mirror of https://github.com/abinit/abinit.git
663 lines
24 KiB
TeX
663 lines
24 KiB
TeX
% Copyright 1999, Valerio Olevano
|
|
\documentclass[fleqn]{article}
|
|
\usepackage{amsmath,amssymb}
|
|
\pagestyle{headings}
|
|
\setlength{\hoffset}{0pt} %\hoffset=0pt
|
|
\setlength{\voffset}{0pt} %\voffset0pt
|
|
\setlength{\evensidemargin}{0pt} %\evensidemargin=70pt
|
|
\setlength{\oddsidemargin}{0pt}
|
|
\setlength{\topmargin}{0pt} %\topmargin=22pt
|
|
%\headheight=13pt
|
|
%\headsep=19pt
|
|
\setlength{\textheight}{595pt} %\textheight=595pt
|
|
\setlength{\textwidth}{450pt} %\textwidth=360pt
|
|
%\marginparsep=7pt
|
|
%\marginparwidth=106pt
|
|
%\footskip=27pt
|
|
%\marginparpush=5pt
|
|
%\paperwidth=597pt
|
|
%\paperheight=845pt
|
|
\setlength{\leftmargin}{0pt}
|
|
\setlength{\parindent}{0pt}
|
|
|
|
|
|
\title{\bf GW Approximation in $\omega k$ space}
|
|
\author{\bf Valerio Olevano}
|
|
|
|
\begin{document}
|
|
\maketitle
|
|
\tableofcontents
|
|
|
|
\newpage
|
|
%\chapter{GWA in $\omega k$ space}
|
|
|
|
\section{Green function $G^{(0)}$}
|
|
|
|
\[
|
|
G^{(0)}(\zeta_1,\zeta_2;\omega) =
|
|
\sum_i \frac{\phi^{(0)}_i(\zeta_1) \phi^{(0)*}_i(\zeta_2)}
|
|
{\omega - \epsilon^{(0)}_i + i \eta \mathrm{\, sgn} \left( \epsilon^{(0)}_i - \mu \right)}
|
|
\]
|
|
|
|
\[
|
|
G^{(0)}(r_1,r_2;\omega) =
|
|
\sum_i \frac{\phi^{(0)}_i(r_1) \phi^{(0)*}_i(r_2)}
|
|
{\omega - \epsilon^{(0)}_i + i \eta \mathrm{\, sgn} \left( \epsilon^{(0)}_i - \mu \right)}
|
|
\]
|
|
\begin{eqnarray*}
|
|
\quad
|
|
G^{(0)}(r_1,r_2;\omega) &=&
|
|
\sum_{\xi_1 \xi_2} G^{(0)}(\zeta_1,\zeta_2;\omega)
|
|
\\ &=&
|
|
\sum_{\xi_1 \xi_2} \sum_i \frac{\phi^{(0)}_i(\zeta_1) \phi^{(0)*}_i(\zeta_2)}
|
|
{\omega - \epsilon^{(0)}_i + i \eta \mathrm{\, sgn} \left( \epsilon^{(0)}_i - \mu \right)}
|
|
\\
|
|
&=& \sum_{\xi_1} \sum_i \frac{\phi^{(0)}_i(\zeta_1)}
|
|
{\omega - \epsilon^{(0)}_i + i \eta \mathrm{\, sgn} \left( \epsilon^{(0)}_i - \mu \right)}
|
|
\left( \phi^{(0)*}_i(r_2,\xi_2=-1/2) + \phi^{(0)*}_i(r_2,\xi_2=+1/2) \right)
|
|
\\
|
|
&=& \sum_{\xi_1} \sum_i \frac{\phi^{(0)}_i(\zeta_1)}
|
|
{\omega - \epsilon^{(0)}_i + i \eta \mathrm{\, sgn} \left( \epsilon^{(0)}_i - \mu \right)}
|
|
\phi^{(0)*}_i(r_2)
|
|
\\
|
|
&=& \sum_i \left( \phi^{(0)}_i(r_1,\xi_1=-1/2) + \phi^{(0)}_i(r_1,\xi_1=+1/2) \right)
|
|
\frac{\phi^{(0)*}_i(r_2)}
|
|
{\omega - \epsilon^{(0)}_i + i \eta \mathrm{\, sgn} \left( \epsilon^{(0)}_i - \mu \right)}
|
|
\end{eqnarray*}
|
|
|
|
\newpage
|
|
|
|
\section{Screened Interaction}
|
|
|
|
\[
|
|
W(\zeta_1,\zeta_2,\omega) = \int d\zeta_3 \, \varepsilon^{-1}(\zeta_1,\zeta_3,\omega) w(\zeta_3,\zeta_2)
|
|
\]
|
|
\[
|
|
W(\zeta_1,\zeta_2,\omega) =
|
|
W(r_1,r_2,\omega) = \int dr_3 \, \varepsilon^{-1}(r_1,r_3,\omega) w(r_3,r_2)
|
|
\qquad \textrm{spin independent (but it's not the case of $\varepsilon$)}
|
|
\]
|
|
|
|
\[
|
|
w(r_1,r_2) = \frac{1}{|r_1-r_2|}
|
|
\qquad \textrm{coulombian many body interaction}
|
|
\]
|
|
|
|
\[
|
|
w(q,G) = \frac{4 \pi}{|q+G|^2}
|
|
\qquad \textrm{fourier transform of the coulombian interaction}
|
|
\]
|
|
|
|
\begin{eqnarray*}
|
|
\quad
|
|
W(r_1,r_2,\omega) &=& \int dr_3 \, \varepsilon^{-1}(r_1,r_3,\omega) w(r_3,r_2) \\
|
|
W(r_1,r_2,\omega)
|
|
