abinit/doc/guide/conductivity_paw_manu.tex

71 lines
1.7 KiB
TeX

%\documentclass[superscriptaddress]{revtex4-1}
\documentclass{article}
\begin{document}
%
\title{Conductivity calculations using the PAW formalism }
\author{S. Mazevet, V. Recoules, M. Torrent, et F. Jollet,
{\it D\'epartement de Physique Th\'eorique et Appliqu\'ee,
CEA/DAM \^Ile-de-France,
BP12, 91680 Bruy\`eres-le-Ch\^atel Cedex, France}}
\date{\today}
\vspace{0.5cm}
To perform a conductivity calculation within the PAW formalism you need to first use
a PAW potential and run a ground state calculation with the \textit{prtnabla} variable
set to 1 and \textit{prtwfk=1}.
This calculates the necessary matrix elements and creates a file named filename \_OPT.
The postprocessor \textit{conducti} read the file filename \_OPT and calculate
the electrical and thermal conductivity.
\textit{conducti < filename.files}
where \textit{filename.files} contains the input and output filenames.
\vspace{0.25cm}
\textit{filename.in} contains the following variables in the PAW case:
2 ! 2 for PAW calculations
filename ! generic name of the ground state data files obtained with prtwfk=1
0.073119 0.0000001 5.00 1000 !gaussian width, omega\_min, omega\_max, nbr pts
\vspace{0.5cm}
Warning the conducti input file is for the moment different when used in the
PAW and NCPP modes. With NCPP, the input file is (see \textit{/doc/users/conducti\_manuel.tex})
1 ! 1 for norm-conserving calculations
t78o\_DS3\_1WF4 ! 1st DDK file
t78o\_DS4\_1WF5 ! 2nd DDK file
t78o\_DS5\_1WF6 ! 3rd DDK file
t78o\_DS2\_WFK ! ground state data file obtained with prtwfk=1
9.50049E-04 ! temperature
1.000 ! k point weigth
0.00735 2.0 ! Gaussian and frequency width; omega-max
\end{document}