETOT 2 -344.87798668563 -1.102E+01 2.193E-03 4.444E+02
ETOT 3 -346.03421439280 -1.156E+00 3.406E-04 5.572E+00
ETOT 4 -346.04655829777 -1.234E-02 8.300E-06 2.148E-01
ETOT 5 -346.04680892454 -2.506E-04 2.419E-07 1.369E-02
ETOT 6 -346.04682540029 -1.648E-05 7.434E-09 5.183E-04
ETOT 7 -346.04682582602 -4.257E-07 2.315E-10 3.561E-05
ETOT 8 -346.04682586626 -4.024E-08 1.671E-11 1.143E-06
ETOT 9 -346.04682586781 -1.545E-09 1.166E-12 4.415E-08
ETOT 10 -346.04682586788 -7.833E-11 3.926E-14 1.229E-09
ETOT 11 -346.04682586789 -1.364E-12 6.989E-16 9.795E-11
ETOT 12 -346.04682586789 -6.821E-13 1.269E-16 2.508E-12
ETOT 13 -346.04682586788 1.137E-12 2.018E-18 1.237E-13
ETOT 14 -346.04682586789 -6.821E-13 2.528E-20 1.401E-14
ETOT 15 -346.04682586789 0.000E+00 9.757E-21 1.532E-15
At SCF step 15 max residual= 9.76E-21 < tolwfr= 1.00E-20 =>converged.
-open ddk wf file :t21o_DS3_1WF8
-open ddk wf file :t21o_DS3_1WF7
-open ddk wf file :t21o_DS3_1WF9
================================================================================
----iterations are completed or convergence reached----
Mean square residual over all n,k,spin= 31.639E-22; max= 97.574E-22
Eight components of 2nd-order total energy (hartree) are
1,2,3: 0th-order hamiltonian combined with 1st-order wavefunctions
kin0= 1.26840878E+03 eigvalue= -1.00429517E+02 local= -1.30409058E+03
4,5,6: 1st-order hamiltonian combined with 1st and 0th-order wfs
dotwf= -6.92093652E+02 Hartree= 4.10722000E+01 xc= -2.65241756E+01
7,8,9: eventually, occupation + non-local contributions
edocc= 0.00000000E+00 enl0= 4.65621250E+02 enl1= 0.00000000E+00
10: eventually, PAW "on-site" Hxc contribution: epaw1= 1.98887333E+00
1-10 gives the relaxation energy (to be shifted if some occ is /=2.0)
erelax= -3.46046826E+02
No Ewald or frozen-wf contrib.: the relaxation energy is the total one
2DEtotal= -0.3460468259E+03 Ha. Also 2DEtotal= -0.941641301223E+04 eV
( non-var. 2DEtotal : -3.4604682588E+02 Ha)
--------------------------------------------------------------------------------
Perturbation wavevector (in red.coord.) 0.000000 0.000000 0.000000
Perturbation : homogeneous electric field along direction 3
symkpt : not enough symmetry to change the number of k points.
--------------------------------------------------------------------------------
--------------------------------------------------------------------------------
Initialisation of the first-order wave-functions :
ireadwf= 0
- dfpt_looppert: read the DDK wavefunctions from file: t21o_DS3_1WF9
--- !BeginCycle
iteration_state: {dtset: 4, }
solver: {iscf: 7, nstep: 100, nline: 4, wfoptalg: 10, }
tolerances: {tolwfr: 1.00E-20, }
...
iter 2DEtotal(Ha) deltaE(Ha) residm vres2
-ETOT 1 -333.85625295565 -3.339E+02 1.066E+00 4.405E+03
ETOT 2 -344.87767259357 -1.102E+01 2.192E-03 4.445E+02
ETOT 3 -346.03421253139 -1.157E+00 3.407E-04 5.566E+00
ETOT 4 -346.04656166587 -1.235E-02 8.172E-06 2.127E-01
ETOT 5 -346.04680976724 -2.481E-04 2.419E-07 1.274E-02
ETOT 6 -346.04682542111 -1.565E-05 6.694E-09 4.893E-04
ETOT 7 -346.04682581580 -3.947E-07 2.147E-10 3.403E-05
ETOT 8 -346.04682585561 -3.981E-08 1.618E-11 1.111E-06
ETOT 9 -346.04682585712 -1.503E-09 1.150E-12 4.138E-08
ETOT 10 -346.04682585719 -7.253E-11 3.541E-14 1.164E-09
ETOT 11 -346.04682585719 -1.080E-12 6.474E-16 9.103E-11
ETOT 12 -346.04682585719 -5.684E-13 1.119E-16 2.423E-12
ETOT 13 -346.04682585719 -1.933E-12 1.828E-18 1.112E-13
ETOT 14 -346.04682585719 1.421E-12 2.820E-20 1.208E-14
ETOT 15 -346.04682585719 6.821E-13 9.078E-21 1.195E-15
At SCF step 15 max residual= 9.08E-21 < tolwfr= 1.00E-20 =>converged.