&=& \int dr_3 \, \frac{1}{(2\pi)^3} \int_{\rm BZ} dq \, \sum_{G_1,G_3} e^{i (q+G_1) r_1}
|
|
\varepsilon^{-1}(q,G_1,G_3,\omega) e^{-i (q+G_3) r_3} \cdot \\ && \cdot
|
|
\frac{1}{(2\pi)^3} \int_{\rm BZ} dq_1\, \sum_{G_2} e^{i (q_1+G_2) r_3}
|
|
\frac{4\pi}{(q_1+G_2)^2} e^{-i (q_1+G_2) r_2} \\ &&
|
|
\int dr_3 \, e^{-i (q+G_3) r_3} e^{i (q_1+G_2) r_3} = (2\pi)^3 \delta(q-q_1) \delta(G_3-G_2) \\
|
|
W(r_1,r_2,\omega)
|
|
&=& \frac{1}{(2\pi)^3} \int_{\rm BZ} dq \, \sum_{G_1,G_2} e^{i (q+G_1) r_1}
|
|
\varepsilon^{-1}(q,G_1,G_2,\omega) \frac{4\pi}{(q+G_2)^2} e^{-i (q+G_2) r_2}
|
|
\end{eqnarray*}
|
|
|
|
\begin{eqnarray*}
|
|
W(r_1,r_2,\omega) &=& \frac{1}{\Omega} \sum_{q,G_1,G_2}
|
|
e^{i (q+G_1) r_1} W(q,G_1,G_2,\omega) e^{-i (q+G_2) r_2} \\
|
|
&=& \frac{1}{\Omega} \sum_{q,G_1,G_2}
|
|
e^{i (q+G_1) r_1} \varepsilon^{-1}(q,G_1,G_2,\omega) \frac{4\pi}{|q+G_2|^2} e^{-i (q+G_2) r_2}
|
|
\end{eqnarray*}
|
|
|
|
\[
|
|
W(q,G_1,G_2,\omega) =
|
|
\varepsilon^{-1}(q,G_1,G_2,\omega) \frac{4 \pi}{|q+G_2|^2}
|
|
= \bar{\varepsilon}^{-1}(q,G_1,G_2,\omega) \frac{4 \pi}{|q+G_1| |q+G_2|}
|
|
\]
|
|
|
|
$\bar{\varepsilon}$ = symmetrized epsilon.
|
|
|
|
\newpage
|
|
|
|
|
|
\section{Single Plasmon Pole Model}
|
|
|
|
\[
|
|
\varepsilon^{-1}(\omega) =
|
|
\delta + \frac{\Omega^2}{\omega^2 - \tilde{\omega}^2}
|
|
\]
|
|
|
|
\[
|
|
\varepsilon^{-1}(G,G',q,\omega) =
|
|
\delta(G,G') + \frac{\Omega^2(G,G',q)}{\omega^2 - \tilde{\omega}^2(G,G',q)}
|
|
\]
|
|
The poles are in $\omega = \pm \tilde{\omega}$.
|
|
\[
|
|
A(G,G',q) = - \frac{\Omega^2(G,G',q)}{\tilde{\omega}^2(G,G',q)} =
|
|
\varepsilon^{-1}(G,G',q,0) - \delta(G,G')
|
|
\]
|
|
|
|
\[
|
|
\tilde{\omega}^2(G,G',q) =
|
|
\left[ \frac{A(G,G',q)}{\varepsilon^{-1}(G,G',q,0) - \varepsilon^{-1}(G,G',q,iE_0)} - 1 \right] E_0^2
|
|
\]
|
|
|
|
\begin{eqnarray*}
|
|
&&
|
|
\varepsilon^{-1}(iE_0) = \delta + \frac{\Omega^2}{-E_0^2 - \tilde{\omega}^2}
|
|
\\ &&
|
|
\varepsilon^{-1}(iE_0) [E_0^2 + \tilde{\omega}^2] =
|
|
\delta [E_0^2 + \tilde{\omega}^2] - \frac{\Omega^2}{\tilde{\omega}^2} \tilde{\omega}^2 =
|
|
\delta E_0^2 + \varepsilon^{-1}(0) \tilde{\omega}^2
|
|
\\ &&
|
|
\tilde{\omega}^2 =
|
|
\frac{\varepsilon^{-1}(iE_0) - \delta}{\varepsilon^{-1}(0) - \varepsilon^{-1}(iE_0)} E_0^2
|
|
\\ && \phantom{\tilde{\omega}^2} =
|
|
\left[ \frac{\varepsilon^{-1}(iE_0) - \delta}{\varepsilon^{-1}(0) - \varepsilon^{-1}(iE_0)} +
|
|
\frac{\varepsilon^{-1}(0) - \varepsilon^{-1}(iE_0)}{\varepsilon^{-1}(0) - \varepsilon^{-1}(iE_0)}
|
|
-1 \right] E_0^2
|
|
\\ &&
|
|
\tilde{\omega}^2 =
|
|
\left[ \frac{\varepsilon^{-1}(0) - \delta}{\varepsilon^{-1}(0) - \varepsilon^{-1}(iE_0)} - 1 \right] E_0^2
|
|
= \left[ \frac{A}{\varepsilon^{-1}(0) - \varepsilon^{-1}(iE_0)} - 1 \right] E_0^2
|
|
\end{eqnarray*}
|
|
|
|
\newpage
|
|
|
|
\section{GW approximation for the Self-Energy}
|
|
|
|
\[
|
|
\tilde{\Sigma}^{\rm GW}_{\rm M}(x_1,x_2) = i G(x_1,x_2) W(x_1^+,x_2)
|
|
\]
|
|
|
|
% Fourier Transform of the Mass Operator
|
|
\[
|
|
\tilde{\Sigma}^{\rm GW}_{\rm M}(\zeta_1,\zeta_2,\omega) =
|
|
\frac{i}{2 \pi} \int d\omega' \, e^{-i \omega' \eta}
|
|
G(\zeta_1,\zeta_2,\omega-\omega')
|
|
W(\zeta_1,\zeta_2,\omega')
|
|
\]
|
|
|
|
$W$ is spin-independent and $G$ does not take factors 2 on spin sum:
