hanchenye-llvm-project/llvm/lib/Target/X86/X86RegisterInfo.td

530 lines
20 KiB
TableGen

//===- X86RegisterInfo.td - Describe the X86 Register File --*- tablegen -*-==//
//
// The LLVM Compiler Infrastructure
//
// This file was developed by the LLVM research group and is distributed under
// the University of Illinois Open Source License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file describes the X86 Register file, defining the registers themselves,
// aliases between the registers, and the register classes built out of the
// registers.
//
//===----------------------------------------------------------------------===//
//===----------------------------------------------------------------------===//
// Register definitions...
//
let Namespace = "X86" in {
// In the register alias definitions below, we define which registers alias
// which others. We only specify which registers the small registers alias,
// because the register file generator is smart enough to figure out that
// AL aliases AX if we tell it that AX aliased AL (for example).
// Dwarf numbering is different for 32-bit and 64-bit, and there are
// variations by target as well. Thus it is not encoded here;
// see X86RegisterInfo::getDwarfRegNum.
// 8-bit registers
// Low registers
def AL : Register<"AL">;
def DL : Register<"DL">;
def CL : Register<"CL">;
def BL : Register<"BL">;
// X86-64 only
def SIL : Register<"SIL">;
def DIL : Register<"DIL">;
def BPL : Register<"BPL">;
def SPL : Register<"SPL">;
def R8B : Register<"R8B">;
def R9B : Register<"R9B">;
def R10B : Register<"R10B">;
def R11B : Register<"R11B">;
def R12B : Register<"R12B">;
def R13B : Register<"R13B">;
def R14B : Register<"R14B">;
def R15B : Register<"R15B">;
// High registers X86-32 only
def AH : Register<"AH">;
def DH : Register<"DH">;
def CH : Register<"CH">;
def BH : Register<"BH">;
// 16-bit registers
def AX : RegisterWithSubRegs<"AX", [AH,AL]>;
def DX : RegisterWithSubRegs<"DX", [DH,DL]>;
def CX : RegisterWithSubRegs<"CX", [CH,CL]>;
def BX : RegisterWithSubRegs<"BX", [BH,BL]>;
def SI : RegisterWithSubRegs<"SI", [SIL]>;
def DI : RegisterWithSubRegs<"DI", [DIL]>;
def BP : RegisterWithSubRegs<"BP", [BPL]>;
def SP : RegisterWithSubRegs<"SP", [SPL]>;
def IP : Register<"IP">;
// X86-64 only
def R8W : RegisterWithSubRegs<"R8W", [R8B]>;
def R9W : RegisterWithSubRegs<"R9W", [R9B]>;
def R10W : RegisterWithSubRegs<"R10W", [R10B]>;
def R11W : RegisterWithSubRegs<"R11W", [R11B]>;
def R12W : RegisterWithSubRegs<"R12W", [R12B]>;
def R13W : RegisterWithSubRegs<"R13W", [R13B]>;
def R14W : RegisterWithSubRegs<"R14W", [R14B]>;
def R15W : RegisterWithSubRegs<"R15W", [R15B]>;
// 32-bit registers
def EAX : RegisterWithSubRegs<"EAX", [AX]>;
def EDX : RegisterWithSubRegs<"EDX", [DX]>;
def ECX : RegisterWithSubRegs<"ECX", [CX]>;
def EBX : RegisterWithSubRegs<"EBX", [BX]>;
def ESI : RegisterWithSubRegs<"ESI", [SI]>;
def EDI : RegisterWithSubRegs<"EDI", [DI]>;
def EBP : RegisterWithSubRegs<"EBP", [BP]>;
def ESP : RegisterWithSubRegs<"ESP", [SP]>;
def EIP : RegisterWithSubRegs<"EIP", [IP]>;
