abinit/tests/gpu_omp/Refs/t10_MPI2.abo

646 lines
35 KiB
Plaintext

.Version 10.1.2.4 of ABINIT, released Apr 2024.
.(MPI version, prepared for a x86_64_linux_nvhpc23.9-0 computer)
.Copyright (C) 1998-2025 ABINIT group .
ABINIT comes with ABSOLUTELY NO WARRANTY.
It is free software, and you are welcome to redistribute it
under certain conditions (GNU General Public License,
see ~abinit/COPYING or http://www.gnu.org/copyleft/gpl.txt).
ABINIT is a project of the Universite Catholique de Louvain,
Corning Inc. and other collaborators, see ~abinit/doc/developers/contributors.txt .
Please read https://docs.abinit.org/theory/acknowledgments for suggested
acknowledgments of the ABINIT effort.
For more information, see https://www.abinit.org .
.Starting date : Fri 21 Jun 2024.
- ( at 19h19 )
- input file -> /home/sarrautem/abinit/tests/Test_suite/gpu_omp_t10_MPI2/t10.abi
- output file -> t10_MPI2.abo
- root for input files -> t10_MPI2i
- root for output files -> t10_MPI2o
DATASET 1 : space group R-3 m (#166); Bravais hR (rhombohedral)
================================================================================
Values of the parameters that define the memory need for DATASET 1.
intxc = 0 ionmov = 0 iscf = 17 lmnmax = 8
lnmax = 4 mgfft = 18 mpssoang = 2 mqgrid = 3001
natom = 2 nloc_mem = 2 nspden = 2 nspinor = 1
nsppol = 2 nsym = 12 n1xccc = 1 ntypat = 1
occopt = 1 xclevel = 1
- mband = 12 mffmem = 1 mkmem = 1
mpw = 65 nfft = 5832 nkpt = 1
Pmy_natom= 1
PAW method is used; the additional fine FFT grid is defined by:
mgfftf= 36 nfftf = 46656
================================================================================
P This job should need less than 14.843 Mbytes of memory.
Rough estimation (10% accuracy) of disk space for files :
_ WF disk file : 0.026 Mbytes ; DEN or POT disk file : 0.714 Mbytes.
================================================================================
--------------------------------------------------------------------------------
------------- Echo of variables that govern the present computation ------------
--------------------------------------------------------------------------------
-
- outvars: echo of selected default values
- iomode0 = 3 , fftalg0 =512 , wfoptalg0 = 10
-
- outvars: echo of global parameters not present in the input file
- max_nthreads = 8
-
-outvars: echo values of preprocessed input variables --------
- iomode 0
acell 7.0000000000E+00 7.0000000000E+00 7.0000000000E+00 Bohr
amu 1.20110000E+01
bandpp 6
chksymtnons 0
densfor_pred 6
diemac 1.20000000E+01
ecut 1.50000000E+01 Hartree
enunit 2
- fftalg 402
- gpu_option 2
-invovl_blksliced 0
istwfk 2
jdtset 1
kptopt 0
P mkmem 1
natom 2
nband 12
ndtset 1
ngfft 18 18 18
ngfftdg 36 36 36
nkpt 1
- npband 2
nspden 2
nsppol 2
nstep 16
nsym 12
ntypat 1
occ 1.000000 1.000000 1.000000 1.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
1.000000 1.000000 1.000000 1.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
paral_kgb 1
pawecutdg 5.00000000E+01 Hartree
rprim 0.0000000000E+00 5.0000000000E-01 5.0000000000E-01
5.0000000000E-01 0.0000000000E+00 5.0000000000E-01
5.0000000000E-01 5.0000000000E-01 0.0000000000E+00
spgroup 166
spinmagntarget 0.00000000E+00
symrel 1 0 0 0 1 0 0 0 1 -1 0 0 0 -1 0 0 0 -1
1 0 0 0 0 1 0 1 0 -1 0 0 0 0 -1 0 -1 0
0 1 0 0 0 1 1 0 0 0 -1 0 0 0 -1 -1 0 0
0 1 0 1 0 0 0 0 1 0 -1 0 -1 0 0 0 0 -1
0 0 1 1 0 0 0 1 0 0 0 -1 -1 0 0 0 -1 0
0 0 1 0 1 0 1 0 0 0 0 -1 0 -1 0 -1 0 0
tnons 0.0000000 0.0000000 0.0000000 0.2200000 0.2200000 0.2200000
0.0000000 0.0000000 0.0000000 0.2200000 0.2200000 0.2200000
0.0000000 0.0000000 0.0000000 0.2200000 0.2200000 0.2200000
0.0000000 0.0000000 0.0000000 0.2200000 0.2200000 0.2200000
0.0000000 0.0000000 0.0000000 0.2200000 0.2200000 0.2200000
0.0000000 0.0000000 0.0000000 0.2200000 0.2200000 0.2200000
tolvrs 1.00000000E-28
typat 1 1
- useylm 1
- wfoptalg 114
xangst 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
8.1493290123E-01 8.1493290123E-01 8.1493290123E-01
xcart 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
1.5400000000E+00 1.5400000000E+00 1.5400000000E+00
xred 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
2.2000000000E-01 2.2000000000E-01 2.2000000000E-01
znucl 6.00000
================================================================================
chkinp: Checking input parameters for consistency, jdtset= 1.
