hanchenye-llvm-project/lld/ELF/Writer.cpp

1353 lines
47 KiB
C++

//===- Writer.cpp ---------------------------------------------------------===//
//
// The LLVM Linker
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#include "Writer.h"
#include "Config.h"
#include "LinkerScript.h"
#include "OutputSections.h"
#include "Relocations.h"
#include "Strings.h"
#include "SymbolTable.h"
#include "Target.h"
#include "llvm/ADT/StringMap.h"
#include "llvm/ADT/StringSwitch.h"
#include "llvm/Support/FileOutputBuffer.h"
#include "llvm/Support/StringSaver.h"
#include "llvm/Support/raw_ostream.h"
using namespace llvm;
using namespace llvm::ELF;
using namespace llvm::object;
using namespace lld;
using namespace lld::elf;
namespace {
// The writer writes a SymbolTable result to a file.
template <class ELFT> class Writer {
public:
typedef typename ELFT::uint uintX_t;
typedef typename ELFT::Shdr Elf_Shdr;
typedef typename ELFT::Ehdr Elf_Ehdr;
typedef typename ELFT::Phdr Elf_Phdr;
typedef typename ELFT::Sym Elf_Sym;
typedef typename ELFT::SymRange Elf_Sym_Range;
typedef typename ELFT::Rela Elf_Rela;
void run();
private:
typedef PhdrEntry<ELFT> Phdr;
void copyLocalSymbols();
void addReservedSymbols();
void createSections();
void forEachRelSec(
std::function<void(InputSectionBase<ELFT> &, const typename ELFT::Shdr &)>
Fn);
void finalizeSections();
void addPredefinedSections();
bool needsGot();
std::vector<Phdr> createPhdrs();
void assignAddresses();
void assignFileOffsets();
void assignFileOffsetsBinary();
void setPhdrs();
void fixHeaders();
void fixSectionAlignments();
void fixAbsoluteSymbols();
void openFile();
void writeHeader();
void writeSections();
void writeSectionsBinary();
void writeBuildId();
std::unique_ptr<FileOutputBuffer> Buffer;
BumpPtrAllocator Alloc;
std::vector<OutputSectionBase<ELFT> *> OutputSections;
OutputSectionFactory<ELFT> Factory;
void addRelIpltSymbols();
void addStartEndSymbols();
void addStartStopSymbols(OutputSectionBase<ELFT> *Sec);
OutputSectionBase<ELFT> *findSection(StringRef Name);
std::vector<Phdr> Phdrs;
uintX_t FileSize;
uintX_t SectionHeaderOff;
};
} // anonymous namespace
template <class ELFT>
StringRef elf::getOutputSectionName(InputSectionBase<ELFT> *S) {
StringRef Name = S->Name;
for (StringRef V : {".text.", ".rodata.", ".data.rel.ro.", ".data.", ".bss.",
".init_array.", ".fini_array.", ".ctors.", ".dtors.",
".tbss.", ".gcc_except_table.", ".tdata.", ".ARM.exidx."})
if (Name.startswith(V))
return V.drop_back();
return Name;
}
template <class ELFT> void elf::reportDiscarded(InputSectionBase<ELFT> *IS) {
if (!Config->PrintGcSections || !IS || IS->Live)
return;
errs() << "removing unused section from '" << IS->Name << "' in file '"
<< IS->getFile()->getName() << "'\n";
}
template <class ELFT> static bool needsInterpSection() {
return !Symtab<ELFT>::X->getSharedFiles().empty() &&
!Config->DynamicLinker.empty() &&
!Script<ELFT>::X->ignoreInterpSection();
}
template <class ELFT> void elf::writeResult() {
typedef typename ELFT::uint uintX_t;
typedef typename ELFT::Ehdr Elf_Ehdr;
// Create singleton output sections.