|
|
|
|
\[
|
|
\tilde{\Sigma}^{\rm GW}_{\rm M}(r_1,r_2,\omega) =
|
|
\frac{i}{2 \pi} \int d\omega' \, e^{-i \omega' \eta}
|
|
G(r_1,r_2,\omega-\omega')
|
|
W(r_1,r_2,\omega')
|
|
\]
|
|
|
|
\begin{eqnarray*}
|
|
\tilde{\Sigma}^{\rm GW}_{\rm M}(r_1,r_2,\omega) &=&
|
|
\frac{i}{2 \pi} \int d\omega' \, e^{-i \omega' \eta}
|
|
\sum_i \frac{\phi^{(0)}_i(r_1) \phi^{(0)*}_i(r_2)}
|
|
{\omega - \omega' - \epsilon^{(0)}_i + i \eta \mathrm{\, sgn} \left( \epsilon^{(0)}_i - \mu \right)} \cdot \\
|
|
&& \cdot \frac{1}{\Omega} \sum_{q,G_1,G_2}
|
|
e^{i (q+G_1) r_1} \bar{\varepsilon}^{-1}(q,G_1,G_2,\omega')
|
|
\frac{4\pi}{|q+G_1||q+G_2|} e^{-i (q+G_2) r_2}
|
|
\end{eqnarray*}
|
|
|
|
\section{Matrix elements of the Self-Energy operator}
|
|
|
|
\begin{eqnarray*}
|
|
\langle \phi^{(0)}_j(r_1) | \tilde{\Sigma}^{\rm GW}_{\rm M}(r_1,r_2,\omega) | \phi^{(0)}_j(r_2) \rangle
|
|
&=& \frac{i}{2 \pi} \frac{1}{\Omega} \sum_{q,G_1,G_2}
|
|
\frac{4\pi}{|q+G_1||q+G_2|} \sum_i \cdot \\ && \cdot
|
|
\int dr_1 \, \phi^{(0)*}_j(r_1) e^{i (q+G_1) r_1} \phi^{(0)}_i(r_1)
|
|
\int dr_2 \, \phi^{(0)*}_i(r_2) e^{-i (q+G_2) r_2} \phi^{(0)}_j(r_2) \cdot \\ && \cdot
|
|
\int_{-\infty}^{+\infty} d\omega' \, e^{-i \omega' \eta}
|
|
\frac{1}{\omega - \omega' - \epsilon^{(0)}_i + i \eta \mathrm{\, sgn} \left( \epsilon^{(0)}_i - \mu \right)}
|
|
\bar{\varepsilon}^{-1}(q,G_1,G_2,\omega')
|
|
\end{eqnarray*}
|
|
|
|
\[
|
|
i = \{n_i,k_i\}
|
|
\]
|
|
\[
|
|
\rho_{ij}(G) = \int dr \, \phi^{(0)*}_i(r) e^{-i (q+G) r} \phi^{(0)}_j(r)
|
|
\qquad \textrm{with} \qquad q = k_j - k_i - G_0, \quad q \in {\rm 1BZ}
|
|
\]
|
|
|
|
\begin{eqnarray*}
|
|
\langle j | \tilde{\Sigma}^{\rm GW}_{\rm M}(\omega) | j \rangle
|
|
&=& \frac{i}{2 \pi} \frac{1}{\Omega} \sum_i \sum_{G_1,G_2} \delta(q-(k_j - k_i - G_0))
|
|
\frac{4\pi}{|q+G_1||q+G_2|}
|
|
\rho^*_{ij}(G_1) \rho_{ij}(G_2) \cdot \\ && \cdot
|
|
\int_{-\infty}^{+\infty} d\omega'' \, e^{i \omega'' \eta}
|
|
\frac{1}{\omega'' + \omega - \epsilon^{(0)}_i + i \eta \mathrm{\, sgn} \left( \epsilon^{(0)}_i - \mu \right)}
|
|
\bar{\varepsilon}^{-1}(q,G_1,G_2,\omega'')
|
|
\end{eqnarray*}
|
|
|
|
\begin{eqnarray*}
|
|
\varepsilon^{-1}(q,G,G',\omega) &\rightarrow& \delta(G,G')
|
|
\qquad \rightarrow \Sigma_x \qquad \textrm{Sigma exchange} \\
|
|
\varepsilon^{-1}(q,G,G',\omega) &\rightarrow&
|
|
\frac{\Omega^2(q,G,G')}{\omega^2 - \tilde{\omega}^2(q,G,G')}
|
|
\qquad \rightarrow \Sigma_c \qquad \textrm{Sigma correlation}
|
|
\end{eqnarray*}
|
|
|
|
\section{Self-Energy: exchange term}
|
|
|
|
\begin{eqnarray*}
|
|
\langle j | \tilde{\Sigma}^{\rm GW}_{x}(\omega) | j \rangle
|
|
&=& \frac{i}{2 \pi} \frac{1}{\Omega} \sum_i \sum_{G_1} \delta(q-(k_j - k_i - G_0))
|
|
\frac{4\pi}{|q+G_1|^2}
|
|
| \rho_{ij}(G_1)|^2 \cdot \\ && \cdot
|
|
\oint_{{\overset{\curvearrowleft}{\rightarrow}}} d\omega'' \, e^{i \omega'' \eta}
|
|
\frac{1}{\omega'' + \omega - \epsilon^{(0)}_i + i \eta \mathrm{\, sgn} \left( \epsilon^{(0)}_i - \mu \right)}
|
|
\end{eqnarray*}
|
|
Only the the poles of G in the upper half imaginary $\omega$-plane are included
|
|
in the closed, anti-clockwise path. They correspond to the particle poles
|
|
(excitation corresponding to occupied states).