This is a calculation with spin-up and spin-down wavefunctions, ... nsppol= 2
in which the target spin-polarization is zero. ... spinmagntarget= 0.00
Tip ... It might be possible that the ground state is either non-spin-polarized, or antiferromagnetic.
In the former case, it is advantageous to use nsppol=1 and nspden=1,
while in the latter case, it is advantageous to use nsppol=1 and nspden=2.
================================================================================
== DATASET 1 ==================================================================
- mpi_nproc: 2, omp_nthreads: 8 (-1 if OMP is not activated)
--- !DatasetInfo
iteration_state: {dtset: 1, }
dimensions: {natom: 2, nkpt: 1, mband: 12, nsppol: 2, nspinor: 1, nspden: 2, mpw: 65, }
cutoff_energies: {ecut: 15.0, pawecutdg: 50.0, }
electrons: {nelect: 8.00000000E+00, charge: 0.00000000E+00, occopt: 1.00000000E+00, tsmear: 1.00000000E-02, }
meta: {optdriver: 0, ionmov: 0, optcell: 0, iscf: 17, paral_kgb: 1, }
...
Exchange-correlation functional for the present dataset will be:
LDA: new Teter (4/93) with spin-polarized option - ixc=1
Citation for XC functional:
S. Goedecker, M. Teter, J. Huetter, PRB 54, 1703 (1996)
Real(R)+Recip(G) space primitive vectors, cartesian coordinates (Bohr,Bohr^-1):
R(1)= 0.0000000 3.5000000 3.5000000 G(1)= -0.1428571 0.1428571 0.1428571
R(2)= 3.5000000 0.0000000 3.5000000 G(2)= 0.1428571 -0.1428571 0.1428571
R(3)= 3.5000000 3.5000000 0.0000000 G(3)= 0.1428571 0.1428571 -0.1428571
Unit cell volume ucvol= 8.5750000E+01 bohr^3
Angles (23,13,12)= 6.00000000E+01 6.00000000E+01 6.00000000E+01 degrees
Coarse grid specifications (used for wave-functions):
getcut: wavevector= 0.0000 0.0000 0.0000 ngfft= 18 18 18
ecut(hartree)= 15.000 => boxcut(ratio)= 2.09226
Fine grid specifications (used for densities):
getcut: wavevector= 0.0000 0.0000 0.0000 ngfft= 36 36 36
ecut(hartree)= 50.000 => boxcut(ratio)= 2.28491
getcut : COMMENT -
Note that boxcut > 2.2 ; recall that boxcut=Gcut(box)/Gcut(sphere) = 2
is sufficient for exact treatment of convolution.
Such a large boxcut is a waste : you could raise ecut
e.g. ecut= 65.260241 Hartrees makes boxcut=2
--- Pseudopotential description ------------------------------------------------
- pspini: atom type 1 psp file is /home/sarrautem/abinit/tests/Pspdir/6c_lda.paw
- pspatm: opening atomic psp file /home/sarrautem/abinit/tests/Pspdir/6c_lda.paw
- Paw atomic data extracted from US-psp (D.Vanderbilt): carbon
- 6.00000 4.00000 20041014 znucl, zion, pspdat
7 2 1 0 467 0.00000 pspcod,pspxc,lmax,lloc,mmax,r2well
Pseudopotential format is: paw2
basis_size (lnmax)= 4 (lmn_size= 8), orbitals= 0 0 1 1
Spheres core radius: rc_sph= 1.11201554
4 radial meshes are used:
- mesh 1: r(i)=AA*[exp(BB*(i-1))-1], size= 467 , AA= 0.41313E-03 BB= 0.16949E-01
- mesh 2: r(i)=AA*[exp(BB*(i-1))-1], size= 532 , AA= 0.41313E-03 BB= 0.16949E-01
- mesh 3: r(i)=AA*[exp(BB*(i-1))-1], size= 520 , AA= 0.41313E-03 BB= 0.16949E-01
- mesh 4: r(i)=AA*[exp(BB*(i-1))-1], size= 596 , AA= 0.41313E-03 BB= 0.16949E-01
Shapefunction is SIN type: shapef(r)=[sin(pi*r/rshp)/(pi*r/rshp)]**2
Radius for shape functions = sphere core radius
Radial grid used for partial waves is grid 1
Radial grid used for projectors is grid 2
Radial grid used for (t)core density is grid 3
Radial grid used for Vloc is grid 4
Compensation charge density is taken into account in XC energy/potential
pspatm: atomic psp has been read and splines computed
4.71224288E+01 ecore*ucvol(ha*bohr**3)
--------------------------------------------------------------------------------
_setup2: Arith. and geom. avg. npw (full set) are 129.000 129.000
================================================================================
--- !BeginCycle
iteration_state: {dtset: 1, }
solver: {iscf: 17, nstep: 18, nline: 4, wfoptalg: 114, }
tolerances: {tolvrs: 1.00E-28, }
...
