abinit/tests/bigdft_paral/Refs/t02_MPI10.abo

477 lines
22 KiB
Plaintext

.Version 9.11.2 of ABINIT
.(MPI version, prepared for a x86_64_linux_gnu9.3 computer)
.Copyright (C) 1998-2025 ABINIT group .
ABINIT comes with ABSOLUTELY NO WARRANTY.
It is free software, and you are welcome to redistribute it
under certain conditions (GNU General Public License,
see ~abinit/COPYING or http://www.gnu.org/copyleft/gpl.txt).
ABINIT is a project of the Universite Catholique de Louvain,
Corning Inc. and other collaborators, see ~abinit/doc/developers/contributors.txt .
Please read https://docs.abinit.org/theory/acknowledgments for suggested
acknowledgments of the ABINIT effort.
For more information, see https://www.abinit.org .
.Starting date : Sun 16 Jul 2023.
- ( at 07h55 )
- input file -> /home/buildbot/ABINIT/alps_gnu_9.3_openmpi/trunk__gonze3/tests/TestBot_MPI10/bigdft_paral_t02_MPI10/t02.abi
- output file -> t02_MPI10.abo
- root for input files -> t02_MPI10i
- root for output files -> t02_MPI10o
Symmetries : space group P1 (# 1); Bravais aP (primitive triclinic)
--------------------------------------------------------------------------------
------------- Echo of variables that govern the present computation ------------
--------------------------------------------------------------------------------
-
- outvars: echo of selected default values
- iomode0 = 0 , fftalg0 =312 , wfoptalg0 = 10
-
- outvars: echo of global parameters not present in the input file
- max_nthreads = 0
-
-outvars: echo values of preprocessed input variables --------
acell 1.6500000000E+01 1.5500000000E+01 1.5500000000E+01 Bohr
amu 1.20110000E+01 1.59994000E+01
chksymbreak 0
- fftalg 312
icoulomb 1
istwfk 1
kptopt 0
P mkmem 1
natom 3
nband 8
ngfft 2 2 2
ngfftdg 2 2 2
nkpt 1
nnsclo 3
nscforder 14
nstep 20
nsym 1
ntypat 2
nwfshist 4
occ 2.000000 2.000000 2.000000 2.000000 2.000000 2.000000
2.000000 2.000000
optstress 0
- paral_atom 0
pawmixdg 1
prtden 0
prteig 0
prtwf 0
spgroup 1
tolvrs 1.00000000E-06
typat 1 2 2
usewvl 1
wvl_bigdft_comp 0
wvl_crmult 3.00000000E+00
wvl_frmult 1.00000000E+00
wvl_hgrid 4.00000000E-01
wvl_nprccg 5
xangst 4.3657119709E+00 4.1011233666E+00 4.1011233666E+00
3.2057119709E+00 4.1011233666E+00 4.1011233666E+00
5.5257119708E+00 4.1011233666E+00 4.1011233666E+00
xcart 8.2500000000E+00 7.7500000000E+00 7.7500000000E+00
6.0579176859E+00 7.7500000000E+00 7.7500000000E+00
1.0442082314E+01 7.7500000000E+00 7.7500000000E+00
xred 5.0000000000E-01 5.0000000000E-01 5.0000000000E-01
3.6714652642E-01 5.0000000000E-01 5.0000000000E-01
6.3285347358E-01 5.0000000000E-01 5.0000000000E-01
znucl 6.00000 8.00000
================================================================================
chkinp: Checking input parameters for consistency.
================================================================================
== DATASET 1 ==================================================================
- mpi_nproc: 10, omp_nthreads: -1 (-1 if OMP is not activated)
- --> not optimal distribution: autoparal keyword recommended in input file <--
--- !DatasetInfo
iteration_state: {dtset: 1, }
dimensions: {natom: 3, nkpt: 1, mband: 8, nsppol: 1, nspinor: 1, nspden: 1, mpw: 0, }
cutoff_energies: {ecut: -1.0, pawecutdg: -1.0, }
electrons: {nelect: 1.60000000E+01, charge: 0.00000000E+00, occopt: 1.00000000E+00, tsmear: 1.00000000E-02, }
meta: {optdriver: 0, ionmov: 0, optcell: 0, iscf: 17, paral_kgb: 0, }
...
