simplesim-3.0/sim-fast.c

454 lines
14 KiB
C
Raw Normal View History

2023-03-25 04:25:47 +08:00
/* sim-fast.c - sample fast functional simulator implementation */
/* SimpleScalar(TM) Tool Suite
* Copyright (C) 1994-2003 by Todd M. Austin, Ph.D. and SimpleScalar, LLC.
* All Rights Reserved.
*
* THIS IS A LEGAL DOCUMENT, BY USING SIMPLESCALAR,
* YOU ARE AGREEING TO THESE TERMS AND CONDITIONS.
*
* No portion of this work may be used by any commercial entity, or for any
* commercial purpose, without the prior, written permission of SimpleScalar,
* LLC (info@simplescalar.com). Nonprofit and noncommercial use is permitted
* as described below.
*
* 1. SimpleScalar is provided AS IS, with no warranty of any kind, express
* or implied. The user of the program accepts full responsibility for the
* application of the program and the use of any results.
*
* 2. Nonprofit and noncommercial use is encouraged. SimpleScalar may be
* downloaded, compiled, executed, copied, and modified solely for nonprofit,
* educational, noncommercial research, and noncommercial scholarship
* purposes provided that this notice in its entirety accompanies all copies.
* Copies of the modified software can be delivered to persons who use it
* solely for nonprofit, educational, noncommercial research, and
* noncommercial scholarship purposes provided that this notice in its
* entirety accompanies all copies.
*
* 3. ALL COMMERCIAL USE, AND ALL USE BY FOR PROFIT ENTITIES, IS EXPRESSLY
* PROHIBITED WITHOUT A LICENSE FROM SIMPLESCALAR, LLC (info@simplescalar.com).
*
* 4. No nonprofit user may place any restrictions on the use of this software,
* including as modified by the user, by any other authorized user.
*
* 5. Noncommercial and nonprofit users may distribute copies of SimpleScalar
* in compiled or executable form as set forth in Section 2, provided that
* either: (A) it is accompanied by the corresponding machine-readable source
* code, or (B) it is accompanied by a written offer, with no time limit, to
* give anyone a machine-readable copy of the corresponding source code in
* return for reimbursement of the cost of distribution. This written offer
* must permit verbatim duplication by anyone, or (C) it is distributed by
* someone who received only the executable form, and is accompanied by a
* copy of the written offer of source code.
*
* 6. SimpleScalar was developed by Todd M. Austin, Ph.D. The tool suite is
* currently maintained by SimpleScalar LLC (info@simplescalar.com). US Mail:
* 2395 Timbercrest Court, Ann Arbor, MI 48105.
*
* Copyright (C) 1994-2003 by Todd M. Austin, Ph.D. and SimpleScalar, LLC.
*/
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
/*
* This file implements a very fast functional simulator. This functional
* simulator implementation is much more difficult to digest than the simpler,
* cleaner sim-safe functional simulator. By default, this simulator performs
* no instruction error checking, as a result, any instruction errors will
* manifest as simulator execution errors, possibly causing sim-fast to
* execute incorrectly or dump core. Such is the price we pay for speed!!!!
*
* The following options configure the bag of tricks used to make sim-fast
* live up to its name. For most machines, defining all the options results
* in the fastest functional simulator.