iter Etot(hartree) deltaE(h) residm nres2
ETOT 1 -10.529010105590 -1.053E+01 1.638E-06 9.508E+01
ETOT 2 -10.429281831132 9.973E-02 1.985E-10 9.390E+00
ETOT 3 -10.417982528399 1.130E-02 5.013E-11 1.491E-01
ETOT 4 -10.417942115395 4.041E-05 2.298E-13 2.434E-03
ETOT 5 -10.417943509202 -1.394E-06 1.247E-13 2.587E-05
ETOT 6 -10.417943516249 -7.048E-09 1.070E-14 4.939E-07
ETOT 7 -10.417943516433 -1.836E-10 4.136E-16 1.446E-09
ETOT 8 -10.417943516434 -7.638E-13 1.844E-18 5.592E-11
ETOT 9 -10.417943516434 -5.329E-14 1.982E-21 3.413E-12
ETOT 10 -10.417943516434 2.487E-14 9.689E-22 8.766E-14
ETOT 11 -10.417943516434 3.730E-14 1.354E-21 7.401E-15
ETOT 12 -10.417943516433 4.974E-14 1.190E-21 6.629E-16
ETOT 13 -10.417943516433 4.619E-14 1.962E-21 5.990E-17
ETOT 14 -10.417943516434 -2.043E-13 1.172E-21 5.436E-18
ETOT 15 -10.417943516434 5.507E-14 1.205E-21 4.851E-19
ETOT 16 -10.417943516434 6.928E-14 1.191E-21 1.190E-19
Cartesian components of stress tensor (hartree/bohr^3)
sigma(1 1)= -8.17911254E-03 sigma(3 2)= -1.74491794E-03
sigma(2 2)= -8.17911254E-03 sigma(3 1)= -1.74491794E-03
sigma(3 3)= -8.17911254E-03 sigma(2 1)= -1.74491794E-03
scprqt: WARNING -
nstep= 18 was not enough SCF cycles to converge;
maximum energy difference= 1.759E-13 exceeds tolvrs= 1.000E-28
--- !ResultsGS
iteration_state: {dtset: 1, }
comment : Summary of ground state results
lattice_vectors:
- [ 0.0000000, 3.5000000, 3.5000000, ]
- [ 3.5000000, 0.0000000, 3.5000000, ]
- [ 3.5000000, 3.5000000, 0.0000000, ]
lattice_lengths: [ 4.94975, 4.94975, 4.94975, ]
lattice_angles: [ 60.000, 60.000, 60.000, ] # degrees, (23, 13, 12)
lattice_volume: 8.5750000E+01
convergence: {deltae: 6.928E-14, res2: 1.190E-19, residm: 1.191E-21, diffor: null, }
etotal : -1.04179435E+01
entropy : 0.00000000E+00
fermie : 4.73464154E-01
cartesian_stress_tensor: # hartree/bohr^3
- [ -8.17911254E-03, -1.74491794E-03, -1.74491794E-03, ]
- [ -1.74491794E-03, -8.17911254E-03, -1.74491794E-03, ]
- [ -1.74491794E-03, -1.74491794E-03, -8.17911254E-03, ]
pressure_GPa: 2.4064E+02
xred :
- [ 0.0000E+00, 0.0000E+00, 0.0000E+00, C]
- [ 2.2000E-01, 2.2000E-01, 2.2000E-01, C]
cartesian_forces: # hartree/bohr
- [ -2.35490792E-01, -2.35490792E-01, -2.35490792E-01, ]
- [ 2.35490792E-01, 2.35490792E-01, 2.35490792E-01, ]
force_length_stats: {min: 4.07882017E-01, max: 4.07882017E-01, mean: 4.07882017E-01, }
...
Integrated electronic and magnetization densities in atomic spheres:
---------------------------------------------------------------------
Radius=ratsph(iatom), smearing ratsm= 0.0000. Diff(up-dn)=approximate z local magnetic moment.
Atom Radius up_density dn_density Total(up+dn) Diff(up-dn)
1 1.11202 0.715320 0.715320 1.430641 0.000000
2 1.11202 0.720655 0.720655 1.441311 0.000000
---------------------------------------------------------------------
Sum: 1.435976 1.435976 2.871952 0.000000
Total magnetization (from the atomic spheres): 0.000000
Total magnetization (exact up - dn): -0.000000
PAW TEST:
==== Compensation charge inside spheres ============
The following values must be close to each other ...
