abinit/tests/bigdft_paral/Refs/t01_MPI4.abo

569 lines
26 KiB
Plaintext

.Version 9.11.2 of ABINIT
.(MPI version, prepared for a x86_64_linux_gnu9.3 computer)
.Copyright (C) 1998-2025 ABINIT group .
ABINIT comes with ABSOLUTELY NO WARRANTY.
It is free software, and you are welcome to redistribute it
under certain conditions (GNU General Public License,
see ~abinit/COPYING or http://www.gnu.org/copyleft/gpl.txt).
ABINIT is a project of the Universite Catholique de Louvain,
Corning Inc. and other collaborators, see ~abinit/doc/developers/contributors.txt .
Please read https://docs.abinit.org/theory/acknowledgments for suggested
acknowledgments of the ABINIT effort.
For more information, see https://www.abinit.org .
.Starting date : Sun 16 Jul 2023.
- ( at 07h48 )
- input file -> /home/buildbot/ABINIT/alps_gnu_9.3_openmpi/trunk__gonze3/tests/TestBot_MPI4/bigdft_paral_t01_MPI4/t01.abi
- output file -> t01_MPI4.abo
- root for input files -> t01_MPI4i
- root for output files -> t01_MPI4o
DATASET 1 : space group P1 (# 1); Bravais aP (primitive triclinic)
================================================================================
Values of the parameters that define the memory need for DATASET 1 (WVL).
wvl_hgrid = 0.400 nwfshist = 2 wvl_crmult = 3.000 wvl_frmult = 1.000
tl_radius = 0.000 tl_nprccg = 30
natom = 2 ntypat = 1 nstates = 7 nsppol = 1
================================================================================
================================================================================
DATASET 2 : space group P1 (# 1); Bravais aP (primitive triclinic)
================================================================================
Values of the parameters that define the memory need for DATASET 2 (WVL).
wvl_hgrid = 0.400 nwfshist = 2 wvl_crmult = 3.000 wvl_frmult = 1.000
tl_radius = 0.000 tl_nprccg = 30
natom = 2 ntypat = 1 nstates = 7 nsppol = 1
================================================================================
================================================================================
--------------------------------------------------------------------------------
------------- Echo of variables that govern the present computation ------------
--------------------------------------------------------------------------------
-
- outvars: echo of selected default values
- iomode0 = 0 , fftalg0 =312 , wfoptalg0 = 0
-
- outvars: echo of global parameters not present in the input file
- max_nthreads = 0
-
-outvars: echo values of preprocessed input variables --------
acell 1.6800000000E+01 1.4400000000E+01 1.4400000000E+01 Bohr
amu 1.00000000E+00
chksymbreak 0
diemix 7.00000000E-01
- fftalg 312
icoulomb 1
iscf1 17
iscf2 7
istwfk 1
jdtset 1 2
kptopt 0
natom 2
nband 7
ndtset 2
ngfft 2 2 2
nkpt 1
nline 2
nnsclo 3
nscforder 14
nstep 20
nsym 1
ntypat 1
nwfshist 2
occ 2.000000 2.000000 2.000000 2.000000 2.000000 1.000000
1.000000
occopt 0
optstress 0
prtden 0
prteig 0
prtwf 0
spgroup 1
tolvrs 1.00000000E-06
typat 1 1
usewvl 1
wvl_bigdft_comp 0
wvl_crmult 3.00000000E+00
wvl_frmult 1.00000000E+00
wvl_hgrid 4.00000000E-01
wvl_nprccg 5
xangst 3.8400885522E+00 3.8100759018E+00 3.8100759018E+00
5.0500885522E+00 3.8100759018E+00 3.8100759018E+00
xcart 7.2567156896E+00 7.2000000000E+00 7.2000000000E+00
9.5432843104E+00 7.2000000000E+00 7.2000000000E+00
xred 4.3194736248E-01 5.0000000000E-01 5.0000000000E-01
5.6805263752E-01 5.0000000000E-01 5.0000000000E-01
znucl 8.00000
================================================================================
chkinp: Checking input parameters for consistency, jdtset= 1.
chkinp: Checking input parameters for consistency, jdtset= 2.
