mirror of https://github.com/abinit/abinit.git
207 lines
4.9 KiB
TeX
207 lines
4.9 KiB
TeX
\documentclass[a4paper,reqno,11pt,twoside]{book}
|
|
|
|
\input{packages.tex}
|
|
\input{macros.tex}
|
|
|
|
\begin{document}
|
|
|
|
\begin{equation}
|
|
\ee(1, 2) = \delta(1, 2) - \int v(1, 3)\tchi(3, 2)\dd(3)
|
|
\end{equation}
|
|
|
|
\begin{equation}
|
|
\ee_{\GG_1\GG_2}(\qq;\ww) = \delta_{\GG_1,\GG_2} - v(\qq, \GG_1) \tchi_{\GG_1\GG_2}(\qq;\ww)
|
|
\end{equation}
|
|
|
|
\begin{equation}
|
|
W = v + (\ee^{-1} - 1) v
|
|
\end{equation}
|
|
|
|
|
|
\begin{equation}
|
|
\label{eq:GW_space_frequency}
|
|
\Sigma(\rr_1,\rr_2;\ww) =
|
|
%\lim_{\delta \rarr 0^+}
|
|
\dfrac{i}{\twopi} \int e^{i\ww'\delta^+} G(\rr_1,\rr_2;\ww+\ww') W(\rr_1,\rr_2;\ww')\dd\ww'
|
|
\end{equation}
|
|
|
|
Macro epsilon with and without LFE
|
|
|
|
$\ee_M^{\LF}(\ww)$
|
|
|
|
\begin{equation}
|
|
\label{eq:abs_LFE}
|
|
\ee_M^{\LF}(\ww) = \lim_{\qq \rarr 0} \dfrac{1}{\ee^{-1}_{0 0}(\qq,\ww)}
|
|
\end{equation}
|
|
|
|
$\ee_M^\NLF(\ww)$
|
|
|
|
\begin{equation}
|
|
\label{eq:abs_NLFE}
|
|
\ee_M^\NLF(\ww) = \lim_{\qq \rarr 0} {\ee_{0 0}(\qq,\ww)}
|
|
\end{equation}
|
|
|
|
%\begin{equation}\nonumber
|
|
%\ee_M(\ww) = 1 - \lim_{\qq \rightarrow 0} \vc(\qq)\,\tchi_{00}(\qq;\ww)
|
|
%\end{equation}
|
|
|
|
Oscillators
|
|
|
|
\begin{equation}
|
|
\label{eq:def_oscillator}
|
|
M^{b_1b_2}_\GG (\kk,\qq) \df
|
|
\<\kmq,b_1|e^{-i(\qpG)\cdot\rr}|\kk,b_2\> =
|
|
\sum_{\GG'=1}
|
|
u_{\kmq b_1}^\*(\GG')u_{\kk b_2}(\GG+\GG')
|
|
%=
|
|
% \\
|
|
% = \int u_{\overline{\kmq} b_1}^\*(\rr) e^{-i(\GG-\GGo)\cdot \rr}\, u_{\kk b_2}(\rr)\dd\rr
|
|
% = \hat\mcF \bigl[ u_{\overline{\kmq} b_1} u_{\kk b_2}^\* \bigr] (\GG-\GGo).
|
|
\end{equation}
|
|
|
|
Spectral method
|
|
|
|
$\tchi^\mcS(\ww')$
|
|
|
|
$\ww'$
|
|
|
|
|
|
\begin{multline}
|
|
\label{eq:im_part_chi0}
|
|
\tchi^\mcS_{\GG_1\GG_2}(\qq,\ww') = \\
|
|
= \dfrac{2}{V} \sum_{\substack{\kk \\ b_1 b_2}} \,
|
|
\,\Bigl[ f(\varepsilon_{b_1\kmq})-f(\varepsilon_{b_2\kk}) \Bigr]
|
|
\times
|
|
%\\
|
|
M^{b_1 b_2}_{\GG_1}(\kk,\qq) \Bigl[{M^{b_1 b_2}_{\GG_2}}(\kk,\qq)\Bigr]^\*\,
|
|
{\sign(\ww')\,
|
|
\delta(\ww'-\varepsilon_{b_1\kmq}+\varepsilon_{b_2\kk})}
|
|
\end{multline}
|
|
|
|
|
|
\begin{equation}
|
|
\label{eq:chi0_Hilbert_transform}
|
|
{\tchio}_{\GG_1\GG_2} (\qq,\ww) =
|
|
\int_0^{+\infty} \tchi^\mcS_{\GG_1\GG_2} (\qq,\ww')
|
|
\times \biggl(\frac{1}{\ww-\ww'+i\delta}-\frac{1}{\ww+\ww'-i\delta}\biggr)\dd\ww'
|
|
\end{equation}
|
|
|
|
|
|
Sigma
|
|
|
|
|
|
\begin{equation}
|
|
W = v + (\ee^{-1}-1) v
|
|
\end{equation}
|
|
|
|
\begin{equation}
|
|
\Sigma(\rr_1,\rr_2;\ww) \df \Sigma_x(\rr_1,\rr_2) + \Sigma_c(\rr_1,\rr_2;\ww)
|
|
\end{equation}
|
|
|
|
\begin{equation}\label{eq:Sigma_x}
|
|
\Sigma_x(\rr_1,\rr_2)=
|
|
-\sum_\kk^\BZ \sum_\nu^\text{occ} \Psi_{n\kk}(\rr_1){\Psi^\*_{n\kk}}(\rr_2)\,\vc(\rr_1,\rr_2)
|
|
\end{equation}
|
|
|
|
|
