Dioptas/dioptas/model/MapModel.py

387 lines
13 KiB
Python

# -*- coding: utf-8 -*-
# Dioptas - GUI program for fast processing of 2D X-ray data
# Copyright (C) 2019 Clemens Prescher (clemens.prescher@gmail.com)
# Institute for Geology and Mineralogy, University of Cologne
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program. If not, see <http://www.gnu.org/licenses/>.
from qtpy import QtCore
import numpy as np
import re
from xypattern import Pattern
from .BatchModel import BatchModel
class MapModel(BatchModel):
"""
Model for 2D maps from multiple pattern.
"""
map_changed = QtCore.Signal()
map_cleared = QtCore.Signal()
map_problem = QtCore.Signal()
roi_problem = QtCore.Signal()
def __init__(self, configuration):
super(MapModel, self).__init__(configuration)
self.map = Map()
self.theta_center = 5.9
self.theta_range = 0.
self.rois = []
self.roi_math = ''
self.possible_dimensions = []
self.dimension_index = 0
# Background for image
self.bg_image = np.zeros([1920, 1200])
def reset(self):
self.reset_data()
self.map.reset()
self.reset_rois()
self.possible_dimensions = []
self.map_cleared.emit()
def load_img_map(self, filenames, callback_fn=None):
self.set_image_files(filenames)
self.integrate_raw_data(0, len(filenames), 1, use_all=True, callback_fn=callback_fn)
self.configuration.img_model.blockSignals(True)
for n in range(self.data.shape[0]):
self.add_map_point(None, Pattern(self.binning, self.data[n, :]), img_filename=filenames[n])
self.possible_dimensions = find_possible_dimensions(self.data.shape[0])
self.map.set_manual_positions(0, 0, 1, 1, self.possible_dimensions[0][0], self.possible_dimensions[0][1], True)
self.configuration.img_model.blockSignals(False)
def add_map_point(self, pattern_filename, pattern, position=None, img_filename=None):
"""
Adds a Point to the map.
:param pattern_filename: filename of the corresponding map
:param pattern: Pattern object containing the x and y values of the integrated pattern
:type pattern: Pattern
:param position: tuple with x and y position
:param img_filename: corresponding img filename
"""
self.map.add_point(pattern_filename, pattern, position, img_filename)
def add_roi(self, start, end, name=''):
self.rois.append(Roi(start, end, name))
def reset_rois(self):
self.rois = []
self.roi_math = ''
def calculate_map_data(self):
"""
Calculates the ROI math and creates the map image.
"""
self.map.prepare()
for point in self.map:
sum_roi = {}
for roi in self.rois:
indices_in_roi = roi.ind_in_roi(point.x_data)
sum_roi[roi.name] = np.sum(point.y_data[indices_in_roi])
try:
current_math = self.calculate_roi_math(sum_roi)
except SyntaxError: # needed in case of problem with math
return
self.map.set_image_intensity(point.position, current_math)
self.map_changed.emit()
def create_simple_summing_roi_math(self):
"""
Sets the roi_math to be summing of all ROIs.
"""
self.roi_math = '+'.join([roi.name for roi in self.rois])
def check_roi_math(self):
"""
Returns: False if a ROI in the math string is missing from the Rois
"""
names_in_roi_math = re.findall('([a-zA-Z]+)', self.roi_math)
for name in names_in_roi_math:
if name not in [roi.name for roi in self.rois]:
return False
return True
def calculate_roi_math(self, sum_int):
"""
Evaluates current_roi_math by replacing each ROI name with the sum of the values in that range
:param sum_int: dictionary with ROI names as key and there respective integral sums as values
:return: the result of the roi_math equation
"""
if self.roi_math == '':
self.create_simple_summing_roi_math()
current_roi_math = self.roi_math
for roi_letter in sum_int:
current_roi_math = current_roi_math.replace(roi_letter, str(sum_int[roi_letter]))
return eval(current_roi_math)
def is_empty(self):
return len(self.map) == 0
class Map:
def __init__(self):
self.points = [] # list of MapPoints
self.sorted_points = [] # list of (points index, x, y)
self.sorted_map = [] # list of point indices, xs, ys (has a length of 3)
self.px_per_point_x = 100
self.px_per_point_y = 100
def add_point(self, pattern_filename, pattern, position=None, img_filename=None):
"""
Adds a Point to the map
:param pattern_filename: filename of the corresponding map
:param pattern: Pattern object containing the x and y values of the integrated pattern
:type pattern: Pattern
:param position: tuple with x and y position
:param img_filename: corresponding img filename
"""
self.points.append(MapPoint(pattern_filename, pattern, position, img_filename))
def prepare(self):
"""
Prepares the map for inserting intensities
"""
self._sort_points()
self._get_map_dimensions()
self._create_empty_map()
def _sort_points(self):
"""
Sorts the current points according to x and y positions and saves them in the sorted_points variable.