Exchange-correlation functional for the present dataset will be:
LDA: new Teter (4/93) with spin-polarized option - ixc=1
Citation for XC functional:
S. Goedecker, M. Teter, J. Huetter, PRB 54, 1703 (1996)
Real(R)+Recip(G) space primitive vectors, cartesian coordinates (Bohr,Bohr^-1):
R(1)= 16.5000000 0.0000000 0.0000000 G(1)= 0.0606061 0.0000000 0.0000000
R(2)= 0.0000000 15.5000000 0.0000000 G(2)= 0.0000000 0.0645161 0.0000000
R(3)= 0.0000000 0.0000000 15.5000000 G(3)= 0.0000000 0.0000000 0.0645161
Unit cell volume ucvol= 3.9641250E+03 bohr^3
Angles (23,13,12)= 9.00000000E+01 9.00000000E+01 9.00000000E+01 degrees
Coarse grid specifications (used for wave-functions):
Fine grid specifications (used for densities):
--- Pseudopotential description ------------------------------------------------
- pspini: atom type 1 psp file is /home/buildbot/ABINIT/alps_gnu_9.3_openmpi/trunk__gonze3/tests/Pspdir/C.atompaw.wvl
- pspatm: opening atomic psp file /home/buildbot/ABINIT/alps_gnu_9.3_openmpi/trunk__gonze3/tests/Pspdir/C.atompaw.wvl
- Paw atomic data for element C - Generated by atompaw v3.0.1.5 & AtomPAW2Abinit v3.3.1
- 6.00000 4.00000 20121025 znucl, zion, pspdat
7 7 1 0 406 0.00000 pspcod,pspxc,lmax,lloc,mmax,r2well
Pseudopotential format is: paw5
basis_size (lnmax)= 2 (lmn_size= 4), orbitals= 0 1
Spheres core radius: rc_sph= 1.00000000
5 radial meshes are used:
- mesh 1: r(i)=step*(i-1), size= 406 , step= 0.25000E-02
- mesh 2: r(i)=step*(i-1), size= 401 , step= 0.25000E-02
- mesh 3: r(i)=step*(i-1), size= 888 , step= 0.25000E-02
- mesh 4: r(i)=step*(i-1), size=4001 , step= 0.25000E-02
- mesh 5: r(i)=step*(i-1), size=6007 , step= 0.25000E-02
Shapefunction is SIN type: shapef(r)=[sin(pi*r/rshp)/(pi*r/rshp)]**2
Radius for shape functions = sphere core radius
Radial grid used for partial waves is grid 1
Radial grid used for projectors is grid 2
Radial grid used for (t)core density is grid 3
Radial grid used for Vloc is grid 4
Radial grid used for pseudo valence density is grid 5
Compensation charge density is not taken into account in XC energy/potential
pspatm: atomic psp has been read and splines computed
radii_cf(1)= 1.5843663; radii_cf(2)= 0.2326773; rad_cov= 0.2326773
- pspini: atom type 2 psp file is /home/buildbot/ABINIT/alps_gnu_9.3_openmpi/trunk__gonze3/tests/Pspdir/O.atompaw.wvl
- pspatm: opening atomic psp file /home/buildbot/ABINIT/alps_gnu_9.3_openmpi/trunk__gonze3/tests/Pspdir/O.atompaw.wvl
- Paw atomic data for element O - Generated by atompaw v3.0.1.5 & AtomPAW2Abinit v3.3.1
- 8.00000 6.00000 20121011 znucl, zion, pspdat
7 7 1 0 1910 0.00000 pspcod,pspxc,lmax,lloc,mmax,r2well
Pseudopotential format is: paw5
basis_size (lnmax)= 2 (lmn_size= 4), orbitals= 0 1
Spheres core radius: rc_sph= 1.00329515
5 radial meshes are used:
- mesh 1: r(i)=AA*[exp(BB*(i-1))-1], size=1910 , AA= 0.49934E-03 BB= 0.39947E-02
- mesh 2: r(i)=AA*[exp(BB*(i-1))-1], size=1905 , AA= 0.49934E-03 BB= 0.39947E-02
- mesh 3: r(i)=AA*[exp(BB*(i-1))-1], size=2025 , AA= 0.49934E-03 BB= 0.39947E-02
- mesh 4: r(i)=AA*[exp(BB*(i-1))-1], size=2480 , AA= 0.49934E-03 BB= 0.39947E-02
- mesh 5: r(i)=AA*[exp(BB*(i-1))-1], size=2529 , AA= 0.49934E-03 BB= 0.39947E-02
Shapefunction is SIN type: shapef(r)=[sin(pi*r/rshp)/(pi*r/rshp)]**2
Radius for shape functions = sphere core radius
Radial grid used for partial waves is grid 1
Radial grid used for projectors is grid 2
Radial grid used for (t)core density is grid 3
Radial grid used for Vloc is grid 4
Radial grid used for pseudo valence density is grid 5
Compensation charge density is not taken into account in XC energy/potential
pspatm: atomic psp has been read and splines computed
radii_cf(1)= 1.2155757; radii_cf(2)= 0.2217861; rad_cov= 0.2217861
7.23115076E+01 ecore*ucvol(ha*bohr**3)
--------------------------------------------------------------------------------
setup2: nwvl coarse and fine are 7960 0
================================================================================
--- !BeginCycle
iteration_state: {dtset: 1, }
solver: {iscf: 17, nstep: 20, nline: 4, wfoptalg: 10, }
tolerances: {tolvrs: 1.00E-06, }
...
