hanchenye-llvm-project/lld/ELF/InputSection.h

328 lines
10 KiB
C++

//===- InputSection.h -------------------------------------------*- C++ -*-===//
//
// The LLVM Linker
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#ifndef LLD_ELF_INPUT_SECTION_H
#define LLD_ELF_INPUT_SECTION_H
#include "Config.h"
#include "Relocations.h"
#include "Thunks.h"
#include "lld/Core/LLVM.h"
#include "llvm/ADT/DenseSet.h"
#include "llvm/ADT/TinyPtrVector.h"
#include "llvm/Object/ELF.h"
namespace lld {
namespace elf {
class DefinedCommon;
class SymbolBody;
template <class ELFT> class ICF;
template <class ELFT> class DefinedRegular;
template <class ELFT> class ObjectFile;
template <class ELFT> class OutputSection;
template <class ELFT> class OutputSectionBase;
// We need non-template input section class to store symbol layout
// in linker script parser structures, where we do not have ELFT
// template parameter. For each scripted output section symbol we
// store pointer to preceding InputSectionData object or nullptr,
// if symbol should be placed at the very beginning of the output
// section
class InputSectionData {
public:
enum Kind { Regular, EHFrame, Merge, MipsReginfo, MipsOptions, MipsAbiFlags };
// The garbage collector sets sections' Live bits.
// If GC is disabled, all sections are considered live by default.
InputSectionData(Kind SectionKind, StringRef Name, ArrayRef<uint8_t> Data,
bool Compressed, bool Live)
: SectionKind(SectionKind), Live(Live), Compressed(Compressed),
Name(Name), Data(Data) {}
private:
unsigned SectionKind : 3;
public:
Kind kind() const { return (Kind)SectionKind; }
// Used for garbage collection.
unsigned Live : 1;
unsigned Compressed : 1;
uint32_t Alignment;
StringRef Name;
ArrayRef<uint8_t> Data;
// If a section is compressed, this has the uncompressed section data.
std::unique_ptr<char[]> UncompressedData;
std::vector<Relocation> Relocations;
};
// This corresponds to a section of an input file.
template <class ELFT> class InputSectionBase : public InputSectionData {
protected:
typedef typename ELFT::Chdr Elf_Chdr;
typedef typename ELFT::Rel Elf_Rel;
typedef typename ELFT::Rela Elf_Rela;
typedef typename ELFT::Shdr Elf_Shdr;
typedef typename ELFT::Sym Elf_Sym;
typedef typename ELFT::uint uintX_t;
const Elf_Shdr *Header;
// The file this section is from.
ObjectFile<ELFT> *File;
public:
InputSectionBase()
: InputSectionData(Regular, "", ArrayRef<uint8_t>(), false, false),
Repl(this) {}
InputSectionBase(ObjectFile<ELFT> *File, const Elf_Shdr *Header,
StringRef Name, Kind SectionKind);
OutputSectionBase<ELFT> *OutSec = nullptr;
// This pointer points to the "real" instance of this instance.
// Usually Repl == this. However, if ICF merges two sections,
// Repl pointer of one section points to another section. So,
// if you need to get a pointer to this instance, do not use
// this but instead this->Repl.
InputSectionBase<ELFT> *Repl;
// Returns the size of this section (even if this is a common or BSS.)
size_t getSize() const;
static InputSectionBase<ELFT> Discarded;
const Elf_Shdr *getSectionHdr() const { return Header; }
ObjectFile<ELFT> *getFile() const { return File; }
uintX_t getOffset(const DefinedRegular<ELFT> &Sym) const;
// Translate an offset in the input section to an offset in the output
// section.
uintX_t getOffset(uintX_t Offset) const;
void uncompress();
void relocate(uint8_t *Buf, uint8_t *BufEnd);
};
template <class ELFT> InputSectionBase<ELFT> InputSectionBase<ELFT>::Discarded;
// SectionPiece represents a piece of splittable section contents.
struct SectionPiece {
SectionPiece(size_t Off, ArrayRef<uint8_t> Data, bool Live = false)
: InputOff(Off), Data((const uint8_t *)Data.data()), Size(Data.size()),
Live(Live || !Config->GcSections) {}
ArrayRef<uint8_t> data() { return {Data, Size}; }
size_t size() const { return Size; }
size_t InputOff;
size_t OutputOff = -1;
private:
// We use bitfields because SplitInputSection is accessed by
// std::upper_bound very often.
// We want to save bits to make it cache friendly.
const uint8_t *Data;
uint32_t Size : 31;
public:
uint32_t Live : 1;
};
// This corresponds to a SHF_MERGE section of an input file.
template <class ELFT> class MergeInputSection : public InputSectionBase<ELFT> {
typedef typename ELFT::uint uintX_t;
typedef typename ELFT::Sym Elf_Sym;
typedef typename ELFT::Shdr Elf_Shdr;
public:
MergeInputSection(ObjectFile<ELFT> *F, const Elf_Shdr *Header,
StringRef Name);
static bool classof(const InputSectionBase<ELFT> *S);
void splitIntoPieces();
// Mark the piece at a given offset live. Used by GC.
void markLiveAt(uintX_t Offset) { LiveOffsets.insert(Offset); }
// Translate an offset in the input section to an offset
// in the output section.
uintX_t getOffset(uintX_t Offset) const;
void finalizePieces();
// Splittable sections are handled as a sequence of data
// rather than a single large blob of data.
std::vector<SectionPiece> Pieces;
// Returns the SectionPiece at a given input section offset.