-open ddk wf file :t21o_DS3_1WF9
-open ddk wf file :t21o_DS3_1WF8
-open ddk wf file :t21o_DS3_1WF7
================================================================================
----iterations are completed or convergence reached----
Mean square residual over all n,k,spin= 35.234E-22; max= 90.778E-22
Eight components of 2nd-order total energy (hartree) are
1,2,3: 0th-order hamiltonian combined with 1st-order wavefunctions
kin0= 1.26840878E+03 eigvalue= -1.00429517E+02 local= -1.30409058E+03
4,5,6: 1st-order hamiltonian combined with 1st and 0th-order wfs
dotwf= -6.92093652E+02 Hartree= 4.10722000E+01 xc= -2.65241756E+01
7,8,9: eventually, occupation + non-local contributions
edocc= 0.00000000E+00 enl0= 4.65621250E+02 enl1= 0.00000000E+00
10: eventually, PAW "on-site" Hxc contribution: epaw1= 1.98887333E+00
1-10 gives the relaxation energy (to be shifted if some occ is /=2.0)
erelax= -3.46046826E+02
No Ewald or frozen-wf contrib.: the relaxation energy is the total one
2DEtotal= -0.3460468259E+03 Ha. Also 2DEtotal= -0.941641301193E+04 eV
( non-var. 2DEtotal : -3.4604682587E+02 Ha)
================================================================================
---- first-order wavefunction calculations are completed ----
==> Compute Derivative Database <==
The violation of the charge neutrality conditions
by the effective charges is as follows :
atom electric field
displacement direction
1 1 -1.416978 0.000000
1 2 0.000000 0.000000
1 3 -0.000000 0.000000
2 1 0.000000 0.000000
2 2 -1.416978 0.000000
2 3 -0.000000 0.000000
3 1 -0.000000 0.000000
3 2 -0.000000 0.000000
3 3 -1.416978 0.000000
Effective charge tensors after
imposition of the charge neutrality (if requested by user),
and eventual restriction to some part :
atom displacement
1 1 2.580395E+00 -2.316054E-13 1.810090E-13
1 2 1.281336E-13 2.580395E+00 6.783903E-13
1 3 1.791206E-13 3.173146E-13 2.580395E+00
2 1 -2.580395E+00 2.316054E-13 -1.810090E-13
2 2 -1.281336E-13 -2.580395E+00 -6.783903E-13
2 3 -1.791206E-13 -3.173146E-13 -2.580395E+00
Now, the imaginary part of the dynamical matrix is zeroed
2nd-order matrix (non-cartesian coordinates, masses not included,
asr not included )
j1 j2 matrix element
dir pert dir pert real part imaginary part
1 1 1 1 5.3875761471 0.0000000000
1 1 2 1 2.6937880735 0.0000000000
1 1 3 1 2.6937880735 0.0000000000
1 1 1 2 -5.4669296958 -0.0000000000
1 1 2 2 -2.7334648479 0.0000000000
1 1 3 2 -2.7334648479 0.0000000000
1 1 1 4 -7.0880245493 0.0000000000
1 1 2 4 0.0000000000 0.0000000000
1 1 3 4 0.0000000000 0.0000000000
2 1 1 1 2.6937880735 0.0000000000
2 1 2 1 5.3875761471 0.0000000000
2 1 3 1 2.6937880735 0.0000000000
2 1 1 2 -2.7334648479 0.0000000000
2 1 2 2 -5.4669296958 0.0000000000
2 1 3 2 -2.7334648479 -0.0000000000
2 1 1 4 0.0000000000 0.0000000000
2 1 2 4 -7.0880245492 0.0000000000
2 1 3 4 -0.0000000000 0.0000000000
3 1 1 1 2.6937880735 0.0000000000
3 1 2 1 2.6937880735 0.0000000000
3 1 3 1 5.3875761471 0.0000000000
3 1 1 2 -2.7334648479 0.0000000000
3 1 2 2 -2.7334648479 -0.0000000000
3 1 3 2 -5.4669296958 0.0000000000
3 1 1 4 -0.0000000000 0.0000000000
3 1 2 4 -0.0000000000 0.0000000000
3 1 3 4 -7.0880245492 0.0000000000
1 2 1 1 -5.4669296940 0.0000000000
1 2 2 1 -2.7334648470 -0.0000000000
1 2 3 1 -2.7334648470 -0.0000000000
1 2 1 2 5.4711938193 0.0000000000
1 2 2 2 2.7355969097 0.0000000000
1 2 3 2 2.7355969097 0.0000000000