iter Etot(hartree) deltaE(h) grdnorm nres2
ETOT 1 -37.996231908072 -3.800E+01 1.188E-01 3.492E+01
ETOT 2 -37.809037684634 1.872E-01 2.529E-02 5.748E+00
ETOT 3 -37.788384070822 2.065E-02 1.095E-02 1.671E-01
ETOT 4 -37.787549971544 8.341E-04 1.986E-03 1.302E-02
ETOT 5 -37.787515745141 3.423E-05 8.859E-04 3.341E-03
ETOT 6 -37.787496517069 1.923E-05 3.404E-04 7.121E-05
ETOT 7 -37.787497194934 -6.779E-07 1.495E-04 7.418E-05
ETOT 8 -37.787496622157 5.728E-07 7.954E-05 2.540E-06
ETOT 9 -37.787496641609 -1.945E-08 2.827E-05 2.314E-06
ETOT 10 -37.787496618482 2.313E-08 7.820E-06 2.495E-07
At SCF step 10 nres2 = 2.49E-07 < tolvrs= 1.00E-06 =>converged.
--- !ResultsGS
iteration_state: {dtset: 1, }
comment : Summary of ground state results
lattice_vectors:
- [ 11.6000000, 0.0000000, 0.0000000, ]
- [ 0.0000000, 9.2000000, 0.0000000, ]
- [ 0.0000000, 0.0000000, 9.2000000, ]
lattice_lengths: [ 11.60000, 9.20000, 9.20000, ]
lattice_angles: [ 90.000, 90.000, 90.000, ] # degrees, (23, 13, 12)
lattice_volume: 9.8182400E+02
convergence: {deltae: 2.313E-08, res2: 2.495E-07, residm: 7.820E-06, diffor: null, }
etotal : -3.77874966E+01
entropy : 0.00000000E+00
fermie : 0.00000000E+00
cartesian_stress_tensor: null
pressure_GPa: null
xred :
- [ 5.0000E-01, 5.0000E-01, 5.0000E-01, C]
- [ 3.1103E-01, 5.0000E-01, 5.0000E-01, O]
- [ 6.8897E-01, 5.0000E-01, 5.0000E-01, O]
cartesian_forces: # hartree/bohr
- [ -2.59379110E-03, -1.90249225E-03, -1.92330794E-03, ]
- [ 2.92364376E-02, 8.14963870E-04, 2.78775339E-04, ]
- [ -2.66426465E-02, 1.08752838E-03, 1.64453260E-03, ]
force_length_stats: {min: 3.74784504E-03, max: 2.92491225E-02, mean: 1.99041551E-02, }
...
PAW TEST:
==== Compensation charge inside spheres ============
The following values must be close to each other ...