OutputSection<ELFT> Bss(".bss", SHT_NOBITS, SHF_ALLOC | SHF_WRITE);
DynamicSection<ELFT> Dynamic;
EhOutputSection<ELFT> EhFrame;
GotSection<ELFT> Got;
PltSection<ELFT> Plt;
RelocationSection<ELFT> RelaDyn(Config->Rela ? ".rela.dyn" : ".rel.dyn",
Config->ZCombreloc);
StringTableSection<ELFT> ShStrTab(".shstrtab", false);
VersionTableSection<ELFT> VerSym;
VersionNeedSection<ELFT> VerNeed;
OutputSectionBase<ELFT> ElfHeader("", 0, SHF_ALLOC);
ElfHeader.setSize(sizeof(Elf_Ehdr));
OutputSectionBase<ELFT> ProgramHeaders("", 0, SHF_ALLOC);
ProgramHeaders.updateAlignment(sizeof(uintX_t));
// Instantiate optional output sections if they are needed.
std::unique_ptr<InterpSection<ELFT>> Interp;
std::unique_ptr<BuildIdSection<ELFT>> BuildId;
std::unique_ptr<StringTableSection<ELFT>> DynStrTab;
std::unique_ptr<SymbolTableSection<ELFT>> DynSymTab;
std::unique_ptr<EhFrameHeader<ELFT>> EhFrameHdr;
std::unique_ptr<GnuHashTableSection<ELFT>> GnuHashTab;
std::unique_ptr<GotPltSection<ELFT>> GotPlt;
std::unique_ptr<HashTableSection<ELFT>> HashTab;
std::unique_ptr<RelocationSection<ELFT>> RelaPlt;
std::unique_ptr<StringTableSection<ELFT>> StrTab;
std::unique_ptr<SymbolTableSection<ELFT>> SymTabSec;
std::unique_ptr<OutputSection<ELFT>> MipsRldMap;
std::unique_ptr<VersionDefinitionSection<ELFT>> VerDef;
if (needsInterpSection<ELFT>())
Interp.reset(new InterpSection<ELFT>);
if (Config->BuildId == BuildIdKind::Fnv1)
BuildId.reset(new BuildIdFnv1<ELFT>);
else if (Config->BuildId == BuildIdKind::Md5)
BuildId.reset(new BuildIdMd5<ELFT>);
else if (Config->BuildId == BuildIdKind::Sha1)
BuildId.reset(new BuildIdSha1<ELFT>);
else if (Config->BuildId == BuildIdKind::Uuid)
BuildId.reset(new BuildIdUuid<ELFT>);
else if (Config->BuildId == BuildIdKind::Hexstring)
BuildId.reset(new BuildIdHexstring<ELFT>);
if (!Symtab<ELFT>::X->getSharedFiles().empty() || Config->Pic) {
DynStrTab.reset(new StringTableSection<ELFT>(".dynstr", true));
DynSymTab.reset(new SymbolTableSection<ELFT>(*DynStrTab));
}
if (Config->EhFrameHdr)
EhFrameHdr.reset(new EhFrameHeader<ELFT>);
if (Config->GnuHash)
GnuHashTab.reset(new GnuHashTableSection<ELFT>);
if (Config->SysvHash)
HashTab.reset(new HashTableSection<ELFT>);
StringRef S = Config->Rela ? ".rela.plt" : ".rel.plt";
GotPlt.reset(new GotPltSection<ELFT>);
RelaPlt.reset(new RelocationSection<ELFT>(S, false /*Sort*/));
if (Config->Strip != StripPolicy::All) {
StrTab.reset(new StringTableSection<ELFT>(".strtab", false));
SymTabSec.reset(new SymbolTableSection<ELFT>(*StrTab));
}
if (Config->EMachine == EM_MIPS && !Config->Shared) {
// This is a MIPS specific section to hold a space within the data segment
// of executable file which is pointed to by the DT_MIPS_RLD_MAP entry.