// X86-64 only
def R8D : RegisterWithSubRegs<"R8D", [R8W]>;
def R9D : RegisterWithSubRegs<"R9D", [R9W]>;
def R10D : RegisterWithSubRegs<"R10D", [R10W]>;
def R11D : RegisterWithSubRegs<"R11D", [R11W]>;
def R12D : RegisterWithSubRegs<"R12D", [R12W]>;
def R13D : RegisterWithSubRegs<"R13D", [R13W]>;
def R14D : RegisterWithSubRegs<"R14D", [R14W]>;
def R15D : RegisterWithSubRegs<"R15D", [R15W]>;
// 64-bit registers, X86-64 only
def RAX : RegisterWithSubRegs<"RAX", [EAX]>;
def RDX : RegisterWithSubRegs<"RDX", [EDX]>;
def RCX : RegisterWithSubRegs<"RCX", [ECX]>;
def RBX : RegisterWithSubRegs<"RBX", [EBX]>;
def RSI : RegisterWithSubRegs<"RSI", [ESI]>;
def RDI : RegisterWithSubRegs<"RDI", [EDI]>;
def RBP : RegisterWithSubRegs<"RBP", [EBP]>;
def RSP : RegisterWithSubRegs<"RSP", [ESP]>;
def R8 : RegisterWithSubRegs<"R8", [R8D]>;
def R9 : RegisterWithSubRegs<"R9", [R9D]>;
def R10 : RegisterWithSubRegs<"R10", [R10D]>;
def R11 : RegisterWithSubRegs<"R11", [R11D]>;
def R12 : RegisterWithSubRegs<"R12", [R12D]>;
def R13 : RegisterWithSubRegs<"R13", [R13D]>;
def R14 : RegisterWithSubRegs<"R14", [R14D]>;
def R15 : RegisterWithSubRegs<"R15", [R15D]>;
def RIP : RegisterWithSubRegs<"RIP", [EIP]>;
// MMX Registers. These are actually aliased to ST0 .. ST7
def MM0 : Register<"MM0">;
def MM1 : Register<"MM1">;
def MM2 : Register<"MM2">;
def MM3 : Register<"MM3">;
def MM4 : Register<"MM4">;
def MM5 : Register<"MM5">;
def MM6 : Register<"MM6">;
def MM7 : Register<"MM7">;
// Pseudo Floating Point registers
def FP0 : Register<"FP0">;
def FP1 : Register<"FP1">;
def FP2 : Register<"FP2">;
def FP3 : Register<"FP3">;
def FP4 : Register<"FP4">;
def FP5 : Register<"FP5">;
def FP6 : Register<"FP6">;
// XMM Registers, used by the various SSE instruction set extensions
def XMM0: Register<"XMM0">;
def XMM1: Register<"XMM1">;
def XMM2: Register<"XMM2">;
def XMM3: Register<"XMM3">;
def XMM4: Register<"XMM4">;
def XMM5: Register<"XMM5">;
def XMM6: Register<"XMM6">;
def XMM7: Register<"XMM7">;
// X86-64 only
def XMM8: Register<"XMM8">;
def XMM9: Register<"XMM9">;
def XMM10: Register<"XMM10">;
def XMM11: Register<"XMM11">;
def XMM12: Register<"XMM12">;
def XMM13: Register<"XMM13">;
def XMM14: Register<"XMM14">;
def XMM15: Register<"XMM15">;
// Floating point stack registers
def ST0 : Register<"ST(0)">;
def ST1 : Register<"ST(1)">;
def ST2 : Register<"ST(2)">;
def ST3 : Register<"ST(3)">;
def ST4 : Register<"ST(4)">;
def ST5 : Register<"ST(5)">;
def ST6 : Register<"ST(6)">;
def ST7 : Register<"ST(7)">;
// Status flags register
def EFLAGS : Register<"EFLAGS">;
}
//===----------------------------------------------------------------------===//
// Subregister Set Definitions... now that we have all of the pieces, define the
// sub registers for each register.
//
def : SubRegSet<1, [AX, CX, DX, BX, SP, BP, SI, DI,
R8W, R9W, R10W, R11W, R12W, R13W, R14W, R15W],
[AL, CL, DL, BL, SPL, BPL, SIL, DIL,
R8B, R9B, R10B, R11B, R12B, R13B, R14B, R15B]>;
// It's unclear if this subreg set is safe, given that not all registers
// in the class have an 'H' subreg.