Compensation charge over spherical meshes = 0.366105909585573
Compensation charge over fft grid = 0.366239802023177
==== Results concerning PAW augmentation regions ====
Total pseudopotential strength Dij (hartree):
Atom # 1
0.34845 -0.00000 -0.00000 0.00000
-0.00000 -0.04771 -0.00000 -0.00000
-0.00000 -0.00000 -0.04829 -0.00000
0.00000 -0.00000 -0.00000 -0.04832
Atom # 3
1.16774 0.00047 -0.00000 -0.00119
0.00047 -0.19412 0.00000 -0.00000
-0.00000 0.00000 -0.19412 -0.00000
-0.00119 -0.00000 -0.00000 -0.19500
Augmentation waves occupancies Rhoij:
Atom # 1
1.48345 -0.00106 0.00010 0.00007
-0.00106 1.49747 -0.00018 -0.00037
0.00010 -0.00018 0.94189 0.00004
0.00007 -0.00037 0.00004 0.94122
Atom # 3
1.86886 0.23364 0.00072 0.00259
0.23364 1.41994 -0.00104 -0.00115
0.00072 -0.00104 1.44116 0.00006
0.00259 -0.00115 0.00006 1.44338
================================================================================
----iterations are completed or convergence reached----
Mean square residual over all n,k,spin= 00.000E+00; max= 00.000E+00
reduced coordinates (array xred) for 3 atoms
0.500000000000 0.500000000000 0.500000000000
0.311027386718 0.500000000000 0.500000000000
0.688972613282 0.500000000000 0.500000000000
rms dE/dt= 1.5580E-01; max dE/dt= 2.9349E-01; dE/dt below (all hartree)
1 0.014527752344 -0.012093154303 -0.012049455334
2 -0.354702900927 -0.037093750574 -0.032308621537
3 0.293494475381 -0.039601344024 -0.044873588377
cartesian coordinates (angstrom) at end:
1 3.06922780982200 2.43421515951400 2.43421515951400
2 1.90922780986293 2.43421515951400 2.43421515951400
3 4.22922780978107 2.43421515951400 2.43421515951400
cartesian forces (hartree/bohr) at end:
1 -0.00259379109868 -0.00190249224606 -0.00192330794368
2 0.02923643763161 0.00081496387029 0.00027877533924
3 -0.02664264653293 0.00108752837577 0.00164453260444
frms,max,avg= 1.3263464E-02 2.9236438E-02 1.341E-03 3.217E-03 3.233E-03 h/b
cartesian forces (eV/Angstrom) at end:
1 -0.13337808978394 -0.09783007649974 -0.09890046261822
2 1.50339794340833 0.04190712363742 0.01433520311094
3 -1.37001985362439 0.05592295286232 0.08456525950727
frms,max,avg= 6.8203469E-01 1.5033979E+00 6.898E-02 1.654E-01 1.662E-01 e/A
length scales= 11.600000000000 9.200000000000 9.200000000000 bohr
= 6.138455619644 4.868430319028 4.868430319028 angstroms
Fermi (or HOMO) energy (hartree) = 0.00000 Average Vxc (hartree)= -0.02523
Eigenvalues (hartree) for nkpt= 1 k points:
kpt# 1, nband= 8, wtk= 1.00000, kpt= 0.0000 0.0000 0.0000 (reduced coord)
-1.03666 -1.00092 -0.46379 -0.43408 -0.43353 -0.42415 -0.29314 -0.29237
--- !EnergyTerms
iteration_state : {dtset: 1, }
comment : Components of total free energy in Hartree
kinetic : 2.37897657631329E+01
hartree : 6.14951663977685E+01
xc : -8.25811867808832E+00
'Ion-ion energy' : 3.01083584208382E+01
psp_core : 0.00000000000000E+00
local_psp : -1.49905767534466E+02
spherical_terms : 4.98302638374772E+00
total_energy : -3.77875692470672E+01
total_energy_eV : -1.02825205191828E+03
...
--- !EnergyTermsDC
iteration_state : {dtset: 1, }
comment : '"Double-counting" decomposition of free energy'
band_energy : -8.75727074449776E+00
'Ion-ion energy' : 3.01083584208382E+01
psp_core : 0.00000000000000E+00
xc_dc : -5.89842337028613E+01
spherical_terms : -1.54350591960917E-01
total_energy_dc : -3.77874966184818E+01
total_energy_dc_eV : -1.02825007559396E+03
...