*/
/* don't count instructions flag, enabled by default, disable for inst count */
#undef NO_INSN_COUNT
#ifdef __GNUC__
/* faster dispatch mechanism, requires GNU GCC C extensions, CAVEAT: some
versions of GNU GCC core dump when optimizing the jump table code with
optimization levels higher than -O1 */
/* #define USE_JUMP_TABLE */
#endif /* __GNUC__ */
#include "host.h"
#include "misc.h"
#include "machine.h"
#include "regs.h"
#include "memory.h"
#include "loader.h"
#include "syscall.h"
#include "dlite.h"
#include "sim.h"
/* simulated registers */
static struct regs_t regs;
/* simulated memory */
static struct mem_t *mem = NULL;
#ifdef TARGET_ALPHA
/* predecoded text memory */
static struct mem_t *dec = NULL;
#endif
/* register simulator-specific options */
void
sim_reg_options(struct opt_odb_t *odb)
{
opt_reg_header(odb,
"sim-fast: This simulator implements a very fast functional simulator. This\n"
"functional simulator implementation is much more difficult to digest than\n"
"the simpler, cleaner sim-safe functional simulator. By default, this\n"
"simulator performs no instruction error checking, as a result, any\n"
"instruction errors will manifest as simulator execution errors, possibly\n"
"causing sim-fast to execute incorrectly or dump core. Such is the\n"
"price we pay for speed!!!!\n"
);
}
/* check simulator-specific option values */
void
sim_check_options(struct opt_odb_t *odb, int argc, char **argv)
{
if (dlite_active)
fatal("sim-fast does not support DLite debugging");
}
/* register simulator-specific statistics */
void
sim_reg_stats(struct stat_sdb_t *sdb)
{
#ifndef NO_INSN_COUNT
stat_reg_counter(sdb, "sim_num_insn",
"total number of instructions executed",
&sim_num_insn, sim_num_insn, NULL);
#endif /* !NO_INSN_COUNT */
stat_reg_int(sdb, "sim_elapsed_time",
"total simulation time in seconds",
&sim_elapsed_time, 0, NULL);
#ifndef NO_INSN_COUNT
stat_reg_formula(sdb, "sim_inst_rate",
"simulation speed (in insts/sec)",
"sim_num_insn / sim_elapsed_time", NULL);
#endif /* !NO_INSN_COUNT */
ld_reg_stats(sdb);
mem_reg_stats(mem, sdb);
#ifdef TARGET_ALPHA
mem_reg_stats(dec, sdb);
#endif
}
/* initialize the simulator */
void
sim_init(void)
{
/* allocate and initialize register file */
regs_init(&regs);
/* allocate and initialize memory space */
mem = mem_create("mem");
mem_init(mem);
}
/* load program into simulated state */
void
sim_load_prog(char *fname, /* program to load */
int argc, char **argv, /* program arguments */
char **envp) /* program environment */
{
/* load program text and data, set up environment, memory, and regs */
ld_load_prog(fname, argc, argv, envp, &regs, mem, TRUE);
#ifdef TARGET_ALPHA
/* pre-decode text segment */
{
unsigned i, num_insn = (ld_text_size + 3) / 4;
fprintf(stderr, "** pre-decoding %u insts...", num_insn);
/* allocate decoded text space */
dec = mem_create("dec");
for (i=0; i < num_insn; i++)
{
enum md_opcode op;
md_inst_t inst;
md_addr_t PC;
/* compute PC */
PC = ld_text_base + i * sizeof(md_inst_t);
/* get instruction from memory */
MD_FETCH_INST(inst, mem, PC);
/* decode the instruction */
MD_SET_OPCODE(op, inst);
/* insert into decoded opcode space */
MEM_WRITE_WORD(dec, PC << 1, (word_t)op);
MEM_WRITE_WORD(dec, (PC << 1)+sizeof(word_t), inst);
}
fprintf(stderr, "done\n");
}
#endif /* TARGET_ALPHA */
}