|
|
The integral yields ($f_i=0,1$ occupation number):
|
|
\[
|
|
\oint d\omega'' ... = 2 \pi i f_i {\rm Res}_i = 2 \pi i f_i
|
|
\]
|
|
|
|
\begin{eqnarray*}
|
|
\langle j | \tilde{\Sigma}^{\rm GW}_{x} | j \rangle
|
|
&=& - \frac{4 \pi}{\Omega} \sum_i f_i \sum_{G_1} \delta(q-(k_j - k_i - G_0))
|
|
\frac{1}{|q+G_1|^2}
|
|
| \rho_{ij}(G_1) |^2
|
|
\end{eqnarray*}
|
|
it does not depend on $\omega$ because it constitutes only a shift
|
|
term of the poles along the real axis which doesn't change the integral.
|
|
|
|
\newpage
|
|
|
|
\section{Self-Energy: correlation term}
|
|
|
|
\begin{eqnarray*}
|
|
\langle j | \tilde{\Sigma}^{\rm GW}_{c}(\omega) | j \rangle
|
|
&=& \frac{i}{2 \pi} \frac{1}{\Omega} \sum_i \sum_{G_1,G_2} \delta(q-(k_j - k_i - G_0))
|
|
\frac{4\pi}{|q+G_1||q+G_2|}
|
|
\rho^*_{ij}(G_1) \rho_{ij}(G_2) \cdot \\ && \cdot
|
|
\oint_{{\overset{\curvearrowleft}{\rightarrow}}} d\omega'' \, e^{i \omega'' \eta}
|
|
\frac{1}{\omega'' + \omega - \epsilon^{(0)}_i + i \eta \mathrm{\, sgn} \left( \epsilon^{(0)}_i - \mu \right)}
|
|
\frac{\Omega^2(q,G_1,G_2)}{\omega''^2 - (\tilde{\omega}(q,G_1,G_2) - i \eta)^2}
|
|
\end{eqnarray*}
|
|
The plasmon pole model presents a pole in the upper half plane for $\omega''$ negative
|
|
at $-\tilde{\omega}+i\eta$ and a pole in the bottom half plane for $\omega''$ positive
|
|
at $\tilde{\omega}-i\eta$
|
|
\begin{eqnarray*}
|
|
\oint_{{\overset{\curvearrowleft}{\rightarrow}}} d\omega'' \, e^{i \omega'' \eta}
|
|
\frac{1}{\omega'' + \omega - \epsilon^{(0)}_i + i \eta \mathrm{\, sgn} \left( \epsilon^{(0)}_i - \mu \right)}
|
|
\frac{1}{(\omega'' - \tilde{\omega} + i \eta)(\omega'' + \tilde{\omega} - i \eta)}
|
|
\end{eqnarray*}
|
|
|
|
The included poles are in $\omega'' = - \tilde{\omega} + i \eta$ and if $f_i=1$ in
|
|
$\omega'' = \epsilon^{(0)}_i - \omega + i \eta$.
|
|
\begin{eqnarray*}
|
|
\oint_{{\overset{\curvearrowleft}{\rightarrow}}} d\omega'' \, ... &=&
|
|
2 \pi i \left( \frac{f_i}{(\epsilon^{(0)}_i - \omega)^2 - \tilde{\omega}^2} +
|
|
\frac{1}{\omega - \tilde{\omega} - \epsilon^{(0)}_i} \frac{1}{-2\tilde{\omega}} \right)
|
|
\\ &=& - i \pi \left( \frac{1}{\tilde{\omega} (\omega - \tilde{\omega} - \epsilon^{(0)}_i)} -
|
|
\frac{2 f_i}{(\omega - \epsilon^{(0)}_i)^2 - \tilde{\omega}^2} \right) \\
|
|
&=& - i \pi \left( \frac{\omega - \epsilon^{(0)}_i + \tilde{\omega}}{\tilde{\omega} ( \omega - \epsilon^{(0)}_i + \tilde{\omega}) ( \omega - \epsilon^{(0)}_i - \tilde{\omega})} -
|
|
\frac{\tilde{\omega} 2 f_i}{\tilde{\omega} ( \omega - \epsilon^{(0)}_i + \tilde{\omega}) ( \omega - \epsilon^{(0)}_i - \tilde{\omega})} \right) \\
|
|
&=& - i \pi \frac{\omega - \epsilon^{(0)}_i - \tilde{\omega}(2f_i - 1)}{\tilde{\omega} ( \omega - \epsilon^{(0)}_i + \tilde{\omega}) ( \omega - \epsilon^{(0)}_i - \tilde{\omega})} \frac{\omega - \epsilon^{(0)}_i + \tilde{\omega}(2f_i - 1)}{\omega - \epsilon^{(0)}_i + \tilde{\omega}(2f_i - 1)} \\
|
|
&=& - i \pi \frac{(\omega - \epsilon^{(0)}_i)^2 - \tilde{\omega}^2 (2 f_i - 1)^2}
|
|
{(\omega - \epsilon^{(0)}_i)^2 - \tilde{\omega}^2}
|
|
\frac{1}{\tilde{\omega} ( \omega - \epsilon^{(0)}_i + \tilde{\omega} (2 f_i - 1))} \\
|
|
&=& - i \pi \frac{1}{\tilde{\omega} ( \omega - \epsilon^{(0)}_i + \tilde{\omega} (2 f_i - 1))}
|
|
\end{eqnarray*}
|
|
Here we mean that we should replace $\tilde{\omega} \rightarrow \tilde{\omega} - i\eta$
|
|
and $ \epsilon^{(0)}_i \rightarrow \epsilon^{(0)}_i -i \eta \mathrm{\, sgn}(\epsilon^{(0)}_i - \mu)$
|
|
|
|
As $(2 f_i - 1)^2$ is always 1.