== END DATASET(S) ==============================================================
================================================================================
-outvars: echo values of variables after computation --------
acell 1.1600000000E+01 9.2000000000E+00 9.2000000000E+00 Bohr
amu 1.20110000E+01 1.59994000E+01
chksymbreak 0
etotal -3.7787496618E+01
fcart -2.5937910987E-03 -1.9024922461E-03 -1.9233079437E-03
2.9236437632E-02 8.1496387029E-04 2.7877533924E-04
-2.6642646533E-02 1.0875283758E-03 1.6445326044E-03
- fftalg 312
icoulomb 1
istwfk 1
kptopt 0
P mkmem 1
natom 3
nband 8
ngfft 2 2 2
ngfftdg 2 2 2
nkpt 1
nnsclo 3
nscforder 14
nstep 20
nsym 1
ntypat 2
nwfshist 4
occ 2.000000 2.000000 2.000000 2.000000 2.000000 2.000000
2.000000 2.000000
optstress 0
- paral_atom 0
pawmixdg 1
prtden 0
prteig 0
prtwf 0
spgroup 1
strten 9.9999999999E+99 9.9999999999E+99 9.9999999999E+99
9.9999999999E+99 9.9999999999E+99 9.9999999999E+99
tolvrs 1.00000000E-06
typat 1 2 2
usewvl 1
wvl_bigdft_comp 0
wvl_crmult 3.00000000E+00
wvl_frmult 1.00000000E+00
wvl_hgrid 4.00000000E-01
wvl_nprccg 5
xangst 3.0692278098E+00 2.4342151595E+00 2.4342151595E+00
1.9092278099E+00 2.4342151595E+00 2.4342151595E+00
4.2292278098E+00 2.4342151595E+00 2.4342151595E+00
xcart 5.8000000000E+00 4.6000000000E+00 4.6000000000E+00
3.6079176859E+00 4.6000000000E+00 4.6000000000E+00
7.9920823141E+00 4.6000000000E+00 4.6000000000E+00
xred 5.0000000000E-01 5.0000000000E-01 5.0000000000E-01
3.1102738672E-01 5.0000000000E-01 5.0000000000E-01
6.8897261328E-01 5.0000000000E-01 5.0000000000E-01
znucl 6.00000 8.00000
================================================================================
The spacegroup number, the magnetic point group, and/or the number of symmetries
have changed between the initial recognition based on the input file
and a postprocessing based on the final acell, rprim, and xred.
More details in the log file.
- Timing analysis has been suppressed with timopt=0
================================================================================
Suggested references for the acknowledgment of ABINIT usage.
The users of ABINIT have little formal obligations with respect to the ABINIT group
(those specified in the GNU General Public License, http://www.gnu.org/copyleft/gpl.txt).
However, it is common practice in the scientific literature,
to acknowledge the efforts of people that have made the research possible.
In this spirit, please find below suggested citations of work written by ABINIT developers,
corresponding to implementations inside of ABINIT that you have used in the present run.
Note also that it will be of great value to readers of publications presenting these results,
to read papers enabling them to understand the theoretical formalism and details
of the ABINIT implementation.
For information on why they are suggested, see also https://docs.abinit.org/theory/acknowledgments.
-
- [1] Implementation of the Projector Augmented-Wave Method in the ABINIT code.
- M. Torrent, F. Jollet, F. Bottin, G. Zerah, and X. Gonze Comput. Mat. Science 42, 337, (2008).
- Comment: PAW calculations. Strong suggestion to cite this paper.
- DOI and bibtex: see https://docs.abinit.org/theory/bibliography/#torrent2008
-
- [2] Daubechies wavelets as a basis set for density functional pseudopotential calculations.
- L. Genovese, A. Neelov, S. Goedecker, T. Deutsch, S.A. Ghasemi, A. Willand, D. Caliste, O. Zilberberg, M. Rayson, A. Bergman et R. Schneider,
- J. Chem. Phys. 129, 014109 (2008).
- Comment: to be cited in case BigDFT project is used, i.e. usewvl=1.
- DOI and bibtex: see https://docs.abinit.org/theory/bibliography/#genovese2008
-
- [3] The Abinit project: Impact, environment and recent developments.
- Computer Phys. Comm. 248, 107042 (2020).