// def : SubRegSet<2, [AX, CX, DX, BX],
// [AH, CH, DH, BH]>;
def : SubRegSet<1, [EAX, ECX, EDX, EBX, ESP, EBP, ESI, EDI,
R8D, R9D, R10D, R11D, R12D, R13D, R14D, R15D],
[AL, CL, DL, BL, SPL, BPL, SIL, DIL,
R8B, R9B, R10B, R11B, R12B, R13B, R14B, R15B]>;
def : SubRegSet<2, [EAX, ECX, EDX, EBX, ESP, EBP, ESI, EDI,
R8D, R9D, R10D, R11D, R12D, R13D, R14D, R15D],
[AX, CX, DX, BX, SP, BP, SI, DI,
R8W, R9W, R10W, R11W, R12W, R13W, R14W, R15W]>;
def : SubRegSet<1, [RAX, RCX, RDX, RBX, RSP, RBP, RSI, RDI,
R8, R9, R10, R11, R12, R13, R14, R15],
[AL, CL, DL, BL, SPL, BPL, SIL, DIL,
R8B, R9B, R10B, R11B, R12B, R13B, R14B, R15B]>;
def : SubRegSet<2, [RAX, RCX, RDX, RBX, RSP, RBP, RSI, RDI,
R8, R9, R10, R11, R12, R13, R14, R15],
[AX, CX, DX, BX, SP, BP, SI, DI,
R8W, R9W, R10W, R11W, R12W, R13W, R14W, R15W]>;
def : SubRegSet<3, [RAX, RCX, RDX, RBX, RSP, RBP, RSI, RDI,
R8, R9, R10, R11, R12, R13, R14, R15],
[EAX, ECX, EDX, EBX, ESP, EBP, ESI, EDI,
R8D, R9D, R10D, R11D, R12D, R13D, R14D, R15D]>;
//===----------------------------------------------------------------------===//
// Register Class Definitions... now that we have all of the pieces, define the
// top-level register classes. The order specified in the register list is
// implicitly defined to be the register allocation order.
//
// List call-clobbered registers before callee-save registers. RBX, RBP, (and
// R12, R13, R14, and R15 for X86-64) are callee-save registers.
// In 64-mode, there are 12 additional i8 registers, SIL, DIL, BPL, SPL, and
// R8B, ... R15B.
// FIXME: Allow AH, CH, DH, BH in 64-mode for non-REX instructions,
def GR8 : RegisterClass<"X86", [i8], 8,
[AL, CL, DL, BL, AH, CH, DH, BH, SIL, DIL, BPL, SPL,
R8B, R9B, R10B, R11B, R12B, R13B, R14B, R15B]> {
let MethodProtos = [{
iterator allocation_order_begin(const MachineFunction &MF) const;
iterator allocation_order_end(const MachineFunction &MF) const;
}];
let MethodBodies = [{
// Does the function dedicate RBP / EBP to being a frame ptr?
// If so, don't allocate SPL or BPL.
static const unsigned X86_GR8_AO_64_fp[] =
{X86::AL, X86::CL, X86::DL, X86::SIL, X86::DIL,
X86::R8B, X86::R9B, X86::R10B, X86::R11B,
X86::BL, X86::R14B, X86::R15B, X86::R12B, X86::R13B};
// If not, just don't allocate SPL.
static const unsigned X86_GR8_AO_64[] =
{X86::AL, X86::CL, X86::DL, X86::SIL, X86::DIL,
X86::R8B, X86::R9B, X86::R10B, X86::R11B,
X86::BL, X86::R14B, X86::R15B, X86::R12B, X86::R13B, X86::BPL};
// In 32-mode, none of the 8-bit registers aliases EBP or ESP.
