simplesim-3.0/memory.h

293 lines
12 KiB
C

/* memory.h - flat memory space interfaces */
/* SimpleScalar(TM) Tool Suite
* Copyright (C) 1994-2003 by Todd M. Austin, Ph.D. and SimpleScalar, LLC.
* All Rights Reserved.
*
* THIS IS A LEGAL DOCUMENT, BY USING SIMPLESCALAR,
* YOU ARE AGREEING TO THESE TERMS AND CONDITIONS.
*
* No portion of this work may be used by any commercial entity, or for any
* commercial purpose, without the prior, written permission of SimpleScalar,
* LLC (info@simplescalar.com). Nonprofit and noncommercial use is permitted
* as described below.
*
* 1. SimpleScalar is provided AS IS, with no warranty of any kind, express
* or implied. The user of the program accepts full responsibility for the
* application of the program and the use of any results.
*
* 2. Nonprofit and noncommercial use is encouraged. SimpleScalar may be
* downloaded, compiled, executed, copied, and modified solely for nonprofit,
* educational, noncommercial research, and noncommercial scholarship
* purposes provided that this notice in its entirety accompanies all copies.
* Copies of the modified software can be delivered to persons who use it
* solely for nonprofit, educational, noncommercial research, and
* noncommercial scholarship purposes provided that this notice in its
* entirety accompanies all copies.
*
* 3. ALL COMMERCIAL USE, AND ALL USE BY FOR PROFIT ENTITIES, IS EXPRESSLY
* PROHIBITED WITHOUT A LICENSE FROM SIMPLESCALAR, LLC (info@simplescalar.com).
*
* 4. No nonprofit user may place any restrictions on the use of this software,
* including as modified by the user, by any other authorized user.
*
* 5. Noncommercial and nonprofit users may distribute copies of SimpleScalar
* in compiled or executable form as set forth in Section 2, provided that
* either: (A) it is accompanied by the corresponding machine-readable source
* code, or (B) it is accompanied by a written offer, with no time limit, to
* give anyone a machine-readable copy of the corresponding source code in
* return for reimbursement of the cost of distribution. This written offer
* must permit verbatim duplication by anyone, or (C) it is distributed by
* someone who received only the executable form, and is accompanied by a
* copy of the written offer of source code.
*
* 6. SimpleScalar was developed by Todd M. Austin, Ph.D. The tool suite is
* currently maintained by SimpleScalar LLC (info@simplescalar.com). US Mail:
* 2395 Timbercrest Court, Ann Arbor, MI 48105.
*
* Copyright (C) 1994-2003 by Todd M. Austin, Ph.D. and SimpleScalar, LLC.
*/
#ifndef MEMORY_H
#define MEMORY_H
#include <stdio.h>
#include "host.h"
#include "misc.h"
#include "machine.h"
#include "options.h"
#include "stats.h"
/* number of entries in page translation hash table (must be power-of-two) */
#define MEM_PTAB_SIZE (32*1024)
#define MEM_LOG_PTAB_SIZE 15
/* page table entry */
struct mem_pte_t {
struct mem_pte_t *next; /* next translation in this bucket */
md_addr_t tag; /* virtual page number tag */
byte_t *page; /* page pointer */
};
/* memory object */
struct mem_t {
/* memory object state */
char *name; /* name of this memory space */
struct mem_pte_t *ptab[MEM_PTAB_SIZE];/* inverted page table */
/* memory object stats */
counter_t page_count; /* total number of pages allocated */
counter_t ptab_misses; /* total first level page tbl misses */
counter_t ptab_accesses; /* total page table accesses */
};
/* memory access command */
enum mem_cmd {
Read, /* read memory from target (simulated prog) to host */
Write /* write memory from host (simulator) to target */
};
/* memory access function type, this is a generic function exported for the
purpose of access the simulated vitual memory space */
typedef enum md_fault_type
(*mem_access_fn)(struct mem_t *mem, /* memory space to access */