"""
datalist = []
for ind, point in enumerate(self.points):
datalist.append([ind, point.position[0], point.position[1]])
self.sorted_points = sorted(datalist, key=lambda x: (x[1], x[2]))
self.sorted_map = [[row[i] for row in self.sorted_points] for i in range(len(self.sorted_points[1]))]
def _get_map_dimensions(self):
"""
Uses the sorted points and map to estimate minimum x and y position, the differences between points
"""
self.min_x = self.sorted_map[1][0]
self.min_y = self.sorted_map[2][0]
self.num_x = self.sorted_map[2].count(self.min_y)
self.num_y = self.sorted_map[1].count(self.min_x)
self.diff_x = self.sorted_points[self.num_y][1] - self.sorted_points[0][1]
self.diff_y = self.sorted_points[1][2] - self.sorted_points[0][2]
def _create_empty_map(self):
"""
Uses the estimated map dimension to calculate
"""
self.hor_size = self.px_per_point_x * self.num_x
self.ver_size = self.px_per_point_y * self.num_y
self.um_per_px_in_x = self.diff_x / self.px_per_point_x
self.um_per_px_in_y = self.diff_y / self.px_per_point_y
self.new_image = np.zeros([self.hor_size, self.ver_size])
def all_positions_defined(self):
for point in self.points:
if point.position is None:
return False
return True
def sort_points_by_name(self):
"""
Returns:
sorted_datalist: a list of all the map files, sorted by natural filename
"""
return sorted(self.points, key=lambda point: [int(t) if t.isdigit() else t.lower() for t in
re.split('(\\d+)', point.pattern_filename)])
def set_manual_positions(self, min_x, min_y, diff_x, diff_y, num_x, num_y, is_hor_first):
"""
Args:
min_x: Horizontal minimum position
min_y: Vertical minimum position
diff_x: Step in horizontal
diff_y: Step in vertical
num_x: Number of horizontal positions
num_y: Number of vertical positions
is_hor_first: True of horizontal changes first between files, False if vertical
"""
x_grid = np.linspace(min_x, min_x + diff_x * (num_x - 1), num_x)
y_grid = np.linspace(min_y, min_y + diff_y * (num_y - 1), num_y)
ind = 0
if is_hor_first:
for y in y_grid:
for x in x_grid:
self.points[ind].position = (x, y)
ind += 1
else:
for x in x_grid:
for y in y_grid:
self.points[ind].position = (x, y)
ind += 1
self.min_x = min_x
self.min_y = min_y
self.num_x = num_x
self.num_y = num_y
self.diff_x = diff_x
self.diff_y = diff_y
self._create_empty_map()
self.positions_set_manually = True
def set_image_intensity(self, position, intensity):
range_hor = self.pos_to_range(position[0], self.min_x, self.px_per_point_x, self.diff_x)
range_ver = self.pos_to_range(position[1], self.min_y, self.px_per_point_y, self.diff_y)
self.new_image[range_hor, range_ver] = intensity
def pos_to_range(self, pos, min_pos, px_per_point, diff_pos):
"""
Args:
pos: x or y position of point
min_pos: minimum x or y value map position
px_per_point: pixels to draw for each map point in the corresponding direction
diff_pos: difference in corresponding direction between subsequent map files
Returns:
pos_range: a slice with the start and end pixels for drawing the current map file
"""
range_start = round((pos - min_pos) / diff_pos * px_per_point)
range_end = round(range_start + px_per_point)
pos_range = slice(int(range_start), int(range_end))
return pos_range
def position_from_xy(self, x, y):
"""gives the position in units for a point clicked in the x, y space"""
hor = self.min_x + x // self.px_per_point_x * self.diff_x
ver = self.min_y + y // self.px_per_point_y * self.diff_y
return hor, ver
def filenames_from_position(self, pos):
"""
Gives the filenames for a certain position in the map
:param pos: tuple horizontal and vertical position
:return: (pattern_filename, image_filename)
"""
for point in self.points:
if abs(float(point.position[0]) - pos[0]) < 2E-4 and \
abs(point.position[1] - pos[1]) < 2E-4:
return point.pattern_filename, point.img_filename
return None, None
# dist_sqr = {}
# for filename, filedata in self.map_model.map_data.items():
# dist_sqr[filename] = abs(float(filedata['pos_hor']) - hor) ** 2 + abs(float(filedata['pos_ver']) - ver) ** 2
#
# return min(dist_sqr, key=dist_sqr.get)
def is_empty(self):
return len(self.points) == 0
def __getitem__(self, index):
return self.points[index]
def __len__(self):
return len(self.points)
def reset(self):
self.points = []
self.sorted_points = []
self.sorted_map = []
class MapPoint:
def __init__(self, pattern_filename, pattern, position=None, img_filename=None):
"""
Defines a point in a map.
:param pattern_filename: corresponding pattern filename
:param pattern: corresponding pattern
:type pattern: Pattern
:param position: tuple with the position of the map (x, y)
:param img_filename: corresponding image filename
"""
self.pattern_filename = pattern_filename
self.x_data = pattern.x
self.y_data = pattern.y
self.position = position
self.img_filename = img_filename
class Roi:
def __init__(self, start, end, name=None):
"""
Defines a ROI
:param start: start_value of the ROI
:param end: end_value of the ROI
:param name: name of the ROI
"""
self.start = start
self.end = end
self.name = name
def is_in_roi(self, x):
"""
whether value x is in the ROI
:param x: x-value
:type x: float
:return: True or False
:rtype: bool
"""
return self.start < x < self.end
def ind_in_roi(self, x_array):
"""
Gets the indices of a numpy array which are in the ROI
:param x_array: a numpy array
:return: list of indices
"""
return np.where((x_array > self.start) & (x_array < self.end))[0]
@property
def center(self):
return self.range / 2 + self.start
@property
def range(self):
return self.end - self.start
def find_possible_dimensions(num_points):
dimension_pairs = []
for n in range(1, int(np.floor(np.sqrt(num_points + 1))) + 1):
if num_points % n == 0:
dim1 = n
dim2 = num_points // n
dimension_pairs.append((dim1, dim2))
if dim1 != dim2:
dimension_pairs.append((dim2, dim1))
dimension_pairs.sort(key=lambda x: ((x[0]+x[1])/2 - np.sqrt(num_points)) ** 2)
return dimension_pairs