1 2 1 4 -52.0805941491 0.0000000000
1 2 2 4 0.0000000000 0.0000000000
1 2 3 4 0.0000000000 0.0000000000
2 2 1 1 -2.7334648470 -0.0000000000
2 2 2 1 -5.4669296940 -0.0000000000
2 2 3 1 -2.7334648470 0.0000000000
2 2 1 2 2.7355969097 0.0000000000
2 2 2 2 5.4711938193 0.0000000000
2 2 3 2 2.7355969097 0.0000000000
2 2 1 4 -0.0000000000 0.0000000000
2 2 2 4 -52.0805941491 0.0000000000
2 2 3 4 0.0000000000 0.0000000000
3 2 1 1 -2.7334648470 -0.0000000000
3 2 2 1 -2.7334648470 0.0000000000
3 2 3 1 -5.4669296940 -0.0000000000
3 2 1 2 2.7355969097 0.0000000000
3 2 2 2 2.7355969097 0.0000000000
3 2 3 2 5.4711938193 0.0000000000
3 2 1 4 -0.0000000000 0.0000000000
3 2 2 4 -0.0000000000 0.0000000000
3 2 3 4 -52.0805941491 0.0000000000
1 4 1 1 -7.0880245489 0.0000000000
1 4 2 1 0.0000000000 0.0000000000
1 4 3 1 -0.0000000000 0.0000000000
1 4 1 2 -52.0805941487 0.0000000000
1 4 2 2 -0.0000000000 0.0000000000
1 4 3 2 -0.0000000000 0.0000000000
1 4 1 4 -346.0468258765 0.0000000000
1 4 2 4 115.3489419588 0.0000000000
1 4 3 4 115.3489419588 0.0000000000
2 4 1 1 0.0000000000 0.0000000000
2 4 2 1 -7.0880245489 0.0000000000
2 4 3 1 -0.0000000000 0.0000000000
2 4 1 2 0.0000000000 0.0000000000
2 4 2 2 -52.0805941486 0.0000000000
2 4 3 2 -0.0000000000 0.0000000000
2 4 1 4 115.3489419588 0.0000000000
2 4 2 4 -346.0468258765 0.0000000000
2 4 3 4 115.3489419588 0.0000000000
3 4 1 1 0.0000000000 0.0000000000
3 4 2 1 -0.0000000000 0.0000000000
3 4 3 1 -7.0880245489 0.0000000000
3 4 1 2 0.0000000000 0.0000000000
3 4 2 2 0.0000000000 0.0000000000
3 4 3 2 -52.0805941486 0.0000000000
3 4 1 4 115.3489419588 0.0000000000
3 4 2 4 115.3489419588 0.0000000000
3 4 3 4 -346.0468258765 0.0000000000
1 5 1 4 -0.0000000000 0.0000000000
1 5 2 4 -0.0000000000 0.0000000000
1 5 3 4 0.0000000001 0.0000000000
2 5 1 4 -0.0000000001 0.0000000000
2 5 2 4 0.0000000000 0.0000000000
2 5 3 4 0.0000000002 0.0000000000
3 5 1 4 -0.0000000000 0.0000000000
3 5 2 4 0.0000000001 0.0000000000
3 5 3 4 0.0000000001 0.0000000000
1 6 1 4 2.5027474626 0.0000000000
1 6 2 4 -2.5027474627 0.0000000000
1 6 3 4 -2.5027474626 0.0000000000
2 6 1 4 -2.5027474626 0.0000000000
2 6 2 4 2.5027474627 0.0000000000
2 6 3 4 -2.5027474626 0.0000000000
3 6 1 4 -2.5027474626 0.0000000000
3 6 2 4 -2.5027474628 0.0000000000
3 6 3 4 2.5027474627 0.0000000000
Dynamical matrix, in cartesian coordinates,
if specified in the inputs, asr has been imposed
j1 j2 matrix element
dir pert dir pert real part imaginary part
1 1 1 1 0.0965806733 0.0000000000
1 1 2 1 -0.0000000000 0.0000000000
1 1 3 1 -0.0000000000 0.0000000000
1 1 1 2 -0.0965806733 0.0000000000
1 1 2 2 0.0000000000 0.0000000000
1 1 3 2 0.0000000000 0.0000000000
2 1 1 1 -0.0000000000 0.0000000000
2 1 2 1 0.0965806733 0.0000000000
2 1 3 1 -0.0000000000 0.0000000000
2 1 1 2 0.0000000000 0.0000000000
2 1 2 2 -0.0965806733 0.0000000000
2 1 3 2 0.0000000000 0.0000000000
3 1 1 1 -0.0000000000 0.0000000000
3 1 2 1 -0.0000000000 0.0000000000
3 1 3 1 0.0965806733 0.0000000000
3 1 1 2 0.0000000000 0.0000000000
3 1 2 2 0.0000000000 0.0000000000
3 1 3 2 -0.0965806733 0.0000000000
1 2 1 1 -0.0965806733 0.0000000000
1 2 2 1 0.0000000000 0.0000000000
1 2 3 1 0.0000000000 0.0000000000
1 2 1 2 0.0965806733 0.0000000000
1 2 2 2 -0.0000000000 0.0000000000
1 2 3 2 -0.0000000000 0.0000000000
2 2 1 1 0.0000000000 0.0000000000
2 2 2 1 -0.0965806733 0.0000000000
2 2 3 1 0.0000000000 0.0000000000