|
\begin{equation}
|
|
\label{eq:diag_mat_el_Sigma_x}
|
|
\<b_1\kkt|\oSigma_x|b_1\kkt\> =
|
|
-\dfrac{\fourpi}{V} \sum_{\nu}^\occ \sum_\qq^\BZ \sum_{\GG}
|
|
\dfrac{\abs{M_\GG^{b_1b_1}(\kkt,\qq)}^2}{\abs{\qpG}^2}
|
|
\end{equation}
|
|
|
|
\begin{equation}
|
|
\label{eq:mat_el_Sigma_c}
|
|
\<b_1\kkt|\oSigma_c(\ww)|b_2\kkt\> =
|
|
\dfrac{i}{\twopi V}
|
|
\sum_\qq^\BZ \sum_{\GG_1\GG_2}\sum_{n=1}^\pinf
|
|
\Bigl[M_{\GG_1}^{nb_1}(\kkt,\qq)\Bigr]^\* M_{\GG_2}^{nb_2}(\kkt,\qq)\,\tilde v_{\GG_1 \GG_2}(\qq)\,
|
|
J_{\GG_1\GG_2}^{\,n \kkt-\qq}(\qq,\ww)
|
|
\end{equation}
|
|
|
|
|
|
ppmodel
|
|
|
|
\begin{equation}
|
|
\label{eq:ppmodel_imag}
|
|
\Im\,\ee^{-1}_{\GG_1\GG_2}(\qq,\ww) =
|
|
A_{\GG_1\GG_2}(\qq)\,
|
|
\bigl[
|
|
\delta(\ww-\ww_{\GG_1\GG_2}(\qq)) -
|
|
\delta(\ww+\ww_{\GG_1\GG_2}(\qq))
|
|
\bigr]
|
|
\end{equation}
|
|
|
|
\begin{equation}
|
|
\label{eq:ppmodel_real}
|
|
\Re\,\ee^{-1}_{\GG_1 \GG_2} (\qq,\ww) =
|
|
\delta_{\GG_1 \GG_2} + \dfrac{\Omega_{\GG_1\GG_2}^2(\qq)}{\ww^2-\wwt^2_{\GG_1\GG_2}(\qq)}
|
|
\end{equation}
|
|
|
|
|
|
CD method
|
|
|
|
\begin{multline}
|
|
\label{eq:GW_CD}
|
|
\Sigma_c(\ww) = \dfrac{i}{\twopi} \Bigl\{
|
|
\twopi\,i \sum_{z_p}^\mcC \lim_{z\rarr z_p} G(z)\,\Wc(z)\,(z-z_p) -\int_\minf^\pinf G(\ww+i\ww')\,\Wc(i\ww') \dd(i\ww')
|
|
\Bigr\}.
|
|
\end{multline}
|
|
|
|
\begin{equation}
|
|
\Wc(\qq,\ww)_{\GG_1\GG_2} \df
|
|
%\tac_{\GG_1\GG_2}(\qq,\ww)
|
|
\bigl(\eet^{-1}_{\GG_1\GG_2}(\qq,\ww) -\delta_{\GG_1,\GG_2}\bigr)
|
|
\,\tvc_{\GG_1\GG_2}(\qq)
|
|
\end{equation}
|
|
|
|
|
|
Notations
|
|
|
|
$(1) \df (\rr_1,t_1)$
|
|
|
|
$\vc(\rr_1,\rr_2)$
|
|
|
|
\begin{equation}
|
|
\delta(12) = \delta(\rr_1-\rr_2)\,\delta(t_1-t_2)
|
|
\end{equation}
|
|
%
|
|
\begin{equation}
|
|
\int \dd1 = \int \ddrr_1 \int_{-\infty}^{+\infty} \dd t_1
|
|
\end{equation}
|
|
%
|
|
\begin{equation}
|
|
v(12)= \vc(\rr_1,\rr_2)\,\delta(t_1-t_2)
|
|
\end{equation}
|
|
%
|
|
\begin{equation}
|
|
1^+ = (\rr_1,t_1 + \eta)_{\eta \rarr 0^+}
|
|
\end{equation}
|
|
|
|
\begin{alignat}{2}\label{eq:FT_1point_convention}
|
|
u(\rr)= \sum_\GG u(\GG)e^{i\GG\cdot\rr}, &\quad
|
|
u(\GG) = \frac{1}{\Omega} \int_\Omega u(\rr)e^{-i\GG\cdot\rr}\dd\rr
|
|
\end{alignat}
|
|
|
|
|
|
\begin{equation}\label{eq:IFT_2points_convention}
|
|
f(\rr_1,\rr_2)= \frac{1}{V} \sum_{\substack{\qq \\ \GG_1 \GG_2}}
|
|
e^{i (\qq +\GG_1) \cdot \rr_1}\,f_{\GG_1 \GG_2}(\qq)\,e^{-i (\qq+\GG_2) \cdot \rr_2}
|
|
\end{equation}
|
|
|
|
\begin{equation}\label{eq:FT_2points_convention}
|
|
f_{\GG_1\GG_2}(\qq) = \frac{1}{V} \iint_V
|
|
e^{-i(\qq+\GG_1) \cdot \rr_1}\,f(\rr_1, \rr_2)\,e^{i (\qq+\GG_2) \cdot \rr_2}\dd\rr_1\dd\rr_2
|
|
\end{equation}
|
|
|
|
The volume of the unit cell is denoted with $\Omega$, while $V$ is the total volume of the crystal
|
|
|
|
\begin{equation}\label{eq:Poles of G and W}
|
|
G(\ww-\ww')
|
|
W(\ww')
|
|
\end{equation}
|
|
|
|
|
|
\end{document}
|