|
|
|
|
\begin{eqnarray*}
|
|
\langle j | \tilde{\Sigma}^{\rm GW}_{c}(\omega) | j \rangle
|
|
&=& \frac{2 \pi}{\Omega} \sum_i \sum_{G_1,G_2} \delta(q-(k_j - k_i - G_0))
|
|
\frac{\rho^*_{ij}(G_1) \rho_{ij}(G_2)}{|q+G_1||q+G_2|}
|
|
\cdot \\ && \cdot
|
|
\frac{\Omega^2(q,G_1,G_2)}
|
|
{\tilde{\omega}(q,G_1,G_2) ( \omega - \epsilon^{(0)}_i + \tilde{\omega}(q,G_1,G_2) (2 f_i - 1))}
|
|
\end{eqnarray*}
|
|
|
|
|
|
\newpage
|
|
|
|
\section{Self-Energy: correlation term without plasmon pole model}
|
|
|
|
\begin{eqnarray*}
|
|
\langle j | \tilde{\Sigma}^{\rm GW}_{c}(\omega) | j \rangle
|
|
&=& \frac{i}{2 \pi} \frac{1}{\Omega} \sum_i \sum_{q,G_1,G_2} \delta(q-(k_j - k_i - G_0))
|
|
\frac{4\pi}{|q+G_1||q+G_2|}
|
|
\rho^*_{ij}(G_1) \rho_{ij}(G_2) \cdot \\ && \cdot
|
|
\int_{-\infty}^{+\infty} d\omega'' \, e^{i \omega'' \eta}
|
|
\frac{1}{\omega'' + \omega - \epsilon^{(0)}_i + i \eta \mathrm{\, sgn} \left( \epsilon^{(0)}_i - \mu \right)}
|
|
\bar\varepsilon^{-1}_c(q,G_1,G_2,\omega'')
|
|
\end{eqnarray*}
|
|
where the correlation part of the inverse dielectric matrix is
|
|
\[
|
|
\bar\varepsilon^{-1}_c(q,G_1,G_2,\omega) =
|
|
\bar\varepsilon^{-1}(q,G_1,G_2,\omega) - \delta(G_1,G_2)
|
|
\]
|
|
the dielectric function is symmetric in $\omega$
|
|
\[
|
|
\bar\varepsilon^{-1}(q,G_1,G_2,-\omega) = \bar\varepsilon^{-1}(q,G_1,G_2,\omega)
|
|
\]
|
|
\begin{eqnarray*}
|
|
\langle j | \tilde{\Sigma}^{\rm GW}_{c}(\omega) | j \rangle
|
|
&=& \frac{1}{\Omega} \sum_i \sum_{q,G_1,G_2} \delta(q-(k_j - k_i - G_0))
|
|
\frac{4\pi}{|q+G_1||q+G_2|}
|
|
\rho^*_{ij}(G_1) \rho_{ij}(G_2) \cdot \\ && \cdot \Big\{
|
|
- \frac{1}{\pi} \int_0^\infty d \omega' \, \bar\varepsilon^{-1}_c(q,G_1,G_2,i\omega')
|
|
\frac{\omega - \epsilon^{(0)}_i}{(\omega - \epsilon^{(0)}_i)^2 + \omega'^2} + \\ &&
|
|
+ \bar\varepsilon^{-1}_c(q,G_1,G_2,\epsilon^{(0)}_i - \omega)
|
|
\left( \theta(\omega - \epsilon^{(0)}_i) - \theta(\mu - \epsilon^{(0)}_i) \right) \Big\}
|
|
\end{eqnarray*}
|
|
The second term comes into paly only in two cases:
|
|
when $i$ is conduction with $+$ sign (many cases at high energies):
|
|
\[
|
|
\mu < \epsilon^{(0)}_i < \omega
|
|
\]
|
|
and when $i$ is valence with $-$ sign (few cases):
|
|
\[
|
|
\omega < \epsilon^{(0)}_i < \mu
|
|
\]
|
|
For the dielectric function we must use the tetraedral method to integrate
|
|
or otherwise use a small imaginary part in $\omega$ to account for finite
|
|
k-point sampling.
|
|
|
|
\newpage
|
|
|
|
|
|
\section{Imaginary part of the Self-Energy}
|
|
|
|
\[
|
|
\tilde{\Sigma}^{\rm GW}_c(r_1,r_2,\omega) =
|
|
\frac{i}{2 \pi} \int d\omega' \, e^{-i \omega' \eta}
|
|
G(r_1,r_2,\omega-\omega')
|
|
W_c(r_1,r_2,\omega')
|
|
\]
|
|
|
|
|
|
\[
|
|
G(r_1,r_2,\omega) = \int d\omega' \, \frac{A(\omega')}{\omega-\omega'+i\eta \mathrm{\, sgn}(\omega'-\mu)}
|
|
\]
|
|
\[
|
|
W_c(r_1,r_2,\omega) = W(r_1,r_2,\omega) - v(r_1,r_2)
|
|
\]
|
|
\[
|
|
W_c(r_1,r_2,\omega) = \int d\omega' \, \frac{D(\omega')}{\omega-\omega'+i\eta \mathrm{\, sgn}(\omega')}
|
|
\]
|
|
\[
|
|
W_c(r_1,r_2,\omega) = {\rm vp} \int d\omega' \, \frac{D(\omega')}{\omega-\omega'}
|
|
- i \pi {\rm sgn}(\omega') \delta(\omega-\omega') D(\omega') =
|
|
{\rm vp} \int d\omega' \, \frac{D(\omega')}{\omega-\omega'}
|
|
- i \pi {\rm sgn}(\omega) D(\omega)
|
|
\]
|
|
\[
|
|
D(r_1,r_2,\omega) = - \frac{1}{\pi} \Im W_c(r_1,r_2,\omega) \mathrm{\, sgn}(\omega)
|
|
\]
|
|
\[
|
|
D(r_1,r_2,-\omega) = - D(r_1,r_2,\omega)
|
|
\]
|
|
\[
|
|
W_c(r_1,r_2,\omega) = W_c(r_1,r_2,-\omega)
|
|
\]
|
|
\[
|
|
\Rightarrow \Re W_c(-\omega) = {\rm vp} \int d\omega' \, \frac{D(\omega')}{-\omega-\omega'}
|
|
= {\rm vp} \int d\omega' \, \frac{D(-\omega')}{\omega+\omega'} = \Re W_c(\omega)
|
|
\]
|
|
|
|
\[
|
|
\tilde{\Sigma}^{\rm GW}_c(r_1,r_2,\omega) =
|
|
\frac{i}{2 \pi} \int d\omega' \, e^{i \omega' \eta}
|
|
G(r_1,r_2,\omega+\omega')
|
|
W_c(r_1,r_2,\omega')
|
|
\]
|
|
|
|
\begin{eqnarray*}
|
|
\quad
|
|
\tilde{\Sigma}^{\rm GW}_c(r_1,r_2,\omega) =
|
|
\frac{i}{2 \pi} \int d\omega' \, & e^{i \omega' \eta} & \left(
|
|
\int_{-\infty}^\mu d\omega_1 \, \frac{A(\omega_1)}{\omega+\omega'-\omega_1-i\eta} +
|
|
\int_\mu^\infty d\omega_1 \, \frac{A(\omega_1)}{\omega+\omega'-\omega_1+i\eta} \right) \cdot
|
|
\\ &&
|
|
\left( \int_{-\infty}^0 d\omega_2 \, \frac{D(\omega_2)}{\omega'-\omega_2-i\eta} +
|
|
\int_o^\infty d\omega_2 \, \frac{D(\omega_2)}{\omega'-\omega_2+i\eta} \right)
|
|
\end{eqnarray*}
|
|
The terms contributing to the integral in $\omega'$ are only those who present
|
|
poles both up and down the real axis, as for those presenting poles only up or only
|
|
down, you can close the contour integration path in the upper or in the bottom half plane
|
|
resulting in zero.