================================================================================
== DATASET 1 ==================================================================
- mpi_nproc: 4, omp_nthreads: -1 (-1 if OMP is not activated)
- --> not optimal distribution: autoparal keyword recommended in input file <--
--- !DatasetInfo
iteration_state: {dtset: 1, }
dimensions: {natom: 2, nkpt: 1, mband: 7, nsppol: 1, nspinor: 1, nspden: 1, mpw: 0, }
cutoff_energies: {ecut: -1.0, pawecutdg: -1.0, }
electrons: {nelect: 1.20000000E+01, charge: 0.00000000E+00, occopt: 0.00000000E+00, tsmear: 1.00000000E-02, }
meta: {optdriver: 0, ionmov: 0, optcell: 0, iscf: 17, paral_kgb: 0, }
...
Exchange-correlation functional for the present dataset will be:
LDA: new Teter (4/93) with spin-polarized option - ixc=1
Citation for XC functional:
S. Goedecker, M. Teter, J. Huetter, PRB 54, 1703 (1996)
Real(R)+Recip(G) space primitive vectors, cartesian coordinates (Bohr,Bohr^-1):
R(1)= 16.8000000 0.0000000 0.0000000 G(1)= 0.0595238 0.0000000 0.0000000
R(2)= 0.0000000 14.4000000 0.0000000 G(2)= 0.0000000 0.0694444 0.0000000
R(3)= 0.0000000 0.0000000 14.4000000 G(3)= 0.0000000 0.0000000 0.0694444
Unit cell volume ucvol= 3.4836480E+03 bohr^3
Angles (23,13,12)= 9.00000000E+01 9.00000000E+01 9.00000000E+01 degrees
--- Pseudopotential description ------------------------------------------------
- pspini: atom type 1 psp file is /home/buildbot/ABINIT/alps_gnu_9.3_openmpi/trunk__gonze3/tests/Pspdir/PseudosGTH_pwteter/08o.pspgth
- pspatm: opening atomic psp file /home/buildbot/ABINIT/alps_gnu_9.3_openmpi/trunk__gonze3/tests/Pspdir/PseudosGTH_pwteter/08o.pspgth
- O SG LDA PSP
- 8.00000 6.00000 960531 znucl, zion, pspdat
2 1 0 0 2001 0.00000 pspcod,pspxc,lmax,lloc,mmax,r2well
rloc= 0.2477535
cc1= -16.4822284; cc2= 2.3701353; cc3= 0.0000000; cc4= 0.0000000
rrs= 0.2222028; h1s= 18.1996387; h2s= 0.0000000
rrp= 0.0000000; h1p= 0.0000000
radii_cf(1)= 1.1453720; radii_cf(2)= 0.2400000; rad_cov= 1.3800000
- Local part computed in real space.
| dr spline step is : 0.0088000
| r > 26.4000000 is set to 0.
| last non-nul potential value is : -0.2272727
pspatm : COMMENT -
the projectors are not normalized,
so that the KB energies are not consistent with
definition in PRB44, 8503 (1991).
However, this does not influence the results obtained hereafter.
pspatm : epsatm= 0.06936534
--- l ekb(1:nproj) -->
0 0.707809
pspatm: atomic psp has been read and splines computed
1.66476825E+00 ecore*ucvol(ha*bohr**3)
--------------------------------------------------------------------------------
setup2: nwvl coarse and fine are 3928 0
================================================================================
--- !BeginCycle
iteration_state: {dtset: 1, }
solver: {iscf: 17, nstep: 20, nline: 2, wfoptalg: 0, }
tolerances: {tolvrs: 1.00E-06, }
...
iter Etot(hartree) deltaE(h) grdnorm nres2
ETOT 1 -31.317081981874 -3.132E+01 5.702E-02 7.873E+00
ETOT 2 -31.263920009480 5.316E-02 1.142E-02 7.477E-01
ETOT 3 -31.265370833349 -1.451E-03 6.963E-03 9.009E-01
ETOT 4 -31.262688863920 2.682E-03 4.935E-03 1.902E-01
ETOT 5 -31.261991914455 6.969E-04 9.154E-04 1.693E-03
ETOT 6 -31.261990053754 1.861E-06 2.850E-04 1.108E-04
ETOT 7 -31.261990004826 4.893E-08 9.059E-05 7.085E-06
ETOT 8 -31.261989996898 7.928E-09 3.376E-05 6.839E-07
At SCF step 8 nres2 = 6.84E-07 < tolvrs= 1.00E-06 =>converged.