2 2 1 2 -0.0000000000 0.0000000000
2 2 2 2 0.0965806733 0.0000000000
2 2 3 2 -0.0000000000 0.0000000000
3 2 1 1 0.0000000000 0.0000000000
3 2 2 1 0.0000000000 0.0000000000
3 2 3 1 -0.0965806733 0.0000000000
3 2 1 2 -0.0000000000 0.0000000000
3 2 2 2 -0.0000000000 0.0000000000
3 2 3 2 0.0965806733 0.0000000000
Dielectric tensor, in cartesian coordinates,
j1 j2 matrix element
dir pert dir pert real part imaginary part
1 4 1 4 14.8032739046 -0.0000000000
1 4 2 4 -0.0000000000 -0.0000000000
1 4 3 4 0.0000000000 -0.0000000000
2 4 1 4 -0.0000000000 -0.0000000000
2 4 2 4 14.8032739046 -0.0000000000
2 4 3 4 0.0000000000 -0.0000000000
3 4 1 4 -0.0000000000 -0.0000000000
3 4 2 4 -0.0000000000 -0.0000000000
3 4 3 4 14.8032739046 -0.0000000000
Effective charges, in cartesian coordinates,
(from electric field response)
if specified in the inputs, charge neutrality has been imposed
j1 j2 matrix element
dir pert dir pert real part imaginary part
1 1 1 4 2.5803949271 0.0000000000
2 1 1 4 0.0000000000 0.0000000000
3 1 1 4 0.0000000000 0.0000000000
1 2 1 4 -2.5803949271 0.0000000000
2 2 1 4 -0.0000000000 0.0000000000
3 2 1 4 -0.0000000000 0.0000000000
1 1 2 4 -0.0000000000 0.0000000000
2 1 2 4 2.5803949271 0.0000000000
3 1 2 4 0.0000000000 0.0000000000
1 2 2 4 0.0000000000 0.0000000000
2 2 2 4 -2.5803949271 0.0000000000
3 2 2 4 -0.0000000000 0.0000000000
1 1 3 4 0.0000000000 0.0000000000
2 1 3 4 0.0000000000 0.0000000000
3 1 3 4 2.5803949271 0.0000000000
1 2 3 4 -0.0000000000 0.0000000000
2 2 3 4 -0.0000000000 0.0000000000
3 2 3 4 -2.5803949271 0.0000000000
Effective charges, in cartesian coordinates,
(from phonon response)
if specified in the inputs, charge neutrality has been imposed
j1 j2 matrix element
dir pert dir pert real part imaginary part
1 4 1 1 2.5803949271 0.0000000000
2 4 1 1 -0.0000000000 0.0000000000
3 4 1 1 0.0000000000 0.0000000000
1 4 2 1 0.0000000000 0.0000000000
2 4 2 1 2.5803949271 0.0000000000
3 4 2 1 0.0000000000 0.0000000000
1 4 3 1 0.0000000000 0.0000000000
2 4 3 1 0.0000000000 0.0000000000
3 4 3 1 2.5803949271 0.0000000000
1 4 1 2 -2.5803949271 0.0000000000
2 4 1 2 0.0000000000 0.0000000000
3 4 1 2 -0.0000000000 0.0000000000
1 4 2 2 -0.0000000000 0.0000000000
2 4 2 2 -2.5803949271 0.0000000000
3 4 2 2 -0.0000000000 0.0000000000
1 4 3 2 -0.0000000000 0.0000000000
2 4 3 2 -0.0000000000 0.0000000000
3 4 3 2 -2.5803949271 0.0000000000
Warning: The rigid-atom proper piezoelectric tensor
from electric field response requires nsym=1
Phonon wavevector (reduced coordinates) : 0.00000 0.00000 0.00000
Phonon energies in Hartree :
0.000000E+00 0.000000E+00 0.000000E+00 1.634263E-03 1.634263E-03
1.634263E-03
Phonon frequencies in cm-1 :
- 0.000000E+00 0.000000E+00 0.000000E+00 3.586793E+02 3.586793E+02
- 3.586793E+02
Phonon at Gamma, with non-analyticity in the
direction (cartesian coordinates) 1.00000 0.00000 0.00000
Phonon energies in Hartree :
0.000000E+00 0.000000E+00 0.000000E+00 1.634263E-03 1.634263E-03
1.786021E-03
Phonon frequencies in cm-1 :
- 0.000000E+00 0.000000E+00 0.000000E+00 3.586793E+02 3.586793E+02
- 3.919863E+02
Phonon at Gamma, with non-analyticity in the
direction (cartesian coordinates) 0.00000 1.00000 0.00000
Phonon energies in Hartree :
0.000000E+00 0.000000E+00 0.000000E+00 1.634263E-03 1.634263E-03
1.786021E-03
Phonon frequencies in cm-1 :
- 0.000000E+00 0.000000E+00 0.000000E+00 3.586793E+02 3.586793E+02