enum mem_cmd cmd, /* Read or Write */
md_addr_t addr, /* target memory address to access */
void *p, /* where to copy to/from */
int nbytes); /* transfer length in bytes */
/*
* virtual to host page translation macros
*/
/* compute page table set */
#define MEM_PTAB_SET(ADDR) \
(((ADDR) >> MD_LOG_PAGE_SIZE) & (MEM_PTAB_SIZE - 1))
/* compute page table tag */
#define MEM_PTAB_TAG(ADDR) \
((ADDR) >> (MD_LOG_PAGE_SIZE + MEM_LOG_PTAB_SIZE))
/* convert a pte entry at idx to a block address */
#define MEM_PTE_ADDR(PTE, IDX) \
(((PTE)->tag << (MD_LOG_PAGE_SIZE + MEM_LOG_PTAB_SIZE)) \
| ((IDX) << MD_LOG_PAGE_SIZE))
/* locate host page for virtual address ADDR, returns NULL if unallocated */
#define MEM_PAGE(MEM, ADDR) \
(/* first attempt to hit in first entry, otherwise call xlation fn */ \
((MEM)->ptab[MEM_PTAB_SET(ADDR)] \
&& (MEM)->ptab[MEM_PTAB_SET(ADDR)]->tag == MEM_PTAB_TAG(ADDR)) \
? (/* hit - return the page address on host */ \
(MEM)->ptab_accesses++, \
(MEM)->ptab[MEM_PTAB_SET(ADDR)]->page) \
: (/* first level miss - call the translation helper function */ \
mem_translate((MEM), (ADDR))))
/* compute address of access within a host page */
#define MEM_OFFSET(ADDR) ((ADDR) & (MD_PAGE_SIZE - 1))
/* memory tickle function, allocates pages when they are first written */
#define MEM_TICKLE(MEM, ADDR) \
(!MEM_PAGE(MEM, ADDR) \
? (/* allocate page at address ADDR */ \
mem_newpage(MEM, ADDR)) \
: (/* nada... */ (void)0))
/* memory page iterator */
#define MEM_FORALL(MEM, ITER, PTE) \
for ((ITER)=0; (ITER) < MEM_PTAB_SIZE; (ITER)++) \
for ((PTE)=(MEM)->ptab[i]; (PTE) != NULL; (PTE)=(PTE)->next)
/*
* memory accessors macros, fast but difficult to debug...
*/
/* safe version, works only with scalar types */
/* FIXME: write a more efficient GNU C expression for this... */
#define MEM_READ(MEM, ADDR, TYPE) \
(MEM_PAGE(MEM, (md_addr_t)(ADDR)) \
? *((TYPE *)(MEM_PAGE(MEM, (md_addr_t)(ADDR)) + MEM_OFFSET(ADDR))) \
: /* page not yet allocated, return zero value */ 0)
/* unsafe version, works with any type */
#define __UNCHK_MEM_READ(MEM, ADDR, TYPE) \
(*((TYPE *)(MEM_PAGE(MEM, (md_addr_t)(ADDR)) + MEM_OFFSET(ADDR))))
/* safe version, works only with scalar types */
/* FIXME: write a more efficient GNU C expression for this... */
#define MEM_WRITE(MEM, ADDR, TYPE, VAL) \
(MEM_TICKLE(MEM, (md_addr_t)(ADDR)), \
*((TYPE *)(MEM_PAGE(MEM, (md_addr_t)(ADDR)) + MEM_OFFSET(ADDR))) = (VAL))
/* unsafe version, works with any type */
#define __UNCHK_MEM_WRITE(MEM, ADDR, TYPE, VAL) \
(*((TYPE *)(MEM_PAGE(MEM, (md_addr_t)(ADDR)) + MEM_OFFSET(ADDR))) = (VAL))
/* fast memory accessor macros, typed versions */
#define MEM_READ_BYTE(MEM, ADDR) MEM_READ(MEM, ADDR, byte_t)
#define MEM_READ_SBYTE(MEM, ADDR) MEM_READ(MEM, ADDR, sbyte_t)
#define MEM_READ_HALF(MEM, ADDR) MD_SWAPH(MEM_READ(MEM, ADDR, half_t))
#define MEM_READ_SHALF(MEM, ADDR) MD_SWAPH(MEM_READ(MEM, ADDR, shalf_t))
#define MEM_READ_WORD(MEM, ADDR) MD_SWAPW(MEM_READ(MEM, ADDR, word_t))
#define MEM_READ_SWORD(MEM, ADDR) MD_SWAPW(MEM_READ(MEM, ADDR, sword_t))
#ifdef HOST_HAS_QWORD
#define MEM_READ_QWORD(MEM, ADDR) MD_SWAPQ(MEM_READ(MEM, ADDR, qword_t))
#define MEM_READ_SQWORD(MEM, ADDR) MD_SWAPQ(MEM_READ(MEM, ADDR, sqword_t))
#endif /* HOST_HAS_QWORD */
#define MEM_WRITE_BYTE(MEM, ADDR, VAL) MEM_WRITE(MEM, ADDR, byte_t, VAL)
#define MEM_WRITE_SBYTE(MEM, ADDR, VAL) MEM_WRITE(MEM, ADDR, sbyte_t, VAL)
#define MEM_WRITE_HALF(MEM, ADDR, VAL) \
MEM_WRITE(MEM, ADDR, half_t, MD_SWAPH(VAL))
#define MEM_WRITE_SHALF(MEM, ADDR, VAL) \
MEM_WRITE(MEM, ADDR, shalf_t, MD_SWAPH(VAL))
#define MEM_WRITE_WORD(MEM, ADDR, VAL) \
MEM_WRITE(MEM, ADDR, word_t, MD_SWAPW(VAL))
#define MEM_WRITE_SWORD(MEM, ADDR, VAL) \
MEM_WRITE(MEM, ADDR, sword_t, MD_SWAPW(VAL))
#define MEM_WRITE_SFLOAT(MEM, ADDR, VAL) \
MEM_WRITE(MEM, ADDR, sfloat_t, MD_SWAPW(VAL))