--- !ResultsGS
iteration_state: {dtset: 1, }
comment : Summary of ground state results
lattice_vectors:
- [ 8.8000000, 0.0000000, 0.0000000, ]
- [ 0.0000000, 6.8000000, 0.0000000, ]
- [ 0.0000000, 0.0000000, 6.8000000, ]
lattice_lengths: [ 8.80000, 6.80000, 6.80000, ]
lattice_angles: [ 90.000, 90.000, 90.000, ] # degrees, (23, 13, 12)
lattice_volume: 4.0691200E+02
convergence: {deltae: 7.928E-09, res2: 6.839E-07, residm: 3.376E-05, diffor: null, }
etotal : -3.12619900E+01
entropy : 0.00000000E+00
fermie : 0.00000000E+00
cartesian_stress_tensor: null
pressure_GPa: null
xred :
- [ 3.7008E-01, 5.0000E-01, 5.0000E-01, O]
- [ 6.2992E-01, 5.0000E-01, 5.0000E-01, O]
cartesian_forces: # hartree/bohr
- [ -4.27621908E-02, 1.59333754E-03, 1.59333619E-03, ]
- [ 4.27621908E-02, -1.59333754E-03, -1.59333619E-03, ]
force_length_stats: {min: 4.28215181E-02, max: 4.28215181E-02, mean: 4.28215181E-02, }
...
================================================================================
----iterations are completed or convergence reached----
Mean square residual over all n,k,spin= 00.000E+00; max= 00.000E+00
reduced coordinates (array xred) for 2 atoms
0.370081328364 0.500000000000 0.500000000000
0.629918671636 0.500000000000 0.500000000000
rms dE/dt= 3.5818E-01; max dE/dt= 3.2873E-01; dE/dt below (all hartree)
1 0.173993982877 0.307059434602 0.307059444852
2 -0.578620575909 0.328728825093 0.328728817069
cartesian coordinates (angstrom) at end:
1 1.72337971779379 1.79920250920600 1.79920250920600
2 2.93337971779822 1.79920250920600 1.79920250920600
cartesian forces (hartree/bohr) at end:
1 -0.04276219084010 0.00159333753609 0.00159333619240
2 0.04276219084010 -0.00159333753609 -0.00159333619240
frms,max,avg= 2.4723015E-02 4.2762191E-02 2.299E-02 -4.675E-02 -4.675E-02 h/b
cartesian forces (eV/Angstrom) at end:
1 -2.19892007961772 0.08193270346742 0.08193263437193
2 2.19892007961772 -0.08193270346742 -0.08193263437193
frms,max,avg= 1.2713084E+00 2.1989201E+00 1.182E+00 -2.404E+00 -2.404E+00 e/A
length scales= 8.800000000000 6.800000000000 6.800000000000 bohr
= 4.656759435592 3.598405018412 3.598405018412 angstroms
Fermi (or HOMO) energy (hartree) = 0.00000 Average Vxc (hartree)= -0.02638
Eigenvalues (hartree) for nkpt= 1 k points:
kpt# 1, nband= 7, wtk= 1.00000, kpt= 0.0000 0.0000 0.0000 (reduced coord)
-1.10798 -0.62651 -0.40309 -0.40307 -0.36404 -0.14444 -0.14437
--- !EnergyTerms
iteration_state : {dtset: 1, }
comment : Components of total free energy in Hartree
kinetic : 2.37092493228048E+01
hartree : 4.29974734941005E+01
xc : -6.70850885029566E+00
'Ion-ion energy' : 1.57441152968349E+01
psp_core : 0.00000000000000E+00
local_psp : -1.09824356335695E+02
non_local_psp : 2.82003559817780E+00
total_energy : -3.12619914740725E+01
...
--- !EnergyTermsDC
iteration_state : {dtset: 1, }
comment : '"Double-counting" decomposition of free energy'
band_energy : -6.09818710181492E+00
'Ion-ion energy' : 1.57441152968349E+01
psp_core : 0.00000000000000E+00
xc_dc : -4.09079181919179E+01
total_energy_dc : -3.12619899968979E+01
...