- X.Gonze, B. Amadon, G. Antonius, F.Arnardi, L.Baguet, J.-M.Beuken,
- J.Bieder, F.Bottin, J.Bouchet, E.Bousquet, N.Brouwer, F.Bruneval,
- G.Brunin, T.Cavignac, J.-B. Charraud, Wei Chen, M.Cote, S.Cottenier,
- J.Denier, G.Geneste, Ph.Ghosez, M.Giantomassi, Y.Gillet, O.Gingras,
- D.R.Hamann, G.Hautier, Xu He, N.Helbig, N.Holzwarth, Y.Jia, F.Jollet,
- W.Lafargue-Dit-Hauret, K.Lejaeghere, M.A.L.Marques, A.Martin, C.Martins,
- H.P.C. Miranda, F.Naccarato, K. Persson, G.Petretto, V.Planes, Y.Pouillon,
- S.Prokhorenko, F.Ricci, G.-M.Rignanese, A.H.Romero, M.M.Schmitt, M.Torrent,
- M.J.van Setten, B.Van Troeye, M.J.Verstraete, G.Zerah and J.W.Zwanzig
- Comment: the fifth generic paper describing the ABINIT project.
- Note that a version of this paper, that is not formatted for Computer Phys. Comm.
- is available at https://www.abinit.org/sites/default/files/ABINIT20.pdf .
- The licence allows the authors to put it on the Web.
- DOI and bibtex: see https://docs.abinit.org/theory/bibliography/#gonze2020
-
- [4] ABINIT: Overview, and focus on selected capabilities
- J. Chem. Phys. 152, 124102 (2020).
- A. Romero, D.C. Allan, B. Amadon, G. Antonius, T. Applencourt, L.Baguet,
- J.Bieder, F.Bottin, J.Bouchet, E.Bousquet, F.Bruneval,
- G.Brunin, D.Caliste, M.Cote,
- J.Denier, C. Dreyer, Ph.Ghosez, M.Giantomassi, Y.Gillet, O.Gingras,
- D.R.Hamann, G.Hautier, F.Jollet, G. Jomard,
- A.Martin,
- H.P.C. Miranda, F.Naccarato, G.Petretto, N.A. Pike, V.Planes,
- S.Prokhorenko, T. Rangel, F.Ricci, G.-M.Rignanese, M.Royo, M.Stengel, M.Torrent,
- M.J.van Setten, B.Van Troeye, M.J.Verstraete, J.Wiktor, J.W.Zwanziger, and X.Gonze.
- Comment: a global overview of ABINIT, with focus on selected capabilities .
- Note that a version of this paper, that is not formatted for J. Chem. Phys
- is available at https://www.abinit.org/sites/default/files/ABINIT20_JPC.pdf .
- The licence allows the authors to put it on the Web.
- DOI and bibtex: see https://docs.abinit.org/theory/bibliography/#romero2020
-
- [5] Recent developments in the ABINIT software package.
- Computer Phys. Comm. 205, 106 (2016).
- X.Gonze, F.Jollet, F.Abreu Araujo, D.Adams, B.Amadon, T.Applencourt,
- C.Audouze, J.-M.Beuken, J.Bieder, A.Bokhanchuk, E.Bousquet, F.Bruneval
- D.Caliste, M.Cote, F.Dahm, F.Da Pieve, M.Delaveau, M.Di Gennaro,
- B.Dorado, C.Espejo, G.Geneste, L.Genovese, A.Gerossier, M.Giantomassi,
- Y.Gillet, D.R.Hamann, L.He, G.Jomard, J.Laflamme Janssen, S.Le Roux,
- A.Levitt, A.Lherbier, F.Liu, I.Lukacevic, A.Martin, C.Martins,
- M.J.T.Oliveira, S.Ponce, Y.Pouillon, T.Rangel, G.-M.Rignanese,
- A.H.Romero, B.Rousseau, O.Rubel, A.A.Shukri, M.Stankovski, M.Torrent,
- M.J.Van Setten, B.Van Troeye, M.J.Verstraete, D.Waroquier, J.Wiktor,
- B.Xu, A.Zhou, J.W.Zwanziger.
- Comment: the fourth generic paper describing the ABINIT project.
- Note that a version of this paper, that is not formatted for Computer Phys. Comm.
- is available at https://www.abinit.org/sites/default/files/ABINIT16.pdf .
- The licence allows the authors to put it on the Web.
- DOI and bibtex: see https://docs.abinit.org/theory/bibliography/#gonze2016
-
- Proc. 0 individual time (sec): cpu= 6.2 wall= 6.2
================================================================================
Calculation completed.
.Delivered 0 WARNINGs and 0 COMMENTs to log file.
+Overall time at end (sec) : cpu= 61.7 wall= 61.9