- 3.919863E+02
Phonon at Gamma, with non-analyticity in the
direction (cartesian coordinates) 0.00000 0.00000 1.00000
Phonon energies in Hartree :
0.000000E+00 0.000000E+00 0.000000E+00 1.634263E-03 1.634263E-03
1.786021E-03
Phonon frequencies in cm-1 :
- 0.000000E+00 0.000000E+00 0.000000E+00 3.586793E+02 3.586793E+02
- 3.919863E+02
== END DATASET(S) ==============================================================
================================================================================
-outvars: echo values of variables after computation --------
acell 1.0640000000E+01 1.0640000000E+01 1.0640000000E+01 Bohr
amu 2.69815390E+01 7.49215900E+01
bandpp 4
ecut 3.50000000E+00 Hartree
etotal1 -8.6579725753E+00
etotal2 -8.6579725754E+00
etotal3 -1.0077233700E+01
etotal4 -3.4604682586E+02
fcart1 4.0490905611E-28 4.0490905611E-28 -1.2147271683E-27
-4.0490905611E-28 -4.0490905611E-28 1.2147271683E-27
fcart2 -0.0000000000E+00 -0.0000000000E+00 -0.0000000000E+00
-0.0000000000E+00 -0.0000000000E+00 -0.0000000000E+00
fcart3 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
fcart4 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
- fftalg 312
getddk1 0
getddk2 0
getddk3 0
getddk4 3
getden1 0
getden2 1
getden3 2
getden4 2
getwfk1 0
getwfk2 1
getwfk3 2
getwfk4 2
- gpu_option 2
-invol_blk_sliced 0
iscf1 17
iscf2 17
iscf3 7
iscf4 7
ixc 7
jdtset 1 2 3 4
kpt1 -2.50000000E-01 5.00000000E-01 0.00000000E+00
-2.50000000E-01 0.00000000E+00 0.00000000E+00
kpt2 -2.50000000E-01 5.00000000E-01 0.00000000E+00
5.00000000E-01 -2.50000000E-01 0.00000000E+00
-2.50000000E-01 -2.50000000E-01 2.50000000E-01
-2.50000000E-01 0.00000000E+00 0.00000000E+00
-2.50000000E-01 2.50000000E-01 2.50000000E-01
5.00000000E-01 5.00000000E-01 2.50000000E-01
-2.50000000E-01 5.00000000E-01 5.00000000E-01
0.00000000E+00 -2.50000000E-01 0.00000000E+00
2.50000000E-01 -2.50000000E-01 2.50000000E-01
5.00000000E-01 -2.50000000E-01 5.00000000E-01
-2.50000000E-01 -2.50000000E-01 -2.50000000E-01
5.00000000E-01 0.00000000E+00 2.50000000E-01
-2.50000000E-01 0.00000000E+00 5.00000000E-01
0.00000000E+00 5.00000000E-01 2.50000000E-01
0.00000000E+00 -2.50000000E-01 5.00000000E-01
0.00000000E+00 0.00000000E+00 2.50000000E-01
kpt3 -2.50000000E-01 5.00000000E-01 0.00000000E+00
5.00000000E-01 -2.50000000E-01 0.00000000E+00
-2.50000000E-01 -2.50000000E-01 2.50000000E-01
-2.50000000E-01 0.00000000E+00 0.00000000E+00
-2.50000000E-01 2.50000000E-01 2.50000000E-01
5.00000000E-01 5.00000000E-01 2.50000000E-01
-2.50000000E-01 5.00000000E-01 5.00000000E-01
0.00000000E+00 -2.50000000E-01 0.00000000E+00
2.50000000E-01 -2.50000000E-01 2.50000000E-01
5.00000000E-01 -2.50000000E-01 5.00000000E-01
-2.50000000E-01 -2.50000000E-01 -2.50000000E-01
5.00000000E-01 0.00000000E+00 2.50000000E-01
-2.50000000E-01 0.00000000E+00 5.00000000E-01
0.00000000E+00 5.00000000E-01 2.50000000E-01
0.00000000E+00 -2.50000000E-01 5.00000000E-01
0.00000000E+00 0.00000000E+00 2.50000000E-01
kpt4 -2.50000000E-01 5.00000000E-01 0.00000000E+00
5.00000000E-01 -2.50000000E-01 0.00000000E+00
-2.50000000E-01 -2.50000000E-01 2.50000000E-01
-2.50000000E-01 0.00000000E+00 0.00000000E+00
-2.50000000E-01 2.50000000E-01 2.50000000E-01
5.00000000E-01 5.00000000E-01 2.50000000E-01
-2.50000000E-01 5.00000000E-01 5.00000000E-01
0.00000000E+00 -2.50000000E-01 0.00000000E+00
2.50000000E-01 -2.50000000E-01 2.50000000E-01
5.00000000E-01 -2.50000000E-01 5.00000000E-01