Compensation charge over spherical meshes = 0.475538079805640
Compensation charge over fine fft grid = 0.475544024323564
==== Results concerning PAW augmentation regions ====
Total pseudopotential strength Dij (hartree):
Atom # 1 - Spin component 1
0.48452 0.58388 0.00004 0.00004 0.00004 0.00007 0.00007 0.00007
0.58388 0.70057 0.00003 0.00003 0.00003 0.00006 0.00006 0.00006
0.00004 0.00003 -0.07874 -0.00010 -0.00010 -0.07761 -0.00012 -0.00012
0.00004 0.00003 -0.00010 -0.07874 -0.00010 -0.00012 -0.07761 -0.00012
0.00004 0.00003 -0.00010 -0.00010 -0.07874 -0.00012 -0.00012 -0.07761
0.00007 0.00006 -0.07761 -0.00012 -0.00012 -0.07200 -0.00014 -0.00014
0.00007 0.00006 -0.00012 -0.07761 -0.00012 -0.00014 -0.07200 -0.00014
0.00007 0.00006 -0.00012 -0.00012 -0.07761 -0.00014 -0.00014 -0.07200
Atom # 1 - Spin component 2
0.48452 0.58388 0.00004 0.00004 0.00004 0.00007 0.00007 0.00007
0.58388 0.70057 0.00003 0.00003 0.00003 0.00006 0.00006 0.00006
0.00004 0.00003 -0.07874 -0.00010 -0.00010 -0.07761 -0.00012 -0.00012
0.00004 0.00003 -0.00010 -0.07874 -0.00010 -0.00012 -0.07761 -0.00012
0.00004 0.00003 -0.00010 -0.00010 -0.07874 -0.00012 -0.00012 -0.07761
0.00007 0.00006 -0.07761 -0.00012 -0.00012 -0.07200 -0.00014 -0.00014
0.00007 0.00006 -0.00012 -0.07761 -0.00012 -0.00014 -0.07200 -0.00014
0.00007 0.00006 -0.00012 -0.00012 -0.07761 -0.00014 -0.00014 -0.07200
Atom # 2 - Spin component 1
0.48452 0.58388 -0.00004 -0.00004 -0.00004 -0.00007 -0.00007 -0.00007
0.58388 0.70057 -0.00003 -0.00003 -0.00003 -0.00006 -0.00006 -0.00006
-0.00004 -0.00003 -0.07874 -0.00010 -0.00010 -0.07761 -0.00012 -0.00012
-0.00004 -0.00003 -0.00010 -0.07874 -0.00010 -0.00012 -0.07761 -0.00012
-0.00004 -0.00003 -0.00010 -0.00010 -0.07874 -0.00012 -0.00012 -0.07761
-0.00007 -0.00006 -0.07761 -0.00012 -0.00012 -0.07200 -0.00014 -0.00014
-0.00007 -0.00006 -0.00012 -0.07761 -0.00012 -0.00014 -0.07200 -0.00014
-0.00007 -0.00006 -0.00012 -0.00012 -0.07761 -0.00014 -0.00014 -0.07200
Atom # 2 - Spin component 2
0.48452 0.58388 -0.00004 -0.00004 -0.00004 -0.00007 -0.00007 -0.00007
0.58388 0.70057 -0.00003 -0.00003 -0.00003 -0.00006 -0.00006 -0.00006
-0.00004 -0.00003 -0.07874 -0.00010 -0.00010 -0.07761 -0.00012 -0.00012
-0.00004 -0.00003 -0.00010 -0.07874 -0.00010 -0.00012 -0.07761 -0.00012
-0.00004 -0.00003 -0.00010 -0.00010 -0.07874 -0.00012 -0.00012 -0.07761
-0.00007 -0.00006 -0.07761 -0.00012 -0.00012 -0.07200 -0.00014 -0.00014
-0.00007 -0.00006 -0.00012 -0.07761 -0.00012 -0.00014 -0.07200 -0.00014
-0.00007 -0.00006 -0.00012 -0.00012 -0.07761 -0.00014 -0.00014 -0.07200
Total pseudopotential strength Dij (eV):
Atom # 1 - Spin component 1
13.18459 15.88830 0.00110 0.00110 0.00110 0.00193 0.00193 0.00193
15.88830 19.06358 0.00079 0.00079 0.00079 0.00171 0.00171 0.00171
0.00110 0.00079 -2.14261 -0.00280 -0.00280 -2.11174 -0.00332 -0.00332
0.00110 0.00079 -0.00280 -2.14261 -0.00280 -0.00332 -2.11174 -0.00332
0.00110 0.00079 -0.00280 -0.00280 -2.14261 -0.00332 -0.00332 -2.11174
0.00193 0.00171 -2.11174 -0.00332 -0.00332 -1.95924 -0.00393 -0.00393
0.00193 0.00171 -0.00332 -2.11174 -0.00332 -0.00393 -1.95924 -0.00393
0.00193 0.00171 -0.00332 -0.00332 -2.11174 -0.00393 -0.00393 -1.95924
Atom # 1 - Spin component 2
13.18459 15.88830 0.00110 0.00110 0.00110 0.00193 0.00193 0.00193
15.88830 19.06358 0.00079 0.00079 0.00079 0.00171 0.00171 0.00171
0.00110 0.00079 -2.14261 -0.00280 -0.00280 -2.11174 -0.00332 -0.00332
0.00110 0.00079 -0.00280 -2.14261 -0.00280 -0.00332 -2.11174 -0.00332