================================================================================
== DATASET 2 ==================================================================
- mpi_nproc: 4, omp_nthreads: -1 (-1 if OMP is not activated)
- --> not optimal distribution: autoparal keyword recommended in input file <--
--- !DatasetInfo
iteration_state: {dtset: 2, }
dimensions: {natom: 2, nkpt: 1, mband: 7, nsppol: 1, nspinor: 1, nspden: 1, mpw: 0, }
cutoff_energies: {ecut: -1.0, pawecutdg: -1.0, }
electrons: {nelect: 1.20000000E+01, charge: 0.00000000E+00, occopt: 0.00000000E+00, tsmear: 1.00000000E-02, }
meta: {optdriver: 0, ionmov: 0, optcell: 0, iscf: 7, paral_kgb: 0, }
...
Exchange-correlation functional for the present dataset will be:
LDA: new Teter (4/93) with spin-polarized option - ixc=1
Citation for XC functional:
S. Goedecker, M. Teter, J. Huetter, PRB 54, 1703 (1996)
Real(R)+Recip(G) space primitive vectors, cartesian coordinates (Bohr,Bohr^-1):
R(1)= 16.8000000 0.0000000 0.0000000 G(1)= 0.0595238 0.0000000 0.0000000
R(2)= 0.0000000 14.4000000 0.0000000 G(2)= 0.0000000 0.0694444 0.0000000
R(3)= 0.0000000 0.0000000 14.4000000 G(3)= 0.0000000 0.0000000 0.0694444
Unit cell volume ucvol= 3.4836480E+03 bohr^3
Angles (23,13,12)= 9.00000000E+01 9.00000000E+01 9.00000000E+01 degrees
--------------------------------------------------------------------------------
setup2: nwvl coarse and fine are 3928 0
================================================================================
--- !BeginCycle
iteration_state: {dtset: 2, }
solver: {iscf: 7, nstep: 20, nline: 2, wfoptalg: 0, }
tolerances: {tolvrs: 1.00E-06, }
...
iter Etot(hartree) deltaE(h) grdnorm vres2
ETOT 1 -31.098388916635 -3.110E+01 5.702E-02 1.863E+02
ETOT 2 -31.222237112710 -1.238E-01 1.144E-02 1.586E+01
ETOT 3 -31.279070367362 -5.683E-02 6.310E-03 3.719E+01
ETOT 4 -31.260123684999 1.895E-02 2.677E-03 2.604E-01
ETOT 5 -31.260443815241 -3.201E-04 7.683E-04 6.168E-03
ETOT 6 -31.262236105456 -1.792E-03 2.873E-04 3.322E-03
ETOT 7 -31.261930150374 3.060E-04 5.422E-05 2.535E-04
ETOT 8 -31.262007389612 -7.724E-05 2.442E-05 1.197E-04
ETOT 9 -31.261984849666 2.254E-05 1.189E-05 5.781E-05
ETOT 10 -31.261991770418 -6.921E-06 4.029E-06 3.529E-05
ETOT 11 -31.261991358911 4.115E-07 1.606E-06 6.571E-06
ETOT 12 -31.261989915078 1.444E-06 6.628E-07 2.458E-07
At SCF step 12 vres2 = 2.46E-07 < tolvrs= 1.00E-06 =>converged.
--- !ResultsGS
iteration_state: {dtset: 2, }
comment : Summary of ground state results
lattice_vectors:
- [ 8.8000000, 0.0000000, 0.0000000, ]
- [ 0.0000000, 6.8000000, 0.0000000, ]
- [ 0.0000000, 0.0000000, 6.8000000, ]
lattice_lengths: [ 8.80000, 6.80000, 6.80000, ]
lattice_angles: [ 90.000, 90.000, 90.000, ] # degrees, (23, 13, 12)
lattice_volume: 4.0691200E+02
convergence: {deltae: 1.444E-06, res2: 2.458E-07, residm: 6.628E-07, diffor: null, }
etotal : -3.12619899E+01
entropy : 0.00000000E+00
fermie : 0.00000000E+00
cartesian_stress_tensor: null
pressure_GPa: null
xred :
- [ 3.7008E-01, 5.0000E-01, 5.0000E-01, O]
- [ 6.2992E-01, 5.0000E-01, 5.0000E-01, O]
cartesian_forces: # hartree/bohr
- [ -4.28178920E-02, 1.59327153E-03, 1.59704841E-03, ]
- [ 4.28178920E-02, -1.59327153E-03, -1.59704841E-03, ]
force_length_stats: {min: 4.28772778E-02, max: 4.28772778E-02, mean: 4.28772778E-02, }
...