/* print simulator-specific configuration information */
void
sim_aux_config(FILE *stream)
{
/* nothing currently */
}
/* dump simulator-specific auxiliary simulator statistics */
void
sim_aux_stats(FILE *stream)
{
/* nada */
}
/* un-initialize simulator-specific state */
void
sim_uninit(void)
{
/* nada */
}
/*
* configure the execution engine
*/
/* next program counter */
#define SET_NPC(EXPR) (regs.regs_NPC = (EXPR))
/* current program counter */
#define CPC (regs.regs_PC)
/* general purpose registers */
#define GPR(N) (regs.regs_R[N])
#define SET_GPR(N,EXPR) (regs.regs_R[N] = (EXPR))
#if defined(TARGET_PISA)
/* floating point registers, L->word, F->single-prec, D->double-prec */
#define FPR_L(N) (regs.regs_F.l[(N)])
#define SET_FPR_L(N,EXPR) (regs.regs_F.l[(N)] = (EXPR))
#define FPR_F(N) (regs.regs_F.f[(N)])
#define SET_FPR_F(N,EXPR) (regs.regs_F.f[(N)] = (EXPR))
#define FPR_D(N) (regs.regs_F.d[(N) >> 1])
#define SET_FPR_D(N,EXPR) (regs.regs_F.d[(N) >> 1] = (EXPR))
/* miscellaneous register accessors */
#define SET_HI(EXPR) (regs.regs_C.hi = (EXPR))
#define HI (regs.regs_C.hi)
#define SET_LO(EXPR) (regs.regs_C.lo = (EXPR))
#define LO (regs.regs_C.lo)
#define FCC (regs.regs_C.fcc)
#define SET_FCC(EXPR) (regs.regs_C.fcc = (EXPR))
#elif defined(TARGET_ALPHA)
/* floating point registers, L->word, F->single-prec, D->double-prec */
#define FPR_Q(N) (regs.regs_F.q[N])
#define SET_FPR_Q(N,EXPR) (regs.regs_F.q[N] = (EXPR))
#define FPR(N) (regs.regs_F.d[N])
#define SET_FPR(N,EXPR) (regs.regs_F.d[N] = (EXPR))
/* miscellaneous register accessors */
#define FPCR (regs.regs_C.fpcr)
#define SET_FPCR(EXPR) (regs.regs_C.fpcr = (EXPR))
#define UNIQ (regs.regs_C.uniq)
#define SET_UNIQ(EXPR) (regs.regs_C.uniq = (EXPR))
#else
#error No ISA target defined...
#endif
/* precise architected memory state accessor macros */
#define READ_BYTE(SRC, FAULT) \
((FAULT) = md_fault_none, MEM_READ_BYTE(mem, (SRC)))
#define READ_HALF(SRC, FAULT) \
((FAULT) = md_fault_none, MEM_READ_HALF(mem, (SRC)))
#define READ_WORD(SRC, FAULT) \
((FAULT) = md_fault_none, MEM_READ_WORD(mem, (SRC)))
#ifdef HOST_HAS_QWORD
#define READ_QWORD(SRC, FAULT) \
((FAULT) = md_fault_none, MEM_READ_QWORD(mem, (SRC)))
#endif /* HOST_HAS_QWORD */
#define WRITE_BYTE(SRC, DST, FAULT) \
((FAULT) = md_fault_none, MEM_WRITE_BYTE(mem, (DST), (SRC)))
#define WRITE_HALF(SRC, DST, FAULT) \
((FAULT) = md_fault_none, MEM_WRITE_HALF(mem, (DST), (SRC)))
#define WRITE_WORD(SRC, DST, FAULT) \
((FAULT) = md_fault_none, MEM_WRITE_WORD(mem, (DST), (SRC)))
#ifdef HOST_HAS_QWORD
#define WRITE_QWORD(SRC, DST, FAULT) \
((FAULT) = md_fault_none, MEM_WRITE_QWORD(mem, (DST), (SRC)))
#endif /* HOST_HAS_QWORD */
/* system call handler macro */
#define SYSCALL(INST) sys_syscall(&regs, mem_access, mem, INST, TRUE)
#ifndef NO_INSN_COUNT
#define INC_INSN_CTR() sim_num_insn++
#else /* !NO_INSN_COUNT */
#define INC_INSN_CTR() /* nada */
#endif /* NO_INSN_COUNT */
#ifdef TARGET_ALPHA
#define ZERO_FP_REG() regs.regs_F.d[MD_REG_ZERO] = 0.0
#else
#define ZERO_FP_REG() /* nada... */
#endif
/* start simulation, program loaded, processor precise state initialized */
void
sim_main(void)
{
#ifdef USE_JUMP_TABLE
/* the jump table employs GNU GCC label extensions to construct an array
of pointers to instruction implementation code, the simulator then uses