// See "Dynamic section" in Chapter 5 in the following document:
// ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf
MipsRldMap.reset(new OutputSection<ELFT>(".rld_map", SHT_PROGBITS,
SHF_ALLOC | SHF_WRITE));
MipsRldMap->setSize(sizeof(uintX_t));
MipsRldMap->updateAlignment(sizeof(uintX_t));
}
if (!Config->VersionDefinitions.empty())
VerDef.reset(new VersionDefinitionSection<ELFT>());
Out<ELFT>::Bss = &Bss;
Out<ELFT>::BuildId = BuildId.get();
Out<ELFT>::DynStrTab = DynStrTab.get();
Out<ELFT>::DynSymTab = DynSymTab.get();
Out<ELFT>::Dynamic = &Dynamic;
Out<ELFT>::EhFrame = &EhFrame;
Out<ELFT>::EhFrameHdr = EhFrameHdr.get();
Out<ELFT>::GnuHashTab = GnuHashTab.get();
Out<ELFT>::Got = &Got;
Out<ELFT>::GotPlt = GotPlt.get();
Out<ELFT>::HashTab = HashTab.get();
Out<ELFT>::Interp = Interp.get();
Out<ELFT>::Plt = &Plt;
Out<ELFT>::RelaDyn = &RelaDyn;
Out<ELFT>::RelaPlt = RelaPlt.get();
Out<ELFT>::ShStrTab = &ShStrTab;
Out<ELFT>::StrTab = StrTab.get();
Out<ELFT>::SymTab = SymTabSec.get();
Out<ELFT>::VerDef = VerDef.get();
Out<ELFT>::VerSym = &VerSym;
Out<ELFT>::VerNeed = &VerNeed;
Out<ELFT>::MipsRldMap = MipsRldMap.get();
Out<ELFT>::Opd = nullptr;
Out<ELFT>::OpdBuf = nullptr;
Out<ELFT>::TlsPhdr = nullptr;
Out<ELFT>::ElfHeader = &ElfHeader;
Out<ELFT>::ProgramHeaders = &ProgramHeaders;
Out<ELFT>::PreinitArray = nullptr;
Out<ELFT>::InitArray = nullptr;
Out<ELFT>::FiniArray = nullptr;
Writer<ELFT>().run();
Out<ELFT>::Pool.clear();
}
template <class ELFT> static std::vector<DefinedCommon *> getCommonSymbols() {
std::vector<DefinedCommon *> V;
for (Symbol *S : Symtab<ELFT>::X->getSymbols())
if (auto *B = dyn_cast<DefinedCommon>(S->body()))
V.push_back(B);
return V;
}
// The main function of the writer.
template <class ELFT> void Writer<ELFT>::run() {
if (Config->Discard != DiscardPolicy::All)
copyLocalSymbols();
addReservedSymbols();
if (Target->NeedsThunks)
forEachRelSec(createThunks<ELFT>);
CommonInputSection<ELFT> Common(getCommonSymbols<ELFT>());
CommonInputSection<ELFT>::X = &Common;
Script<ELFT>::X->createAssignments();
Script<ELFT>::X->OutputSections = &OutputSections;
if (ScriptConfig->HasContents)
Script<ELFT>::X->createSections(Factory);
else
createSections();
finalizeSections();
if (HasError)
return;
if (Config->Relocatable) {
assignFileOffsets();
} else {
Phdrs = Script<ELFT>::X->hasPhdrsCommands() ? Script<ELFT>::X->createPhdrs()
: createPhdrs();
fixHeaders();
if (ScriptConfig->HasContents) {
Script<ELFT>::X->assignAddresses();
} else {
fixSectionAlignments();
assignAddresses();
}
if (!Config->OFormatBinary)
assignFileOffsets();
else
assignFileOffsetsBinary();
setPhdrs();
fixAbsoluteSymbols();
}
openFile();
if (HasError)
return;
if (!Config->OFormatBinary) {
writeHeader();
writeSections();
} else {
writeSectionsBinary();
}
writeBuildId();
if (HasError)
return;
if (auto EC = Buffer->commit())
error(EC, "failed to write to the output file");
}
template <class ELFT> static void reportUndefined(SymbolBody *Sym) {
if (Config->UnresolvedSymbols == UnresolvedPolicy::Ignore)
return;
if (Config->Shared && Sym->symbol()->Visibility == STV_DEFAULT &&
Config->UnresolvedSymbols != UnresolvedPolicy::NoUndef)
return;
std::string Msg = "undefined symbol: " + Sym->getName().str();
if (Sym->File)
Msg += " in " + getFilename(Sym->File);
if (Config->UnresolvedSymbols == UnresolvedPolicy::Warn)
warning(Msg);
else
error(Msg);
}
template <class ELFT>
static bool shouldKeepInSymtab(InputSectionBase<ELFT> *Sec, StringRef SymName,
const SymbolBody &B) {
if (B.isFile())
return false;
// We keep sections in symtab for relocatable output.