|
|
\begin{eqnarray*}
|
|
\quad
|
|
\tilde{\Sigma}^{\rm GW}_c(r_1,r_2,\omega) =
|
|
\frac{i}{2 \pi} \int d\omega' \, & e^{i \omega' \eta} &
|
|
\left( \int_\mu^\infty d\omega_1 \, \frac{A(\omega_1)}{\omega+\omega'-\omega_1+i\eta}
|
|
\int_{-\infty}^0 d\omega_2 \, \frac{D(\omega_2)}{\omega'-\omega_2-i\eta} \right)
|
|
\\ &+&
|
|
\left( \int_{-\infty}^\mu d\omega_1 \, \frac{A(\omega_1)}{\omega+\omega'-\omega_1-i\eta} \cdot
|
|
\int_0^\infty d\omega_2 \, \frac{D(\omega_2)}{\omega'-\omega_2+i\eta} \right)
|
|
\end{eqnarray*}
|
|
Then, closing the contour integration up ($e^{i \omega' \eta}$)
|
|
and considering the residual of the
|
|
poles which are in $\omega' = \omega_2 + i \eta$ for the first term
|
|
and in $\omega' = \omega_1 - \omega + i \eta$ for the second term,
|
|
in the upper plane ($2\pi i {\rm Res}$)
|
|
\begin{eqnarray*}
|
|
\quad
|
|
\tilde{\Sigma}^{\rm GW}_c(r_1,r_2,\omega) &=& \frac{i}{2 \pi} 2 \pi i \left\{
|
|
\int^{\infty}_\mu d\omega_1 \, \int_{-\infty}^0 d\omega_2 \,
|
|
\frac{A(\omega_1)D(\omega_2)}{\omega+\omega_2-\omega_1+i\eta} +
|
|
\int^\mu_{-\infty} d\omega_1 \, \int_0^\infty d\omega_2 \,
|
|
\frac{A(\omega_1)D(\omega_2)}{-\omega+\omega_1-\omega_2+i\eta} \right\}
|
|
\\ &=&
|
|
- \left\{
|
|
\int^{\infty}_{\mu} d\omega_1 \, \int_{-\infty}^\infty d\omega_2 \, \theta(-\omega_2)
|
|
\frac{A(\omega_1)D(\omega_2)}{\omega+\omega_2-\omega_1+i\eta} +
|
|
\int^\mu_{-\infty} d\omega_1 \, \int_{-\infty}^\infty d\omega_2 \, \theta(\omega_2)
|
|
\frac{A(\omega_1)D(\omega_2)}{-\omega+\omega_1-\omega_2+i\eta} \right\}
|
|
\end{eqnarray*}
|
|
\[
|
|
\qquad
|
|
\int d\omega \, \frac{1}{\omega \pm i\eta} = {\rm vp} \int d\omega \frac{1}{\omega} \mp i \pi \delta{\omega}
|
|
\]
|
|
\begin{eqnarray*}
|
|
\quad
|
|
i \Im \tilde{\Sigma}^{\rm GW}_c(r_1,r_2,\omega) &=& - \left\{
|
|
\int^{\infty}_{\mu} d\omega_1 \, (-i \pi) A(\omega_1) D(-\omega+\omega_1) \theta(-\omega_1+\omega) +
|
|
\int^\mu_{-\infty} d\omega_1 \, (-i \pi) A(\omega_1) D(-\omega+\omega_1) \theta(-\omega+\omega_1) \right\}
|
|
\end{eqnarray*}
|
|
\begin{eqnarray*}
|
|
\quad
|
|
\Im \tilde{\Sigma}^{\rm GW}_c(r_1,r_2,\omega) &=& -
|
|
\int_{-\infty}^\infty d\omega_1 \, \pi A(\omega_1) D(-\omega+\omega_1)
|
|
\big(
|
|
-\theta(\omega_1-\omega) \theta(\mu-\omega_1) - \theta(\omega-\omega_1) \theta(\omega_1-\mu)
|
|
\big)
|
|
\\ &=& -
|
|
\int_{-\infty}^\infty d\omega_1 \, \pi A(\omega_1) D(\omega-\omega_1)
|
|
\big(
|
|
\theta(\omega_1-\omega) \theta(\mu-\omega_1) + \theta(\omega-\omega_1) \theta(\omega_1-\mu)
|
|
\big)
|
|
\\ &=&
|
|
- \int_{-\infty}^\infty d\omega_1 \, \pi A(\omega_1)
|
|
\frac{-1}{\pi} \Im W_c(\omega-\omega_1) \mathrm{\, sgn}(\omega-\omega_1)
|
|
\big(
|
|
\theta(\omega_1-\omega) \theta(\mu-\omega_1) + \theta(\omega-\omega_1) \theta(\omega_1-\mu)
|
|
\big)
|
|
\\ &=&
|
|
- \int_{-\infty}^\infty d\omega_1 \, A(\omega_1) \Im W_c(\omega-\omega_1)
|
|
\big(
|
|
\theta(\omega_1-\omega) \theta(\mu-\omega_1) - \theta(\omega-\omega_1) \theta(\omega_1-\mu)
|
|
\big)