================================================================================
----iterations are completed or convergence reached----
Mean square residual over all n,k,spin= 00.000E+00; max= 00.000E+00
reduced coordinates (array xred) for 2 atoms
0.370081328364 0.500000000000 0.500000000000
0.629918671636 0.500000000000 0.500000000000
rms dE/dt= 3.5836E-01; max dE/dt= 3.2886E-01; dE/dt below (all hartree)
1 0.174513030597 0.306988876798 0.307140717830
2 -0.579081868629 0.328657369543 0.328860576231
cartesian coordinates (angstrom) at end:
1 1.72337971779379 1.79920250920600 1.79920250920600
2 2.93337971779822 1.79920250920600 1.79920250920600
cartesian forces (hartree/bohr) at end:
1 -0.04281789200148 0.00159327152543 0.00159704841179
2 0.04281789200148 -0.00159327152543 -0.00159704841179
frms,max,avg= 2.4755208E-02 4.2817892E-02 2.299E-02 -4.674E-02 -4.676E-02 h/b
cartesian forces (eV/Angstrom) at end:
1 -2.20178434825783 0.08192930906324 0.08212352435204
2 2.20178434825783 -0.08192930906324 -0.08212352435204
frms,max,avg= 1.2729639E+00 2.2017843E+00 1.182E+00 -2.403E+00 -2.405E+00 e/A
length scales= 8.800000000000 6.800000000000 6.800000000000 bohr
= 4.656759435592 3.598405018412 3.598405018412 angstroms
Fermi (or HOMO) energy (hartree) = 0.00000 Average Vxc (hartree)= -0.02638
Eigenvalues (hartree) for nkpt= 1 k points:
kpt# 1, nband= 7, wtk= 1.00000, kpt= 0.0000 0.0000 0.0000 (reduced coord)
-1.10797 -0.62651 -0.40309 -0.40307 -0.36404 -0.14443 -0.14436
--- !EnergyTerms
iteration_state : {dtset: 2, }
comment : Components of total free energy in Hartree
kinetic : 2.37092743404434E+01
hartree : 4.29975072729516E+01
xc : -6.70851148384383E+00
'Ion-ion energy' : 1.57441152968349E+01
psp_core : 0.00000000000000E+00
local_psp : -1.09824401416456E+02
non_local_psp : 2.82002607499264E+00
total_energy : -3.12619899150777E+01
...
--- !EnergyTermsDC
iteration_state : {dtset: 2, }
comment : '"Double-counting" decomposition of free energy'
band_energy : -6.09816055994513E+00
'Ion-ion energy' : 1.57441152968349E+01
psp_core : 0.00000000000000E+00
xc_dc : -4.09079511611695E+01
total_energy_dc : -3.12619964242797E+01
...
== END DATASET(S) ==============================================================
================================================================================
-outvars: echo values of variables after computation --------
acell 8.8000000000E+00 6.8000000000E+00 6.8000000000E+00 Bohr
amu 1.00000000E+00
chksymbreak 0
diemix 7.00000000E-01
etotal1 -3.1261989997E+01
etotal2 -3.1261989915E+01
fcart1 -4.2762190840E-02 1.5933375361E-03 1.5933361924E-03
4.2762190840E-02 -1.5933375361E-03 -1.5933361924E-03
fcart2 -4.2817892001E-02 1.5932715254E-03 1.5970484118E-03
4.2817892001E-02 -1.5932715254E-03 -1.5970484118E-03
- fftalg 312
icoulomb 1
iscf1 17
iscf2 7
istwfk 1
jdtset 1 2
kptopt 0
natom 2
nband 7
ndtset 2
ngfft 2 2 2
nkpt 1
nline 2
nnsclo 3
nscforder 14
nstep 20
nsym 1
ntypat 1
nwfshist 2
occ 2.000000 2.000000 2.000000 2.000000 2.000000 1.000000
1.000000
occopt 0
optstress 0
prtden 0
prteig 0
prtwf 0
spgroup 1
strten1 9.9999999999E+99 9.9999999999E+99 9.9999999999E+99
9.9999999999E+99 9.9999999999E+99 9.9999999999E+99
strten2 9.9999999999E+99 9.9999999999E+99 9.9999999999E+99
9.9999999999E+99 9.9999999999E+99 9.9999999999E+99
tolvrs 1.00000000E-06
typat 1 1
usewvl 1
wvl_bigdft_comp 0
wvl_crmult 3.00000000E+00
wvl_frmult 1.00000000E+00
wvl_hgrid 4.00000000E-01
wvl_nprccg 5
xangst 1.7233797178E+00 1.7992025092E+00 1.7992025092E+00
2.9333797178E+00 1.7992025092E+00 1.7992025092E+00
xcart 3.2567156896E+00 3.4000000000E+00 3.4000000000E+00
5.5432843104E+00 3.4000000000E+00 3.4000000000E+00
xred 3.7008132836E-01 5.0000000000E-01 5.0000000000E-01
6.2991867164E-01 5.0000000000E-01 5.0000000000E-01
znucl 8.00000
================================================================================
The spacegroup number, the magnetic point group, and/or the number of symmetries
have changed between the initial recognition based on the input file
and a postprocessing based on the final acell, rprim, and xred.