SectionPiece *getSectionPiece(uintX_t Offset);
const SectionPiece *getSectionPiece(uintX_t Offset) const;
private:
std::vector<SectionPiece> splitStrings(ArrayRef<uint8_t> A, size_t Size);
std::vector<SectionPiece> splitNonStrings(ArrayRef<uint8_t> A, size_t Size);
llvm::DenseMap<uintX_t, uintX_t> OffsetMap;
llvm::DenseSet<uintX_t> LiveOffsets;
};
struct EhSectionPiece : public SectionPiece {
EhSectionPiece(size_t Off, ArrayRef<uint8_t> Data, unsigned FirstRelocation)
: SectionPiece(Off, Data), FirstRelocation(FirstRelocation) {}
unsigned FirstRelocation;
};
// This corresponds to a .eh_frame section of an input file.
template <class ELFT> class EhInputSection : public InputSectionBase<ELFT> {
public:
typedef typename ELFT::Shdr Elf_Shdr;
typedef typename ELFT::uint uintX_t;
EhInputSection(ObjectFile<ELFT> *F, const Elf_Shdr *Header, StringRef Name);
static bool classof(const InputSectionBase<ELFT> *S);
void split();
template <class RelTy> void split(ArrayRef<RelTy> Rels);
// Splittable sections are handled as a sequence of data
// rather than a single large blob of data.
std::vector<EhSectionPiece> Pieces;
// Relocation section that refer to this one.
const Elf_Shdr *RelocSection = nullptr;
};
// This corresponds to a non SHF_MERGE section of an input file.
template <class ELFT> class InputSection : public InputSectionBase<ELFT> {
friend ICF<ELFT>;
typedef InputSectionBase<ELFT> Base;
typedef typename ELFT::Shdr Elf_Shdr;
typedef typename ELFT::Rela Elf_Rela;
typedef typename ELFT::Rel Elf_Rel;
typedef typename ELFT::Sym Elf_Sym;
typedef typename ELFT::uint uintX_t;
public:
InputSection(ObjectFile<ELFT> *F, const Elf_Shdr *Header, StringRef Name);
// Write this section to a mmap'ed file, assuming Buf is pointing to
// beginning of the output section.
void writeTo(uint8_t *Buf);
// Relocation sections that refer to this one.
llvm::TinyPtrVector<const Elf_Shdr *> RelocSections;
// The offset from beginning of the output sections this section was assigned
// to. The writer sets a value.
uint64_t OutSecOff = 0;
static bool classof(const InputSectionBase<ELFT> *S);
InputSectionBase<ELFT> *getRelocatedSection();
// Register thunk related to the symbol. When the section is written
// to a mmap'ed file, target is requested to write an actual thunk code.
// Now thunks is supported for MIPS and ARM target only.
void addThunk(const Thunk<ELFT> *T);
// The offset of synthetic thunk code from beginning of this section.
uint64_t getThunkOff() const;
// Size of chunk with thunks code.
uint64_t getThunksSize() const;
template <class RelTy>
void relocateNonAlloc(uint8_t *Buf, llvm::ArrayRef<RelTy> Rels);
private:
template <class RelTy>
void copyRelocations(uint8_t *Buf, llvm::ArrayRef<RelTy> Rels);
// Called by ICF to merge two input sections.
void replace(InputSection<ELFT> *Other);
// Used by ICF.
uint64_t GroupId = 0;
llvm::TinyPtrVector<const Thunk<ELFT> *> Thunks;
};
// MIPS .reginfo section provides information on the registers used by the code
// in the object file. Linker should collect this information and write a single
// .reginfo section in the output file. The output section contains a union of
// used registers masks taken from input .reginfo sections and final value
// of the `_gp` symbol. For details: Chapter 4 / "Register Information" at
// ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf
template <class ELFT>
class MipsReginfoInputSection : public InputSectionBase<ELFT> {
typedef typename ELFT::Shdr Elf_Shdr;
public:
MipsReginfoInputSection(ObjectFile<ELFT> *F, const Elf_Shdr *Hdr,
StringRef Name);
static bool classof(const InputSectionBase<ELFT> *S);
const llvm::object::Elf_Mips_RegInfo<ELFT> *Reginfo = nullptr;
};
template <class ELFT>
class MipsOptionsInputSection : public InputSectionBase<ELFT> {
typedef typename ELFT::Shdr Elf_Shdr;
public:
MipsOptionsInputSection(ObjectFile<ELFT> *F, const Elf_Shdr *Hdr,
StringRef Name);
static bool classof(const InputSectionBase<ELFT> *S);
const llvm::object::Elf_Mips_RegInfo<ELFT> *Reginfo = nullptr;
};
template <class ELFT>
class MipsAbiFlagsInputSection : public InputSectionBase<ELFT> {
typedef typename ELFT::Shdr Elf_Shdr;
public:
MipsAbiFlagsInputSection(ObjectFile<ELFT> *F, const Elf_Shdr *Hdr,
StringRef Name);
static bool classof(const InputSectionBase<ELFT> *S);
const llvm::object::Elf_Mips_ABIFlags<ELFT> *Flags = nullptr;
};
// Common symbols don't belong to any section. But it is easier for us
// to handle them as if they belong to some input section. So we defined
// this class. CommonInputSection is a virtual singleton class that
// "contains" all common symbols.
template <class ELFT> class CommonInputSection : public InputSection<ELFT> {
typedef typename ELFT::uint uintX_t;
public:
CommonInputSection(std::vector<DefinedCommon *> Syms);
// The singleton instance of this class.
static CommonInputSection<ELFT> *X;
private:
static typename ELFT::Shdr Hdr;
};
template <class ELFT> CommonInputSection<ELFT> *CommonInputSection<ELFT>::X;
template <class ELFT> typename ELFT::Shdr CommonInputSection<ELFT>::Hdr;
} // namespace elf
} // namespace lld
#endif