the table to lookup the location of instruction's implementing code, a
GNU GCC `goto' extension is then used to jump to the inst's implementing
code through the op_jump table; as a result, there is no need for
a main simulator loop, which eliminates one branch from the simulator
interpreter - crazy, no!?!? */
/* instruction jump table, this code is GNU GCC specific */
static void *op_jump[/* max opcodes */] = {
&&opcode_NA, /* NA */
#define DEFINST(OP,MSK,NAME,OPFORM,RES,FLAGS,O1,O2,I1,I2,I3) \
&&opcode_##OP,
#define DEFLINK(OP,MSK,NAME,MASK,SHIFT) \
&&opcode_##OP,
#define CONNECT(OP)
#include "machine.def"
};
#endif /* USE_JUMP_TABLE */
/* register allocate instruction buffer */
register md_inst_t inst;
/* decoded opcode */
register enum md_opcode op;
fprintf(stderr, "sim: ** starting *fast* functional simulation **\n");
/* must have natural byte/word ordering */
if (sim_swap_bytes || sim_swap_words)
fatal("sim: *fast* functional simulation cannot swap bytes or words");
#ifdef USE_JUMP_TABLE
regs.regs_NPC = regs.regs_PC;
/* load instruction */
MD_FETCH_INST(inst, mem, regs.regs_NPC);
/* jump to instruction implementation */
MD_SET_OPCODE(op, inst);
goto *op_jump[op];
#define DEFINST(OP,MSK,NAME,OPFORM,RES,FLAGS,O1,O2,I1,I2,I3) \
opcode_##OP: \
/* maintain $r0 semantics */ \
regs.regs_R[MD_REG_ZERO] = 0; \
ZERO_FP_REG(); \
\
/* keep an instruction count */ \
INC_INSN_CTR(); \
\
/* locate next instruction */ \
regs.regs_PC = regs.regs_NPC; \
\
/* set up default next PC */ \
regs.regs_NPC += sizeof(md_inst_t); \
\
/* execute the instruction */ \
SYMCAT(OP,_IMPL); \
\
/* get the next instruction */ \
MD_FETCH_INST(inst, mem, regs.regs_NPC); \
\
/* jump to instruction implementation */ \
MD_SET_OPCODE(op, inst); \
goto *op_jump[op];
#define DEFLINK(OP,MSK,NAME,MASK,SHIFT) \
opcode_##OP: \
panic("attempted to execute a linking opcode");
#define CONNECT(OP)
#define DECLARE_FAULT(FAULT) \
{ /* uncaught... */break; }
#include "machine.def"
opcode_NA:
panic("attempted to execute a bogus opcode");
/* should not get here... */
panic("exited sim-fast main loop");
#else /* !USE_JUMP_TABLE */
/* set up initial default next PC */
regs.regs_NPC = regs.regs_PC + sizeof(md_inst_t);
while (TRUE)
{
/* maintain $r0 semantics */
regs.regs_R[MD_REG_ZERO] = 0;
#ifdef TARGET_ALPHA
regs.regs_F.d[MD_REG_ZERO] = 0.0;
#endif /* TARGET_ALPHA */
/* keep an instruction count */
#ifndef NO_INSN_COUNT
sim_num_insn++;
#endif /* !NO_INSN_COUNT */
#ifdef TARGET_ALPHA
/* load predecoded instruction */
op = (enum md_opcode)__UNCHK_MEM_READ(dec, regs.regs_PC << 1, word_t);
inst =
__UNCHK_MEM_READ(dec, (regs.regs_PC << 1)+sizeof(word_t), md_inst_t);
#else /* !TARGET_ALPHA */
/* load instruction */
MD_FETCH_INST(inst, mem, regs.regs_PC);
/* decode the instruction */
MD_SET_OPCODE(op, inst);
#endif
/* execute the instruction */
switch (op)
{
#define DEFINST(OP,MSK,NAME,OPFORM,RES,FLAGS,O1,O2,I1,I2,I3) \
case OP: \
SYMCAT(OP,_IMPL); \
break;
#define DEFLINK(OP,MSK,NAME,MASK,SHIFT) \
case OP: \
panic("attempted to execute a linking opcode");
#define CONNECT(OP)
#define DECLARE_FAULT(FAULT) \
{ /* uncaught... */break; }
#include "machine.def"
default:
panic("attempted to execute a bogus opcode");
}
/* execute next instruction */
regs.regs_PC = regs.regs_NPC;
regs.regs_NPC += sizeof(md_inst_t);
}
#endif /* USE_JUMP_TABLE */
}