0.00110 0.00079 -0.00280 -0.00280 -2.14261 -0.00332 -0.00332 -2.11174
0.00193 0.00171 -2.11174 -0.00332 -0.00332 -1.95924 -0.00393 -0.00393
0.00193 0.00171 -0.00332 -2.11174 -0.00332 -0.00393 -1.95924 -0.00393
0.00193 0.00171 -0.00332 -0.00332 -2.11174 -0.00393 -0.00393 -1.95924
Atom # 2 - Spin component 1
13.18459 15.88830 -0.00110 -0.00110 -0.00110 -0.00193 -0.00193 -0.00193
15.88830 19.06358 -0.00079 -0.00079 -0.00079 -0.00171 -0.00171 -0.00171
-0.00110 -0.00079 -2.14261 -0.00280 -0.00280 -2.11174 -0.00332 -0.00332
-0.00110 -0.00079 -0.00280 -2.14261 -0.00280 -0.00332 -2.11174 -0.00332
-0.00110 -0.00079 -0.00280 -0.00280 -2.14261 -0.00332 -0.00332 -2.11174
-0.00193 -0.00171 -2.11174 -0.00332 -0.00332 -1.95924 -0.00393 -0.00393
-0.00193 -0.00171 -0.00332 -2.11174 -0.00332 -0.00393 -1.95924 -0.00393
-0.00193 -0.00171 -0.00332 -0.00332 -2.11174 -0.00393 -0.00393 -1.95924
Atom # 2 - Spin component 2
13.18459 15.88830 -0.00110 -0.00110 -0.00110 -0.00193 -0.00193 -0.00193
15.88830 19.06358 -0.00079 -0.00079 -0.00079 -0.00171 -0.00171 -0.00171
-0.00110 -0.00079 -2.14261 -0.00280 -0.00280 -2.11174 -0.00332 -0.00332
-0.00110 -0.00079 -0.00280 -2.14261 -0.00280 -0.00332 -2.11174 -0.00332
-0.00110 -0.00079 -0.00280 -0.00280 -2.14261 -0.00332 -0.00332 -2.11174
-0.00193 -0.00171 -2.11174 -0.00332 -0.00332 -1.95924 -0.00393 -0.00393
-0.00193 -0.00171 -0.00332 -2.11174 -0.00332 -0.00393 -1.95924 -0.00393
-0.00193 -0.00171 -0.00332 -0.00332 -2.11174 -0.00393 -0.00393 -1.95924
Augmentation waves occupancies Rhoij:
Atom # 1 - Spin component 1
0.96350 -0.29625 -0.08563 -0.08563 -0.08563 0.04127 0.04127 0.04127
-0.29625 0.09269 0.00328 0.00328 0.00328 -0.01057 -0.01057 -0.01057
-0.08563 0.00328 0.59656 0.21180 0.21180 0.05798 -0.08030 -0.08030
-0.08563 0.00328 0.21180 0.59656 0.21180 -0.08030 0.05798 -0.08030
-0.08563 0.00328 0.21180 0.21180 0.59656 -0.08030 -0.08030 0.05798
0.04127 -0.01057 0.05798 -0.08030 -0.08030 0.03770 -0.01199 -0.01199
0.04127 -0.01057 -0.08030 0.05798 -0.08030 -0.01199 0.03770 -0.01199
0.04127 -0.01057 -0.08030 -0.08030 0.05798 -0.01199 -0.01199 0.03770
Atom # 1 - Spin component 2
0.96350 -0.29625 -0.08563 -0.08563 -0.08563 0.04127 0.04127 0.04127
-0.29625 0.09269 0.00328 0.00328 0.00328 -0.01057 -0.01057 -0.01057
-0.08563 0.00328 0.59656 0.21180 0.21180 0.05798 -0.08030 -0.08030
-0.08563 0.00328 0.21180 0.59656 0.21180 -0.08030 0.05798 -0.08030
-0.08563 0.00328 0.21180 0.21180 0.59656 -0.08030 -0.08030 0.05798
0.04127 -0.01057 0.05798 -0.08030 -0.08030 0.03770 -0.01199 -0.01199
0.04127 -0.01057 -0.08030 0.05798 -0.08030 -0.01199 0.03770 -0.01199
0.04127 -0.01057 -0.08030 -0.08030 0.05798 -0.01199 -0.01199 0.03770
Atom # 2 - Spin component 1
0.96350 -0.29625 0.08563 0.08563 0.08563 -0.04127 -0.04127 -0.04127
-0.29625 0.09269 -0.00328 -0.00328 -0.00328 0.01057 0.01057 0.01057
0.08563 -0.00328 0.59656 0.21180 0.21180 0.05798 -0.08030 -0.08030
0.08563 -0.00328 0.21180 0.59656 0.21180 -0.08030 0.05798 -0.08030
0.08563 -0.00328 0.21180 0.21180 0.59656 -0.08030 -0.08030 0.05798
-0.04127 0.01057 0.05798 -0.08030 -0.08030 0.03770 -0.01199 -0.01199
-0.04127 0.01057 -0.08030 0.05798 -0.08030 -0.01199 0.03770 -0.01199
-0.04127 0.01057 -0.08030 -0.08030 0.05798 -0.01199 -0.01199 0.03770
Atom # 2 - Spin component 2
0.96350 -0.29625 0.08563 0.08563 0.08563 -0.04127 -0.04127 -0.04127
-0.29625 0.09269 -0.00328 -0.00328 -0.00328 0.01057 0.01057 0.01057
0.08563 -0.00328 0.59656 0.21180 0.21180 0.05798 -0.08030 -0.08030