|
|
\end{eqnarray*}
|
|
In the $G^0W^{\rm RPA}$ approximation
|
|
\[
|
|
A(r_1,r_2,\omega) = \sum_i \phi_i^{(0)}(r_1) \phi_i^{(0)*}(r_2) \delta(\omega-\epsilon_i^{(0)})
|
|
\]
|
|
\begin{eqnarray*}
|
|
\Im \tilde{\Sigma}^{\rm GW}_c(r_1,r_2,\omega) &=&
|
|
- \sum_i \phi_i^{(0)}(r_1) \phi_i^{(0)*}(r_2) \Im W_c(r_1,r_2,\omega-\epsilon_i^{(0)})
|
|
\big( \theta(\epsilon_i^{(0)}-\omega) \theta(\mu-\epsilon_i^{(0)})
|
|
- \theta(\omega-\epsilon_i^{(0)}) \theta(\epsilon_i^{(0)}-\mu) \big)
|
|
\end{eqnarray*}
|
|
\begin{eqnarray*}
|
|
\Im \tilde{\Sigma}^{\rm GW}_c(r_1,r_2,\omega) &=&
|
|
\left\{ \begin{array}{ll}
|
|
- \sum_i^{\rm occ} \phi_i^{(0)}(r_1) \phi_i^{(0)*}(r_2) \Im W_c(r_1,r_2,\omega-\epsilon_i^{(0)})
|
|
\theta(\epsilon_i^{(0)}-\omega) & \omega \le \mu \\
|
|
+ \sum_i^{\rm unocc} \phi_i^{(0)}(r_1) \phi_i^{(0)*}(r_2) \Im W_c(r_1,r_2,\omega-\epsilon_i^{(0)})
|
|
\theta(\omega-\epsilon_i^{(0)}) & \omega > \mu
|
|
\end{array} \right.
|
|
\end{eqnarray*}
|
|
\begin{eqnarray*}
|
|
\quad
|
|
\langle j | \Im \tilde{\Sigma}^{\rm GW}_c(\omega) | j \rangle
|
|
&=& \int dr_1 dr_2 \, \phi_j^{(0)*}(r_1) \phi_j^{(0)}(r_2)
|
|
\\ && (-) \sum_i \phi_i^{(0)}(r_1) \phi_i^{(0)*}(r_2)
|
|
\big( \theta(\epsilon_i^{(0)}-\omega) \theta(\mu-\epsilon_i^{(0)})
|
|
- \theta(\omega-\epsilon_i^{(0)}) \theta(\epsilon_i^{(0)}-\mu) \big)
|
|
\\ &&
|
|
\frac{1}{\Omega} \sum_{q,G_1,G_2}
|
|
e^{i(q+G_1)r_1} \Im \bar\varepsilon^{-1}_c(q,G_1,G_2,\omega-\epsilon_i^{(0)}) e^{-i(q+G_2)r_2}
|
|
\frac{4\pi}{|q+G_1||q+G_2|}
|
|
\end{eqnarray*}
|
|
So that the final result is
|
|
\begin{eqnarray*}
|
|
\langle j | \Im \tilde{\Sigma}^{\rm GW}_c(\omega) | j \rangle &=&
|
|
- \frac{1}{\Omega} \sum_i \big( \theta(\epsilon_i^{(0)}-\omega) \theta(\mu-\epsilon_i^{(0)})
|
|
- \theta(\omega-\epsilon_i^{(0)}) \theta(\epsilon_i^{(0)}-\mu) \big)
|
|
\\ &&
|
|
\sum_{q,G_1,G_2} \delta(q - (k_j-k_i-G_0))
|
|
\rho^*_{ij}(G_1) \rho_{ij}(G_2) \frac{4\pi}{|q+G_1||q+G_2|}
|
|
\Im \bar\varepsilon^{-1}_c(q,G_1,G_2,\omega-\epsilon_i^{(0)})
|
|
\end{eqnarray*}
|
|
|
|
\[
|
|
\qquad
|
|
\theta(\epsilon_i^{(0)}-\omega) \theta(\mu-\epsilon_i^{(0)})
|
|
- \theta(\omega-\epsilon_i^{(0)}) \theta(\epsilon_i^{(0)}-\mu) =
|
|
\theta(\mu-\epsilon_i^{(0)}) - \theta(\omega-\epsilon_i^{(0)}) =
|
|
\theta(\epsilon_i^{(0)}-\omega) f_i - \theta(\omega-\epsilon_i^{(0)}) (1- f_i)
|
|
\]
|
|
\[
|
|
- \Im \varepsilon_c^{-1}(\omega) = -\Im \varepsilon_c^{-1}(-\omega)
|
|
\qquad\textrm{even function}
|
|
\]
|
|
|
|
\appendix
|
|
|
|
%\chapter{Definitions, Fourier transforms}
|
|
|
|
\section{Definitions, notations}
|
|
|
|
\[
|
|
\Omega = N_k \Omega_{\rm cell} \qquad \textrm{Crystal Volume}
|
|
\]
|
|
\[
|
|
\Omega_{\rm BZ} = \frac{(2\pi)^3}{\Omega_{\rm cell}}
|
|
\]
|
|
|
|
\[
|
|
\frac{1}{(2 \pi)^3} \int_{\rm BZ} dk = \frac{1}{\Omega} \sum_k^{\rm BZ}
|
|
\]
|
|
|
|
\[
|
|
\frac{1}{\Omega_{\rm BZ}} \int_{\rm BZ} dk = \frac{1}{N_k} \sum_k^{\rm BZ}
|
|
\]
|
|
|
|
\section{Fourier transform definition}
|
|
|
|
\[
|
|