static const unsigned X86_GR8_AO_32[] =
{X86::AL, X86::CL, X86::DL, X86::AH, X86::CH, X86::DH, X86::BL, X86::BH};
GR8Class::iterator
GR8Class::allocation_order_begin(const MachineFunction &MF) const {
const TargetMachine &TM = MF.getTarget();
const MRegisterInfo *RI = TM.getRegisterInfo();
const X86Subtarget &Subtarget = TM.getSubtarget<X86Subtarget>();
if (!Subtarget.is64Bit())
return X86_GR8_AO_32;
else if (RI->hasFP(MF))
return X86_GR8_AO_64_fp;
else
return X86_GR8_AO_64;
}
GR8Class::iterator
GR8Class::allocation_order_end(const MachineFunction &MF) const {
const TargetMachine &TM = MF.getTarget();
const MRegisterInfo *RI = TM.getRegisterInfo();
const X86Subtarget &Subtarget = TM.getSubtarget<X86Subtarget>();
if (!Subtarget.is64Bit())
return X86_GR8_AO_32 + (sizeof(X86_GR8_AO_32) / sizeof(unsigned));
else if (RI->hasFP(MF))
return X86_GR8_AO_64_fp + (sizeof(X86_GR8_AO_64_fp) / sizeof(unsigned));
else
return X86_GR8_AO_64 + (sizeof(X86_GR8_AO_64) / sizeof(unsigned));
}
}];
}
def GR16 : RegisterClass<"X86", [i16], 16,
[AX, CX, DX, SI, DI, BX, BP, SP,
R8W, R9W, R10W, R11W, R12W, R13W, R14W, R15W]> {
let SubRegClassList = [GR8];
let MethodProtos = [{
iterator allocation_order_begin(const MachineFunction &MF) const;
iterator allocation_order_end(const MachineFunction &MF) const;
}];
let MethodBodies = [{
// Does the function dedicate RBP / EBP to being a frame ptr?
// If so, don't allocate SP or BP.
static const unsigned X86_GR16_AO_64_fp[] =
{X86::AX, X86::CX, X86::DX, X86::SI, X86::DI,
X86::R8W, X86::R9W, X86::R10W, X86::R11W,
X86::BX, X86::R14W, X86::R15W, X86::R12W, X86::R13W};
static const unsigned X86_GR16_AO_32_fp[] =
{X86::AX, X86::CX, X86::DX, X86::SI, X86::DI, X86::BX};
// If not, just don't allocate SPL.
static const unsigned X86_GR16_AO_64[] =
{X86::AX, X86::CX, X86::DX, X86::SI, X86::DI,
X86::R8W, X86::R9W, X86::R10W, X86::R11W,
X86::BX, X86::R14W, X86::R15W, X86::R12W, X86::R13W, X86::BP};
static const unsigned X86_GR16_AO_32[] =
{X86::AX, X86::CX, X86::DX, X86::SI, X86::DI, X86::BX, X86::BP};
GR16Class::iterator
GR16Class::allocation_order_begin(const MachineFunction &MF) const {
const TargetMachine &TM = MF.getTarget();
const MRegisterInfo *RI = TM.getRegisterInfo();
const X86Subtarget &Subtarget = TM.getSubtarget<X86Subtarget>();
if (Subtarget.is64Bit()) {
if (RI->hasFP(MF))
return X86_GR16_AO_64_fp;
else
return X86_GR16_AO_64;
} else {
if (RI->hasFP(MF))
return X86_GR16_AO_32_fp;
else
return X86_GR16_AO_32;
}
}
GR16Class::iterator
GR16Class::allocation_order_end(const MachineFunction &MF) const {
const TargetMachine &TM = MF.getTarget();
const MRegisterInfo *RI = TM.getRegisterInfo();
const X86Subtarget &Subtarget = TM.getSubtarget<X86Subtarget>();
if (Subtarget.is64Bit()) {
if (RI->hasFP(MF))
return X86_GR16_AO_64_fp+(sizeof(X86_GR16_AO_64_fp)/sizeof(unsigned));
else
return X86_GR16_AO_64 + (sizeof(X86_GR16_AO_64) / sizeof(unsigned));
} else {
if (RI->hasFP(MF))
return X86_GR16_AO_32_fp+(sizeof(X86_GR16_AO_32_fp)/sizeof(unsigned));
else
return X86_GR16_AO_32 + (sizeof(X86_GR16_AO_32) / sizeof(unsigned));
}
}
}];
}
def GR32 : RegisterClass<"X86", [i32], 32,
[EAX, ECX, EDX, ESI, EDI, EBX, EBP, ESP,
R8D, R9D, R10D, R11D, R12D, R13D, R14D, R15D]> {
let SubRegClassList = [GR8, GR16];
let MethodProtos = [{
iterator allocation_order_begin(const MachineFunction &MF) const;
iterator allocation_order_end(const MachineFunction &MF) const;
}];
let MethodBodies = [{
// Does the function dedicate RBP / EBP to being a frame ptr?