More details in the log file.
- Timing analysis has been suppressed with timopt=0
================================================================================
Suggested references for the acknowledgment of ABINIT usage.
The users of ABINIT have little formal obligations with respect to the ABINIT group
(those specified in the GNU General Public License, http://www.gnu.org/copyleft/gpl.txt).
However, it is common practice in the scientific literature,
to acknowledge the efforts of people that have made the research possible.
In this spirit, please find below suggested citations of work written by ABINIT developers,
corresponding to implementations inside of ABINIT that you have used in the present run.
Note also that it will be of great value to readers of publications presenting these results,
to read papers enabling them to understand the theoretical formalism and details
of the ABINIT implementation.
For information on why they are suggested, see also https://docs.abinit.org/theory/acknowledgments.
-
- [1] Daubechies wavelets as a basis set for density functional pseudopotential calculations.
- L. Genovese, A. Neelov, S. Goedecker, T. Deutsch, S.A. Ghasemi, A. Willand, D. Caliste, O. Zilberberg, M. Rayson, A. Bergman et R. Schneider,
- J. Chem. Phys. 129, 014109 (2008).
- Comment: to be cited in case BigDFT project is used, i.e. usewvl=1.
- DOI and bibtex: see https://docs.abinit.org/theory/bibliography/#genovese2008
-
- [2] The Abinit project: Impact, environment and recent developments.
- Computer Phys. Comm. 248, 107042 (2020).
- X.Gonze, B. Amadon, G. Antonius, F.Arnardi, L.Baguet, J.-M.Beuken,
- J.Bieder, F.Bottin, J.Bouchet, E.Bousquet, N.Brouwer, F.Bruneval,
- G.Brunin, T.Cavignac, J.-B. Charraud, Wei Chen, M.Cote, S.Cottenier,
- J.Denier, G.Geneste, Ph.Ghosez, M.Giantomassi, Y.Gillet, O.Gingras,
- D.R.Hamann, G.Hautier, Xu He, N.Helbig, N.Holzwarth, Y.Jia, F.Jollet,
- W.Lafargue-Dit-Hauret, K.Lejaeghere, M.A.L.Marques, A.Martin, C.Martins,
- H.P.C. Miranda, F.Naccarato, K. Persson, G.Petretto, V.Planes, Y.Pouillon,
- S.Prokhorenko, F.Ricci, G.-M.Rignanese, A.H.Romero, M.M.Schmitt, M.Torrent,
- M.J.van Setten, B.Van Troeye, M.J.Verstraete, G.Zerah and J.W.Zwanzig
- Comment: the fifth generic paper describing the ABINIT project.
- Note that a version of this paper, that is not formatted for Computer Phys. Comm.
- is available at https://www.abinit.org/sites/default/files/ABINIT20.pdf .
- The licence allows the authors to put it on the Web.
- DOI and bibtex: see https://docs.abinit.org/theory/bibliography/#gonze2020
-
- [3] ABINIT: Overview, and focus on selected capabilities
- J. Chem. Phys. 152, 124102 (2020).