0.08563 -0.00328 0.21180 0.59656 0.21180 -0.08030 0.05798 -0.08030
0.08563 -0.00328 0.21180 0.21180 0.59656 -0.08030 -0.08030 0.05798
-0.04127 0.01057 0.05798 -0.08030 -0.08030 0.03770 -0.01199 -0.01199
-0.04127 0.01057 -0.08030 0.05798 -0.08030 -0.01199 0.03770 -0.01199
-0.04127 0.01057 -0.08030 -0.08030 0.05798 -0.01199 -0.01199 0.03770
================================================================================
----iterations are completed or convergence reached----
Mean square residual over all n,k,spin= 54.533E-23; max= 11.909E-22
reduced coordinates (array xred) for 2 atoms
0.000000000000 0.000000000000 0.000000000000
0.220000000000 0.220000000000 0.220000000000
rms dE/dt= 1.6484E+00; max dE/dt= 1.6484E+00; dE/dt below (all hartree)
1 1.648435546017 1.648435546017 1.648435546017
2 -1.648435546017 -1.648435546017 -1.648435546017
cartesian coordinates (angstrom) at end:
1 0.00000000000000 0.00000000000000 0.00000000000000
2 0.81493290122860 0.81493290122860 0.81493290122860
cartesian forces (hartree/bohr) at end:
1 -0.23549079228809 -0.23549079228809 -0.23549079228809
2 0.23549079228809 0.23549079228809 0.23549079228809
frms,max,avg= 2.3549079E-01 2.3549079E-01 0.000E+00 0.000E+00 0.000E+00 h/b
cartesian forces (eV/Angstrom) at end:
1 -12.10942240222528 -12.10942240222528 -12.10942240222529
2 12.10942240222528 12.10942240222528 12.10942240222529
frms,max,avg= 1.2109422E+01 1.2109422E+01 0.000E+00 0.000E+00 0.000E+00 e/A
length scales= 7.000000000000 7.000000000000 7.000000000000 bohr
= 3.704240460130 3.704240460130 3.704240460130 angstroms
prteigrs : about to open file t10_MPI2o_DS1_EIG
Fermi (or HOMO) energy (hartree) = 0.47346 Average Vxc (hartree)= -0.46248
Eigenvalues (hartree) for nkpt= 1 k points, SPIN UP:
kpt# 1, nband= 12, wtk= 1.00000, kpt= 0.0000 0.0000 0.0000 (reduced coord)
-0.35817 0.29978 0.47346 0.47346 0.52407 0.52407 0.69399 0.80947
0.98818 1.25674 1.25674 1.30075
Eigenvalues (hartree) for nkpt= 1 k points, SPIN DOWN:
kpt# 1, nband= 12, wtk= 1.00000, kpt= 0.0000 0.0000 0.0000 (reduced coord)
-0.35817 0.29978 0.47346 0.47346 0.52407 0.52407 0.69399 0.80947
0.98818 1.25674 1.25674 1.30075
Fermi (or HOMO) energy (eV) = 12.88361 Average Vxc (eV)= -12.58459
Eigenvalues ( eV ) for nkpt= 1 k points, SPIN UP:
kpt# 1, nband= 12, wtk= 1.00000, kpt= 0.0000 0.0000 0.0000 (reduced coord)
-9.74617 8.15730 12.88361 12.88361 14.26076 14.26076 18.88438 22.02668
26.88967 34.19762 34.19762 35.39507
Eigenvalues ( eV ) for nkpt= 1 k points, SPIN DOWN:
kpt# 1, nband= 12, wtk= 1.00000, kpt= 0.0000 0.0000 0.0000 (reduced coord)
-9.74617 8.15730 12.88361 12.88361 14.26076 14.26076 18.88438 22.02668
26.88967 34.19762 34.19762 35.39507
--- !EnergyTerms
iteration_state : {dtset: 1, }
comment : Components of total free energy in Hartree
kinetic : 8.71250470438330E+00
hartree : 1.52253104814377E+00
xc : -3.90577896096525E+00
Ewald energy : -1.22408856604630E+01
psp_core : 5.49532697036700E-01
local_psp : -6.85227632152476E+00
spherical_terms : 1.79642897700062E+00
total_energy : -1.04179435163886E+01
total_energy_eV : -2.83486660056248E+02
...
--- !EnergyTermsDC
iteration_state : {dtset: 1, }
comment : '"Double-counting" decomposition of free energy'
band_energy : 1.77707714461085E+00
Ewald energy : -1.22408856604630E+01
psp_core : 5.49532697036700E-01
xc_dc : -6.31916860053581E-01
spherical_terms : 1.28249162435472E-01
total_energy_dc : -1.04179435164335E+01
total_energy_dc_eV : -2.83486660057471E+02
...