// If so, don't allocate ESP or EBP.
static const unsigned X86_GR32_AO_64_fp[] =
{X86::EAX, X86::ECX, X86::EDX, X86::ESI, X86::EDI,
X86::R8D, X86::R9D, X86::R10D, X86::R11D,
X86::EBX, X86::R14D, X86::R15D, X86::R12D, X86::R13D};
static const unsigned X86_GR32_AO_32_fp[] =
{X86::EAX, X86::ECX, X86::EDX, X86::ESI, X86::EDI, X86::EBX};
// If not, just don't allocate SPL.
static const unsigned X86_GR32_AO_64[] =
{X86::EAX, X86::ECX, X86::EDX, X86::ESI, X86::EDI,
X86::R8D, X86::R9D, X86::R10D, X86::R11D,
X86::EBX, X86::R14D, X86::R15D, X86::R12D, X86::R13D, X86::EBP};
static const unsigned X86_GR32_AO_32[] =
{X86::EAX, X86::ECX, X86::EDX, X86::ESI, X86::EDI, X86::EBX, X86::EBP};
GR32Class::iterator
GR32Class::allocation_order_begin(const MachineFunction &MF) const {
const TargetMachine &TM = MF.getTarget();
const MRegisterInfo *RI = TM.getRegisterInfo();
const X86Subtarget &Subtarget = TM.getSubtarget<X86Subtarget>();
if (Subtarget.is64Bit()) {
if (RI->hasFP(MF))
return X86_GR32_AO_64_fp;
else
return X86_GR32_AO_64;
} else {
if (RI->hasFP(MF))
return X86_GR32_AO_32_fp;
else
return X86_GR32_AO_32;
}
}
GR32Class::iterator
GR32Class::allocation_order_end(const MachineFunction &MF) const {
const TargetMachine &TM = MF.getTarget();
const MRegisterInfo *RI = TM.getRegisterInfo();
const X86Subtarget &Subtarget = TM.getSubtarget<X86Subtarget>();
if (Subtarget.is64Bit()) {
if (RI->hasFP(MF))
return X86_GR32_AO_64_fp+(sizeof(X86_GR32_AO_64_fp)/sizeof(unsigned));
else
return X86_GR32_AO_64 + (sizeof(X86_GR32_AO_64) / sizeof(unsigned));
} else {
if (RI->hasFP(MF))
return X86_GR32_AO_32_fp+(sizeof(X86_GR32_AO_32_fp)/sizeof(unsigned));
else
return X86_GR32_AO_32 + (sizeof(X86_GR32_AO_32) / sizeof(unsigned));
}
}
}];
}
def GR64 : RegisterClass<"X86", [i64], 64,
[RAX, RCX, RDX, RSI, RDI, R8, R9, R10, R11,
RBX, R14, R15, R12, R13, RBP, RSP]> {
let SubRegClassList = [GR8, GR16, GR32];
let MethodProtos = [{
iterator allocation_order_end(const MachineFunction &MF) const;
}];
let MethodBodies = [{
GR64Class::iterator
GR64Class::allocation_order_end(const MachineFunction &MF) const {
const TargetMachine &TM = MF.getTarget();
const MRegisterInfo *RI = TM.getRegisterInfo();
if (RI->hasFP(MF)) // Does the function dedicate RBP to being a frame ptr?
return end()-2; // If so, don't allocate RSP or RBP
else
return end()-1; // If not, just don't allocate RSP
}
}];
}
// GR16, GR32 subclasses which contain registers that have GR8 sub-registers.