- A. Romero, D.C. Allan, B. Amadon, G. Antonius, T. Applencourt, L.Baguet,
- J.Bieder, F.Bottin, J.Bouchet, E.Bousquet, F.Bruneval,
- G.Brunin, D.Caliste, M.Cote,
- J.Denier, C. Dreyer, Ph.Ghosez, M.Giantomassi, Y.Gillet, O.Gingras,
- D.R.Hamann, G.Hautier, F.Jollet, G. Jomard,
- A.Martin,
- H.P.C. Miranda, F.Naccarato, G.Petretto, N.A. Pike, V.Planes,
- S.Prokhorenko, T. Rangel, F.Ricci, G.-M.Rignanese, M.Royo, M.Stengel, M.Torrent,
- M.J.van Setten, B.Van Troeye, M.J.Verstraete, J.Wiktor, J.W.Zwanziger, and X.Gonze.
- Comment: a global overview of ABINIT, with focus on selected capabilities .
- Note that a version of this paper, that is not formatted for J. Chem. Phys
- is available at https://www.abinit.org/sites/default/files/ABINIT20_JPC.pdf .
- The licence allows the authors to put it on the Web.
- DOI and bibtex: see https://docs.abinit.org/theory/bibliography/#romero2020
-
- [4] Recent developments in the ABINIT software package.
- Computer Phys. Comm. 205, 106 (2016).
- X.Gonze, F.Jollet, F.Abreu Araujo, D.Adams, B.Amadon, T.Applencourt,
- C.Audouze, J.-M.Beuken, J.Bieder, A.Bokhanchuk, E.Bousquet, F.Bruneval
- D.Caliste, M.Cote, F.Dahm, F.Da Pieve, M.Delaveau, M.Di Gennaro,
- B.Dorado, C.Espejo, G.Geneste, L.Genovese, A.Gerossier, M.Giantomassi,
- Y.Gillet, D.R.Hamann, L.He, G.Jomard, J.Laflamme Janssen, S.Le Roux,
- A.Levitt, A.Lherbier, F.Liu, I.Lukacevic, A.Martin, C.Martins,
- M.J.T.Oliveira, S.Ponce, Y.Pouillon, T.Rangel, G.-M.Rignanese,
- A.H.Romero, B.Rousseau, O.Rubel, A.A.Shukri, M.Stankovski, M.Torrent,
- M.J.Van Setten, B.Van Troeye, M.J.Verstraete, D.Waroquier, J.Wiktor,
- B.Xu, A.Zhou, J.W.Zwanziger.
- Comment: the fourth generic paper describing the ABINIT project.
- Note that a version of this paper, that is not formatted for Computer Phys. Comm.
- is available at https://www.abinit.org/sites/default/files/ABINIT16.pdf .
- The licence allows the authors to put it on the Web.
- DOI and bibtex: see https://docs.abinit.org/theory/bibliography/#gonze2016
-
- And optionally:
-
- [5] ABINIT: First-principles approach of materials and nanosystem properties.
- Computer Phys. Comm. 180, 2582-2615 (2009).
- X. Gonze, B. Amadon, P.-M. Anglade, J.-M. Beuken, F. Bottin, P. Boulanger, F. Bruneval,
- D. Caliste, R. Caracas, M. Cote, T. Deutsch, L. Genovese, Ph. Ghosez, M. Giantomassi
- S. Goedecker, D.R. Hamann, P. Hermet, F. Jollet, G. Jomard, S. Leroux, M. Mancini, S. Mazevet,
- M.J.T. Oliveira, G. Onida, Y. Pouillon, T. Rangel, G.-M. Rignanese, D. Sangalli, R. Shaltaf,
- M. Torrent, M.J. Verstraete, G. Zerah, J.W. Zwanziger
- Comment: the third generic paper describing the ABINIT project.
- Note that a version of this paper, that is not formatted for Computer Phys. Comm.
- is available at https://www.abinit.org/sites/default/files/ABINIT_CPC_v10.pdf .
- The licence allows the authors to put it on the Web.
- DOI and bibtex: see https://docs.abinit.org/theory/bibliography/#gonze2009
-
- Proc. 0 individual time (sec): cpu= 2.8 wall= 2.8
================================================================================
Calculation completed.
.Delivered 0 WARNINGs and 1 COMMENTs to log file.
+Overall time at end (sec) : cpu= 11.1 wall= 11.2