-2.50000000E-01 -2.50000000E-01 -2.50000000E-01
5.00000000E-01 0.00000000E+00 2.50000000E-01
-2.50000000E-01 0.00000000E+00 5.00000000E-01
0.00000000E+00 5.00000000E-01 2.50000000E-01
0.00000000E+00 -2.50000000E-01 5.00000000E-01
0.00000000E+00 0.00000000E+00 2.50000000E-01
kptopt1 1
kptopt2 2
kptopt3 2
kptopt4 2
kptrlatt 2 -2 2 -2 2 2 -2 -2 2
kptrlen 2.12800000E+01
P mkmem1 2
P mkmem2 16
P mkmem3 16
P mkmem4 16
P mkqmem1 2
P mkqmem2 16
P mkqmem3 16
P mkqmem4 16
P mk1mem1 2
P mk1mem2 16
P mk1mem3 16
P mk1mem4 16
natom 2
nband1 4
nband2 4
nband3 4
nband4 4
ndtset 4
ngfft 15 15 15
ngfftdg 18 18 18
nkpt1 2
nkpt2 16
nkpt3 16
nkpt4 16
nline1 4
nline2 4
nline3 100
nline4 4
nstep1 100
nstep2 100
nstep3 1
nstep4 100
nsym 24
ntypat 2
occ1 2.000000 2.000000 2.000000 2.000000
occ2 2.000000 2.000000 2.000000 2.000000
occ3 2.000000 2.000000 2.000000 2.000000
occ4 2.000000 2.000000 2.000000 2.000000
optdriver1 0
optdriver2 0
optdriver3 1
optdriver4 1
pawecutdg 7.00000000E+00 Hartree
pawxcdev 0
prepanl1 0
prepanl2 0
prepanl3 0
prepanl4 1
prtpot1 0
prtpot2 0
prtpot3 1
prtpot4 1
rfddk1 0
rfddk2 0
rfddk3 1
rfddk4 0
rfelfd1 0
rfelfd2 0
rfelfd3 0
rfelfd4 3
rfphon1 0
rfphon2 0
rfphon3 0
rfphon4 1
rprim 0.0000000000E+00 5.0000000000E-01 5.0000000000E-01
5.0000000000E-01 0.0000000000E+00 5.0000000000E-01
5.0000000000E-01 5.0000000000E-01 0.0000000000E+00
shiftk 5.00000000E-01 5.00000000E-01 5.00000000E-01
spgroup 216
strten1 6.8926112931E-05 6.8926112931E-05 6.8926112931E-05
0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
strten2 6.8874915539E-05 6.8874915539E-05 6.8874915539E-05
0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
strten3 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
strten4 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
symrel 1 0 0 0 1 0 0 0 1 0 -1 1 0 -1 0 1 -1 0
-1 0 0 -1 0 1 -1 1 0 0 1 -1 1 0 -1 0 0 -1
-1 0 0 -1 1 0 -1 0 1 0 -1 1 1 -1 0 0 -1 0
1 0 0 0 0 1 0 1 0 0 1 -1 0 0 -1 1 0 -1
-1 0 1 -1 1 0 -1 0 0 0 -1 0 1 -1 0 0 -1 1
1 0 -1 0 0 -1 0 1 -1 0 1 0 0 0 1 1 0 0
1 0 -1 0 1 -1 0 0 -1 0 -1 0 0 -1 1 1 -1 0
-1 0 1 -1 0 0 -1 1 0 0 1 0 1 0 0 0 0 1
0 0 -1 0 1 -1 1 0 -1 1 -1 0 0 -1 1 0 -1 0
0 0 1 1 0 0 0 1 0 -1 1 0 -1 0 0 -1 0 1
0 0 1 0 1 0 1 0 0 1 -1 0 0 -1 0 0 -1 1
0 0 -1 1 0 -1 0 1 -1 -1 1 0 -1 0 1 -1 0 0
tolrde1 5.00000000E-03
tolrde2 5.00000000E-03
tolrde3 1.00000000E-30
tolrde4 5.00000000E-03
tolvrs1 1.00000000E-08
tolvrs2 0.00000000E+00
tolvrs3 0.00000000E+00
tolvrs4 0.00000000E+00
tolwfr1 0.00000000E+00
tolwfr2 1.00000000E-22
tolwfr3 1.00000000E-20
tolwfr4 1.00000000E-20
typat 1 2
- useylm 1
wtk1 0.75000 0.25000
wtk2 0.06250 0.06250 0.06250 0.06250 0.06250 0.06250
0.06250 0.06250 0.06250 0.06250 0.06250 0.06250
0.06250 0.06250 0.06250 0.06250
wtk3 0.06250 0.06250 0.06250 0.06250 0.06250 0.06250
0.06250 0.06250 0.06250 0.06250 0.06250 0.06250
0.06250 0.06250 0.06250 0.06250
wtk4 0.06250 0.06250 0.06250 0.06250 0.06250 0.06250
0.06250 0.06250 0.06250 0.06250 0.06250 0.06250
0.06250 0.06250 0.06250 0.06250
xangst 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
1.4076113748E+00 1.4076113748E+00 1.4076113748E+00
xcart 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
2.6600000000E+00 2.6600000000E+00 2.6600000000E+00
xred 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
2.5000000000E-01 2.5000000000E-01 2.5000000000E-01
znucl 13.00000 33.00000
================================================================================