Cartesian components of stress tensor (hartree/bohr^3)
sigma(1 1)= -8.17911254E-03 sigma(3 2)= -1.74491794E-03
sigma(2 2)= -8.17911254E-03 sigma(3 1)= -1.74491794E-03
sigma(3 3)= -8.17911254E-03 sigma(2 1)= -1.74491794E-03
-Cartesian components of stress tensor (GPa) [Pressure= 2.4064E+02 GPa]
- sigma(1 1)= -2.40637758E+02 sigma(3 2)= -5.13372495E+01
- sigma(2 2)= -2.40637758E+02 sigma(3 1)= -5.13372495E+01
- sigma(3 3)= -2.40637758E+02 sigma(2 1)= -5.13372495E+01
== END DATASET(S) ==============================================================
================================================================================
-outvars: echo values of variables after computation --------
- iomode 0
acell 7.0000000000E+00 7.0000000000E+00 7.0000000000E+00 Bohr
amu 1.20110000E+01
bandpp 6
chksymtnons 0
densfor_pred 6
diemac 1.20000000E+01
ecut 1.50000000E+01 Hartree
enunit 2
etotal1 -1.0417943516E+01
fcart1 -2.3549079229E-01 -2.3549079229E-01 -2.3549079229E-01
2.3549079229E-01 2.3549079229E-01 2.3549079229E-01
- fftalg 402
- gpu_option 2
-invovl_blksliced 0
istwfk 2
jdtset 1
kptopt 0
P mkmem 1
natom 2
nband 12
ndtset 1
ngfft 18 18 18
ngfftdg 36 36 36
nkpt 1
- npband 2
nspden 2
nsppol 2
nstep 16
nsym 12
ntypat 1
occ 1.000000 1.000000 1.000000 1.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
1.000000 1.000000 1.000000 1.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
paral_kgb 1
pawecutdg 5.00000000E+01 Hartree
rprim 0.0000000000E+00 5.0000000000E-01 5.0000000000E-01
5.0000000000E-01 0.0000000000E+00 5.0000000000E-01
5.0000000000E-01 5.0000000000E-01 0.0000000000E+00
spgroup 166
spinmagntarget 0.00000000E+00
strten1 -8.1791125432E-03 -8.1791125432E-03 -8.1791125432E-03
-1.7449179378E-03 -1.7449179378E-03 -1.7449179378E-03
symrel 1 0 0 0 1 0 0 0 1 -1 0 0 0 -1 0 0 0 -1
1 0 0 0 0 1 0 1 0 -1 0 0 0 0 -1 0 -1 0
0 1 0 0 0 1 1 0 0 0 -1 0 0 0 -1 -1 0 0
0 1 0 1 0 0 0 0 1 0 -1 0 -1 0 0 0 0 -1
0 0 1 1 0 0 0 1 0 0 0 -1 -1 0 0 0 -1 0
0 0 1 0 1 0 1 0 0 0 0 -1 0 -1 0 -1 0 0
tnons 0.0000000 0.0000000 0.0000000 0.2200000 0.2200000 0.2200000
0.0000000 0.0000000 0.0000000 0.2200000 0.2200000 0.2200000
0.0000000 0.0000000 0.0000000 0.2200000 0.2200000 0.2200000
0.0000000 0.0000000 0.0000000 0.2200000 0.2200000 0.2200000
0.0000000 0.0000000 0.0000000 0.2200000 0.2200000 0.2200000
0.0000000 0.0000000 0.0000000 0.2200000 0.2200000 0.2200000
tolvrs 1.00000000E-28
typat 1 1
- useylm 1
- wfoptalg 114
xangst 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
8.1493290123E-01 8.1493290123E-01 8.1493290123E-01
xcart 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
1.5400000000E+00 1.5400000000E+00 1.5400000000E+00
xred 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
2.2000000000E-01 2.2000000000E-01 2.2000000000E-01
znucl 6.00000
================================================================================
- Timing analysis has been suppressed with timopt=0
================================================================================
Suggested references for the acknowledgment of ABINIT usage.
The users of ABINIT have little formal obligations with respect to the ABINIT group
(those specified in the GNU General Public License, http://www.gnu.org/copyleft/gpl.txt).
However, it is common practice in the scientific literature,
to acknowledge the efforts of people that have made the research possible.
In this spirit, please find below suggested citations of work written by ABINIT developers,
corresponding to implementations inside of ABINIT that you have used in the present run.
Note also that it will be of great value to readers of publications presenting these results,
to read papers enabling them to understand the theoretical formalism and details
of the ABINIT implementation.
For information on why they are suggested, see also https://docs.abinit.org/theory/acknowledgments.
-
- [1] Implementation of the Projector Augmented-Wave Method in the ABINIT code.
- M. Torrent, F. Jollet, F. Bottin, G. Zerah, and X. Gonze Comput. Mat. Science 42, 337, (2008).
- Comment: PAW calculations. Strong suggestion to cite this paper.
- DOI and bibtex: see https://docs.abinit.org/theory/bibliography/#torrent2008
-
- [2] Large scale ab initio calculations based on three levels of parallelization
- F. Bottin, S. Leroux, A. Knyazev, G. Zerah, Comput. Mat. Science 42, 329, (2008).
- Comment: in case LOBPCG algorithm is used (wfoptalg=4/14/114).