// These should only be used for 32-bit mode.
def GR16_ : RegisterClass<"X86", [i16], 16, [AX, CX, DX, BX]> {
let SubRegClassList = [GR8];
}
def GR32_ : RegisterClass<"X86", [i32], 32, [EAX, ECX, EDX, EBX]> {
let SubRegClassList = [GR8, GR16];
}
// Scalar SSE2 floating point registers.
def FR32 : RegisterClass<"X86", [f32], 32,
[XMM0, XMM1, XMM2, XMM3, XMM4, XMM5, XMM6, XMM7,
XMM8, XMM9, XMM10, XMM11,
XMM12, XMM13, XMM14, XMM15]> {
let MethodProtos = [{
iterator allocation_order_end(const MachineFunction &MF) const;
}];
let MethodBodies = [{
FR32Class::iterator
FR32Class::allocation_order_end(const MachineFunction &MF) const {
const TargetMachine &TM = MF.getTarget();
const X86Subtarget &Subtarget = TM.getSubtarget<X86Subtarget>();
if (!Subtarget.is64Bit())
return end()-8; // Only XMM0 to XMM7 are available in 32-bit mode.
else
return end();
}
}];
}
def FR64 : RegisterClass<"X86", [f64], 64,
[XMM0, XMM1, XMM2, XMM3, XMM4, XMM5, XMM6, XMM7,
XMM8, XMM9, XMM10, XMM11,
XMM12, XMM13, XMM14, XMM15]> {
let MethodProtos = [{
iterator allocation_order_end(const MachineFunction &MF) const;
}];
let MethodBodies = [{
FR64Class::iterator
FR64Class::allocation_order_end(const MachineFunction &MF) const {
const TargetMachine &TM = MF.getTarget();
const X86Subtarget &Subtarget = TM.getSubtarget<X86Subtarget>();
if (!Subtarget.is64Bit())
return end()-8; // Only XMM0 to XMM7 are available in 32-bit mode.
else
return end();
}
}];
}
// FIXME: This sets up the floating point register files as though they are f64
// values, though they really are f80 values. This will cause us to spill
// values as 64-bit quantities instead of 80-bit quantities, which is much much
// faster on common hardware. In reality, this should be controlled by a
// command line option or something.
def RFP32 : RegisterClass<"X86", [f32], 32, [FP0, FP1, FP2, FP3, FP4, FP5, FP6]>;
def RFP64 : RegisterClass<"X86", [f64], 32, [FP0, FP1, FP2, FP3, FP4, FP5, FP6]>;
def RFP80 : RegisterClass<"X86", [f80], 32, [FP0, FP1, FP2, FP3, FP4, FP5, FP6]>;
// Floating point stack registers (these are not allocatable by the
// register allocator - the floating point stackifier is responsible
// for transforming FPn allocations to STn registers)
def RST : RegisterClass<"X86", [f64], 32,
[ST0, ST1, ST2, ST3, ST4, ST5, ST6, ST7]> {
let MethodProtos = [{
iterator allocation_order_end(const MachineFunction &MF) const;
}];
let MethodBodies = [{
RSTClass::iterator
RSTClass::allocation_order_end(const MachineFunction &MF) const {
return begin();
}
}];
}
// Generic vector registers: VR64 and VR128.
def VR64 : RegisterClass<"X86", [v8i8, v4i16, v2i32, v1i64], 64,
[MM0, MM1, MM2, MM3, MM4, MM5, MM6, MM7]>;
def VR128 : RegisterClass<"X86", [v16i8, v8i16, v4i32, v2i64, v4f32, v2f64],128,
[XMM0, XMM1, XMM2, XMM3, XMM4, XMM5, XMM6, XMM7,
XMM8, XMM9, XMM10, XMM11,
XMM12, XMM13, XMM14, XMM15]> {
let MethodProtos = [{
iterator allocation_order_end(const MachineFunction &MF) const;
}];
let MethodBodies = [{
VR128Class::iterator
VR128Class::allocation_order_end(const MachineFunction &MF) const {
const TargetMachine &TM = MF.getTarget();
const X86Subtarget &Subtarget = TM.getSubtarget<X86Subtarget>();
if (!Subtarget.is64Bit())
return end()-8; // Only XMM0 to XMM7 are available in 32-bit mode.
else
return end();
}
}];
}
// Status flags registers.
def CCR : RegisterClass<"X86", [i32], 32, [EFLAGS]> {
let CopyCost = -1; // Don't allow copying of status registers.
}