- Timing analysis has been suppressed with timopt=0
================================================================================
Suggested references for the acknowledgment of ABINIT usage.
The users of ABINIT have little formal obligations with respect to the ABINIT group
(those specified in the GNU General Public License, http://www.gnu.org/copyleft/gpl.txt).
However, it is common practice in the scientific literature,
to acknowledge the efforts of people that have made the research possible.
In this spirit, please find below suggested citations of work written by ABINIT developers,
corresponding to implementations inside of ABINIT that you have used in the present run.
Note also that it will be of great value to readers of publications presenting these results,
to read papers enabling them to understand the theoretical formalism and details
of the ABINIT implementation.
For information on why they are suggested, see also https://docs.abinit.org/theory/acknowledgments.
-
- [1] Projector augmented-wave formulation of response to strain and electric-field perturbation
- within density functional perturbation theory
- A. Martin, M. Torrent, and R. Caracas. Phys. Rev. B 99, 094112 (2019)
- Comment: in case Elastic constants, Born Effective charges, piezoelectric tensor
- are computed within the Projector Augmented-Wave (PAW) approach.
- Strong suggestion to cite this paper in your publications.
- DOI and bibtex: see https://docs.abinit.org/theory/bibliography/#martin2019
-
- [2] Projector augmented-wave approach to density-functional perturbation theory.
- C. Audouze, F. Jollet, M. Torrent and X. Gonze, Phys. Rev. B 73, 235101 (2006).
- Comparison between projector augmented-wave and ultrasoft pseudopotential formalisms
- at the density-functional perturbation theory level.
- C. Audouze, F. Jollet, M. Torrent and X. Gonze, Phys. Rev. B 78, 035105 (2008).
- Comment: to be cited in case the computation of response function with PAW, i.e. (rfphon=1 or rfelfd=1) and usepaw=1.
- Strong suggestion to cite these papers.
- DOI and bibtex: see https://docs.abinit.org/theory/bibliography/#audouze2006,
- and https://docs.abinit.org/theory/bibliography/#audouze2008
-
- [3] Implementation of the Projector Augmented-Wave Method in the ABINIT code.
- M. Torrent, F. Jollet, F. Bottin, G. Zerah, and X. Gonze Comput. Mat. Science 42, 337, (2008).
- Comment: PAW calculations. Strong suggestion to cite this paper.
- DOI and bibtex: see https://docs.abinit.org/theory/bibliography/#torrent2008
-
- [4] The Abinit project: Impact, environment and recent developments.
- Computer Phys. Comm. 248, 107042 (2020).
- X.Gonze, B. Amadon, G. Antonius, F.Arnardi, L.Baguet, J.-M.Beuken,
- J.Bieder, F.Bottin, J.Bouchet, E.Bousquet, N.Brouwer, F.Bruneval,
- G.Brunin, T.Cavignac, J.-B. Charraud, Wei Chen, M.Cote, S.Cottenier,
- J.Denier, G.Geneste, Ph.Ghosez, M.Giantomassi, Y.Gillet, O.Gingras,
- D.R.Hamann, G.Hautier, Xu He, N.Helbig, N.Holzwarth, Y.Jia, F.Jollet,
- W.Lafargue-Dit-Hauret, K.Lejaeghere, M.A.L.Marques, A.Martin, C.Martins,
- H.P.C. Miranda, F.Naccarato, K. Persson, G.Petretto, V.Planes, Y.Pouillon,
- S.Prokhorenko, F.Ricci, G.-M.Rignanese, A.H.Romero, M.M.Schmitt, M.Torrent,
- M.J.van Setten, B.Van Troeye, M.J.Verstraete, G.Zerah and J.W.Zwanzig
- Comment: the fifth generic paper describing the ABINIT project.