- Strong suggestion to cite this paper in your publications.
- This paper is also available at http://www.arxiv.org/abs/0707.3405
- DOI and bibtex: see https://docs.abinit.org/theory/bibliography/#bottin2008
-
- [3] The Abinit project: Impact, environment and recent developments.
- Computer Phys. Comm. 248, 107042 (2020).
- X.Gonze, B. Amadon, G. Antonius, F.Arnardi, L.Baguet, J.-M.Beuken,
- J.Bieder, F.Bottin, J.Bouchet, E.Bousquet, N.Brouwer, F.Bruneval,
- G.Brunin, T.Cavignac, J.-B. Charraud, Wei Chen, M.Cote, S.Cottenier,
- J.Denier, G.Geneste, Ph.Ghosez, M.Giantomassi, Y.Gillet, O.Gingras,
- D.R.Hamann, G.Hautier, Xu He, N.Helbig, N.Holzwarth, Y.Jia, F.Jollet,
- W.Lafargue-Dit-Hauret, K.Lejaeghere, M.A.L.Marques, A.Martin, C.Martins,
- H.P.C. Miranda, F.Naccarato, K. Persson, G.Petretto, V.Planes, Y.Pouillon,
- S.Prokhorenko, F.Ricci, G.-M.Rignanese, A.H.Romero, M.M.Schmitt, M.Torrent,
- M.J.van Setten, B.Van Troeye, M.J.Verstraete, G.Zerah and J.W.Zwanzig
- Comment: the fifth generic paper describing the ABINIT project.
- Note that a version of this paper, that is not formatted for Computer Phys. Comm.
- is available at https://www.abinit.org/sites/default/files/ABINIT20.pdf .
- The licence allows the authors to put it on the Web.
- DOI and bibtex: see https://docs.abinit.org/theory/bibliography/#gonze2020
-
- [4] ABINIT: Overview, and focus on selected capabilities
- J. Chem. Phys. 152, 124102 (2020).
- A. Romero, D.C. Allan, B. Amadon, G. Antonius, T. Applencourt, L.Baguet,
- J.Bieder, F.Bottin, J.Bouchet, E.Bousquet, F.Bruneval,
- G.Brunin, D.Caliste, M.Cote,
- J.Denier, C. Dreyer, Ph.Ghosez, M.Giantomassi, Y.Gillet, O.Gingras,
- D.R.Hamann, G.Hautier, F.Jollet, G. Jomard,
- A.Martin,
- H.P.C. Miranda, F.Naccarato, G.Petretto, N.A. Pike, V.Planes,
- S.Prokhorenko, T. Rangel, F.Ricci, G.-M.Rignanese, M.Royo, M.Stengel, M.Torrent,
- M.J.van Setten, B.Van Troeye, M.J.Verstraete, J.Wiktor, J.W.Zwanziger, and X.Gonze.
- Comment: a global overview of ABINIT, with focus on selected capabilities .
- Note that a version of this paper, that is not formatted for J. Chem. Phys
- is available at https://www.abinit.org/sites/default/files/ABINIT20_JPC.pdf .
- The licence allows the authors to put it on the Web.
- DOI and bibtex: see https://docs.abinit.org/theory/bibliography/#romero2020
-
- [5] Recent developments in the ABINIT software package.
- Computer Phys. Comm. 205, 106 (2016).
- X.Gonze, F.Jollet, F.Abreu Araujo, D.Adams, B.Amadon, T.Applencourt,
- C.Audouze, J.-M.Beuken, J.Bieder, A.Bokhanchuk, E.Bousquet, F.Bruneval
- D.Caliste, M.Cote, F.Dahm, F.Da Pieve, M.Delaveau, M.Di Gennaro,
- B.Dorado, C.Espejo, G.Geneste, L.Genovese, A.Gerossier, M.Giantomassi,
- Y.Gillet, D.R.Hamann, L.He, G.Jomard, J.Laflamme Janssen, S.Le Roux,
- A.Levitt, A.Lherbier, F.Liu, I.Lukacevic, A.Martin, C.Martins,
- M.J.T.Oliveira, S.Ponce, Y.Pouillon, T.Rangel, G.-M.Rignanese,
- A.H.Romero, B.Rousseau, O.Rubel, A.A.Shukri, M.Stankovski, M.Torrent,
- M.J.Van Setten, B.Van Troeye, M.J.Verstraete, D.Waroquier, J.Wiktor,
- B.Xu, A.Zhou, J.W.Zwanziger.
- Comment: the fourth generic paper describing the ABINIT project.
- Note that a version of this paper, that is not formatted for Computer Phys. Comm.
- is available at https://www.abinit.org/sites/default/files/ABINIT16.pdf .
- The licence allows the authors to put it on the Web.
- DOI and bibtex: see https://docs.abinit.org/theory/bibliography/#gonze2016
-
- Proc. 0 individual time (sec): cpu= 70.1 wall= 70.1
================================================================================
Calculation completed.
.Delivered 1 WARNINGs and 2 COMMENTs to log file.
+Overall time at end (sec) : cpu= 140.1 wall= 140.1