if (B.isSection())
return Config->Relocatable;
// If sym references a section in a discarded group, don't keep it.
if (Sec == &InputSection<ELFT>::Discarded)
return false;
if (Config->Discard == DiscardPolicy::None)
return true;
// In ELF assembly .L symbols are normally discarded by the assembler.
// If the assembler fails to do so, the linker discards them if
// * --discard-locals is used.
// * The symbol is in a SHF_MERGE section, which is normally the reason for
// the assembler keeping the .L symbol.
if (!SymName.startswith(".L") && !SymName.empty())
return true;
if (Config->Discard == DiscardPolicy::Locals)
return false;
return !(Sec->getSectionHdr()->sh_flags & SHF_MERGE);
}
template <class ELFT> static bool includeInSymtab(const SymbolBody &B) {
if (!B.isLocal() && !B.symbol()->IsUsedInRegularObj)
return false;
if (auto *D = dyn_cast<DefinedRegular<ELFT>>(&B)) {
// Always include absolute symbols.
if (!D->Section)
return true;
// Exclude symbols pointing to garbage-collected sections.
if (!D->Section->Live)
return false;
if (auto *S = dyn_cast<MergeInputSection<ELFT>>(D->Section))
if (!S->getSectionPiece(D->Value)->Live)
return false;
}
return true;
}
// Local symbols are not in the linker's symbol table. This function scans
// each object file's symbol table to copy local symbols to the output.
template <class ELFT> void Writer<ELFT>::copyLocalSymbols() {
if (!Out<ELFT>::SymTab)
return;
for (const std::unique_ptr<elf::ObjectFile<ELFT>> &F :
Symtab<ELFT>::X->getObjectFiles()) {
const char *StrTab = F->getStringTable().data();
for (SymbolBody *B : F->getLocalSymbols()) {
auto *DR = dyn_cast<DefinedRegular<ELFT>>(B);
// No reason to keep local undefined symbol in symtab.
if (!DR)
continue;
if (!includeInSymtab<ELFT>(*B))
continue;
StringRef SymName(StrTab + B->getNameOffset());
InputSectionBase<ELFT> *Sec = DR->Section;
if (!shouldKeepInSymtab<ELFT>(Sec, SymName, *B))
continue;
++Out<ELFT>::SymTab->NumLocals;
if (Config->Relocatable)
B->DynsymIndex = Out<ELFT>::SymTab->NumLocals;
F->KeptLocalSyms.push_back(
std::make_pair(DR, Out<ELFT>::SymTab->StrTabSec.addString(SymName)));
}
}
}
// PPC64 has a number of special SHT_PROGBITS+SHF_ALLOC+SHF_WRITE sections that
// we would like to make sure appear is a specific order to maximize their
// coverage by a single signed 16-bit offset from the TOC base pointer.