- Note that a version of this paper, that is not formatted for Computer Phys. Comm.
- is available at https://www.abinit.org/sites/default/files/ABINIT20.pdf .
- The licence allows the authors to put it on the Web.
- DOI and bibtex: see https://docs.abinit.org/theory/bibliography/#gonze2020
-
- [5] First-principles responses of solids to atomic displacements and homogeneous electric fields:,
- implementation of a conjugate-gradient algorithm. X. Gonze, Phys. Rev. B55, 10337 (1997).
- Comment: Non-vanishing rfphon and/or rfelfd, in the norm-conserving case.
- DOI and bibtex: see https://docs.abinit.org/theory/bibliography/#gonze1997
-
- [6] Dynamical matrices, Born effective charges, dielectric permittivity tensors, and ,
- interatomic force constants from density-functional perturbation theory,
- X. Gonze and C. Lee, Phys. Rev. B55, 10355 (1997).
- Comment: Non-vanishing rfphon and/or rfelfd, in the norm-conserving case.
- DOI and bibtex: see https://docs.abinit.org/theory/bibliography/#gonze1997a
-
- [7] ABINIT: Overview, and focus on selected capabilities
- J. Chem. Phys. 152, 124102 (2020).
- A. Romero, D.C. Allan, B. Amadon, G. Antonius, T. Applencourt, L.Baguet,
- J.Bieder, F.Bottin, J.Bouchet, E.Bousquet, F.Bruneval,
- G.Brunin, D.Caliste, M.Cote,
- J.Denier, C. Dreyer, Ph.Ghosez, M.Giantomassi, Y.Gillet, O.Gingras,
- D.R.Hamann, G.Hautier, F.Jollet, G. Jomard,
- A.Martin,
- H.P.C. Miranda, F.Naccarato, G.Petretto, N.A. Pike, V.Planes,
- S.Prokhorenko, T. Rangel, F.Ricci, G.-M.Rignanese, M.Royo, M.Stengel, M.Torrent,
- M.J.van Setten, B.Van Troeye, M.J.Verstraete, J.Wiktor, J.W.Zwanziger, and X.Gonze.
- Comment: a global overview of ABINIT, with focus on selected capabilities .
- Note that a version of this paper, that is not formatted for J. Chem. Phys
- is available at https://www.abinit.org/sites/default/files/ABINIT20_JPC.pdf .
- The licence allows the authors to put it on the Web.
- DOI and bibtex: see https://docs.abinit.org/theory/bibliography/#romero2020
-
- [8] Recent developments in the ABINIT software package.
- Computer Phys. Comm. 205, 106 (2016).
- X.Gonze, F.Jollet, F.Abreu Araujo, D.Adams, B.Amadon, T.Applencourt,
- C.Audouze, J.-M.Beuken, J.Bieder, A.Bokhanchuk, E.Bousquet, F.Bruneval
- D.Caliste, M.Cote, F.Dahm, F.Da Pieve, M.Delaveau, M.Di Gennaro,
- B.Dorado, C.Espejo, G.Geneste, L.Genovese, A.Gerossier, M.Giantomassi,
- Y.Gillet, D.R.Hamann, L.He, G.Jomard, J.Laflamme Janssen, S.Le Roux,
- A.Levitt, A.Lherbier, F.Liu, I.Lukacevic, A.Martin, C.Martins,
- M.J.T.Oliveira, S.Ponce, Y.Pouillon, T.Rangel, G.-M.Rignanese,
- A.H.Romero, B.Rousseau, O.Rubel, A.A.Shukri, M.Stankovski, M.Torrent,
- M.J.Van Setten, B.Van Troeye, M.J.Verstraete, D.Waroquier, J.Wiktor,
- B.Xu, A.Zhou, J.W.Zwanziger.
- Comment: the fourth generic paper describing the ABINIT project.
- Note that a version of this paper, that is not formatted for Computer Phys. Comm.
- is available at https://www.abinit.org/sites/default/files/ABINIT16.pdf .
- The licence allows the authors to put it on the Web.
- DOI and bibtex: see https://docs.abinit.org/theory/bibliography/#gonze2016
-
- Proc. 0 individual time (sec): cpu= 11.6 wall= 11.8
================================================================================
Calculation completed.
.Delivered 23 WARNINGs and 14 COMMENTs to log file.
+Overall time at end (sec) : cpu= 11.6 wall= 11.8