#define MEM_WRITE_DFLOAT(MEM, ADDR, VAL) \
MEM_WRITE(MEM, ADDR, dfloat_t, MD_SWAPQ(VAL))
#ifdef HOST_HAS_QWORD
#define MEM_WRITE_QWORD(MEM, ADDR, VAL) \
MEM_WRITE(MEM, ADDR, qword_t, MD_SWAPQ(VAL))
#define MEM_WRITE_SQWORD(MEM, ADDR, VAL) \
MEM_WRITE(MEM, ADDR, sqword_t, MD_SWAPQ(VAL))
#endif /* HOST_HAS_QWORD */
/* create a flat memory space */
struct mem_t *
mem_create(char *name); /* name of the memory space */
/* translate address ADDR in memory space MEM, returns pointer to host page */
byte_t *
mem_translate(struct mem_t *mem, /* memory space to access */
md_addr_t addr); /* virtual address to translate */
/* allocate a memory page */
void
mem_newpage(struct mem_t *mem, /* memory space to allocate in */
md_addr_t addr); /* virtual address to allocate */
/* generic memory access function, it's safe because alignments and permissions
are checked, handles any natural transfer sizes; note, faults out if nbytes
is not a power-of-two or larger then MD_PAGE_SIZE */
enum md_fault_type
mem_access(struct mem_t *mem, /* memory space to access */
enum mem_cmd cmd, /* Read (from sim mem) or Write */
md_addr_t addr, /* target address to access */
void *vp, /* host memory address to access */
int nbytes); /* number of bytes to access */
/* register memory system-specific statistics */
void
mem_reg_stats(struct mem_t *mem, /* memory space to declare */
struct stat_sdb_t *sdb); /* stats data base */
/* initialize memory system, call before loader.c */
void
mem_init(struct mem_t *mem); /* memory space to initialize */
/* dump a block of memory, returns any faults encountered */
enum md_fault_type
mem_dump(struct mem_t *mem, /* memory space to display */
md_addr_t addr, /* target address to dump */
int len, /* number bytes to dump */
FILE *stream); /* output stream */
/*
* memory accessor routines, these routines require a memory access function
* definition to access memory, the memory access function provides a "hook"
* for programs to instrument memory accesses, this is used by various
* simulators for various reasons; for the default operation - direct access
* to the memory system, pass mem_access() as the memory access function
*/
/* copy a '\0' terminated string to/from simulated memory space, returns
the number of bytes copied, returns any fault encountered */
enum md_fault_type
mem_strcpy(mem_access_fn mem_fn, /* user-specified memory accessor */
struct mem_t *mem, /* memory space to access */
enum mem_cmd cmd, /* Read (from sim mem) or Write */
md_addr_t addr, /* target address to access */
char *s); /* host memory string buffer */
/* copy NBYTES to/from simulated memory space, returns any faults */
enum md_fault_type
mem_bcopy(mem_access_fn mem_fn, /* user-specified memory accessor */
struct mem_t *mem, /* memory space to access */
enum mem_cmd cmd, /* Read (from sim mem) or Write */
md_addr_t addr, /* target address to access */
void *vp, /* host memory address to access */
int nbytes); /* number of bytes to access */
/* copy NBYTES to/from simulated memory space, NBYTES must be a multiple
of 4 bytes, this function is faster than mem_bcopy(), returns any
faults encountered */
enum md_fault_type
mem_bcopy4(mem_access_fn mem_fn, /* user-specified memory accessor */
struct mem_t *mem, /* memory space to access */
enum mem_cmd cmd, /* Read (from sim mem) or Write */
md_addr_t addr, /* target address to access */
void *vp, /* host memory address to access */
int nbytes); /* number of bytes to access */
/* zero out NBYTES of simulated memory, returns any faults encountered */
enum md_fault_type
mem_bzero(mem_access_fn mem_fn, /* user-specified memory accessor */
struct mem_t *mem, /* memory space to access */
md_addr_t addr, /* target address to access */
int nbytes); /* number of bytes to clear */
#endif /* MEMORY_H */