f(\omega) = \int dt \, e^{-i\omega t} f(t)
|
|
\qquad \textrm{direct fourier transform}
|
|
\]
|
|
\[
|
|
f(t) = \frac{1}{2\pi} \int d\omega \, f(\omega) e^{i\omega t}
|
|
\qquad \textrm{inverse fourier transform}
|
|
\]
|
|
|
|
\newpage
|
|
|
|
\section{Fourier transform of a two lattice indices quantity}
|
|
|
|
\begin{eqnarray*}
|
|
&&
|
|
f(q,G_1,G_2) = \frac{1}{(2 \pi)^3} \int dr_1 dr_2 \, e^{-i (q+G_1) r_1} f(r_1.r_2) e^{i (q+G_2) r_2}
|
|
\\ &&
|
|
f(r_1,r_2) = \frac{1}{(2 \pi)^3} \int_{\rm BZ} dq \, \sum_{G_1,G_2}
|
|
e^{i (q+G_1) r_1} f(q,G_1.G_2) e^{-i (q+G_2) r_2}
|
|
\\ &&
|
|
f(r_1,r_2) = \frac{1}{\Omega} \sum_{q,G_1,G_2}
|
|
e^{i (q+G_1) r_1} f(q,G_1.G_2) e^{-i (q+G_2) r_2}
|
|
\end{eqnarray*}
|
|
|
|
Demonstration:
|
|
\begin{eqnarray*}
|
|
\quad &&
|
|
f(Q_1,Q_2) = \frac{1}{(2 \pi)^3} \int dr_1 dr_2 \, e^{-i Q_1 r_1} f(r_1.r_2) e^{i Q_2 r_2}
|
|
\qquad \textrm{definition fourier transform}
|
|
\\ &&
|
|
f(r_1,r_2) = \frac{1}{(2 \pi)^3} \int dQ_1 dQ_2 \, e^{i Q_1 r_1} f(Q_1.Q_2) e^{-i Q_2 r_2}
|
|
\qquad \textrm{definition inverse fourier transform}
|
|
\\ && \quad
|
|
f(r_1+R,r_2+R) = f(r_1,r_2)
|
|
\qquad \textrm{lattice periodicity}
|
|
\\ && \quad
|
|
\frac{1}{(2 \pi)^3} \int dQ_1 dQ_2 \, e^{i Q_1 (r_1+R)} f(Q_1.Q_2) e^{-i Q_2 (r_2+R)}
|
|
= \frac{1}{(2 \pi)^3} \int dQ_1 dQ_2 \, e^{i Q_1 r_1} f(Q_1.Q_2) e^{-i Q_2 r_2}
|
|
\\ && \quad
|
|
\frac{1}{(2 \pi)^3} \int dq_1 dq_2 \, \sum_{G_1,G_2}
|
|
e^{i (q_1+G_1) (r_1+R)} f(q_1.q_2,G_1,G_2) e^{-i (q_2+G_2) (r_2+R)}
|
|
\\ && \quad
|
|
= \frac{1}{(2 \pi)^3} \int dq_1 dq_2 \, \sum_{G_1,G_2}
|
|
e^{i (q_1+G_1) r_1} f(q_1.q_2,G_1,G_2) e^{-i (q_2+G_2) r_2}
|
|
\\ && \quad
|
|
e^{i G_1 R} = e^{-i G_2 R} = 1
|
|
\\ && \quad
|
|
e^{i (q_1 - q_2) R} = 1 \quad \Rightarrow \quad q_1 = q_2
|
|
\quad \Rightarrow \quad f(q_1.q_2,G_1,G_2) = f(q_1,G_1,G_2) \delta(q_1-q_2)
|
|
\end{eqnarray*}
|
|
|
|
\newpage
|
|
|
|
|
|
\section{Case $q \rightarrow 0, G=0$ for $\rho^2(q,G=0) / q^2$}
|
|
|
|
\[
|
|
F = \frac{1}{\Omega} \sum_q^{\rm BZ} \frac{f(q)}{q^2} =
|
|
\frac{1}{\Omega} f(q=0) I_{\rm SZ} + \frac{1}{\Omega} \sum_{q\ne 0}^{\rm BZ} \frac{f(q)}{q^2}
|
|
\]
|
|
|
|
\[
|
|
I_{\rm SZ} = \frac{\Omega}{(2\pi)^3} \int_{\Omega_{\rm BZ}/N_k} d{\bf q} \frac{1}{q^2} =
|
|
\frac{N_k}{\Omega_{\rm BZ}} \int_{\Omega_{\rm BZ}/N_k} d{\bf q} \frac{1}{q^2}
|
|
\]
|
|
|
|
If we assume a spheric Brillouin zone of volume $V$ and radius $(3 V/4\pi)^{1/3}$:
|
|
\[
|
|
\frac{1}{V} \int_V d{\bf q} \frac{1}{q^2} = \frac{4\pi}{V} \int_0^{(3 V/4\pi)^{1/3}} dq
|
|
= 3^{1/3} (4\pi)^{2/3} V^{-2/3}
|
|
\]
|
|
\[
|
|
I_{\rm SZ} = 7.79 \left( \frac{\Omega_{\rm BZ}}{N_k}\right)^{-2/3}
|
|
\]
|
|
In the case of a Brillouin Zone shape such for an fcc material:
|
|
\[
|
|
I_{\rm SZ} = 7.44 \left( \frac{\Omega_{\rm BZ}}{N_k}\right)^{-2/3}
|
|
\]
|
|
For other materials:
|
|
|
|
sc: 6.188
|
|
|
|
fcc: 7.431
|
|
|
|
bcc: 6.946
|
|
|
|
wz: 5.255 (hcp for ideal u=3/8 wurzite)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
\end{document}
|