// Conversely, the special .tocbss section should be first among all SHT_NOBITS
// sections. This will put it next to the loaded special PPC64 sections (and,
// thus, within reach of the TOC base pointer).
static int getPPC64SectionRank(StringRef SectionName) {
return StringSwitch<int>(SectionName)
.Case(".tocbss", 0)
.Case(".branch_lt", 2)
.Case(".toc", 3)
.Case(".toc1", 4)
.Case(".opd", 5)
.Default(1);
}
template <class ELFT> bool elf::isRelroSection(OutputSectionBase<ELFT> *Sec) {
if (!Config->ZRelro)
return false;
typename ELFT::uint Flags = Sec->getFlags();
if (!(Flags & SHF_ALLOC) || !(Flags & SHF_WRITE))
return false;
if (Flags & SHF_TLS)
return true;
uint32_t Type = Sec->getType();
if (Type == SHT_INIT_ARRAY || Type == SHT_FINI_ARRAY ||
Type == SHT_PREINIT_ARRAY)
return true;
if (Sec == Out<ELFT>::GotPlt)
return Config->ZNow;
if (Sec == Out<ELFT>::Dynamic || Sec == Out<ELFT>::Got)
return true;
StringRef S = Sec->getName();
return S == ".data.rel.ro" || S == ".ctors" || S == ".dtors" || S == ".jcr" ||
S == ".eh_frame";
}
// Output section ordering is determined by this function.
template <class ELFT>
static bool compareSections(OutputSectionBase<ELFT> *A,
OutputSectionBase<ELFT> *B) {
typedef typename ELFT::uint uintX_t;
int Comp = Script<ELFT>::X->compareSections(A->getName(), B->getName());
if (Comp != 0)
return Comp < 0;
uintX_t AFlags = A->getFlags();
uintX_t BFlags = B->getFlags();
// Allocatable sections go first to reduce the total PT_LOAD size and
// so debug info doesn't change addresses in actual code.
bool AIsAlloc = AFlags & SHF_ALLOC;
bool BIsAlloc = BFlags & SHF_ALLOC;
if (AIsAlloc != BIsAlloc)
return AIsAlloc;
// We don't have any special requirements for the relative order of
// two non allocatable sections.
if (!AIsAlloc)
return false;
// We want the read only sections first so that they go in the PT_LOAD
// covering the program headers at the start of the file.
bool AIsWritable = AFlags & SHF_WRITE;
bool BIsWritable = BFlags & SHF_WRITE;
if (AIsWritable != BIsWritable)
return BIsWritable;
// For a corresponding reason, put non exec sections first (the program
// header PT_LOAD is not executable).
bool AIsExec = AFlags & SHF_EXECINSTR;
bool BIsExec = BFlags & SHF_EXECINSTR;
if (AIsExec != BIsExec)
return BIsExec;
// If we got here we know that both A and B are in the same PT_LOAD.
// The TLS initialization block needs to be a single contiguous block in a R/W
// PT_LOAD, so stick TLS sections directly before R/W sections. The TLS NOBITS
// sections are placed here as they don't take up virtual address space in the
// PT_LOAD.
bool AIsTls = AFlags & SHF_TLS;
bool BIsTls = BFlags & SHF_TLS;
if (AIsTls != BIsTls)
return AIsTls;
// The next requirement we have is to put nobits sections last. The
// reason is that the only thing the dynamic linker will see about
// them is a p_memsz that is larger than p_filesz. Seeing that it
// zeros the end of the PT_LOAD, so that has to correspond to the
// nobits sections.
bool AIsNoBits = A->getType() == SHT_NOBITS;
bool BIsNoBits = B->getType() == SHT_NOBITS;
if (AIsNoBits != BIsNoBits)
return BIsNoBits;
// We place RelRo section before plain r/w ones.
bool AIsRelRo = isRelroSection(A);
bool BIsRelRo = isRelroSection(B);
if (AIsRelRo != BIsRelRo)
return AIsRelRo;
// Some architectures have additional ordering restrictions for sections
// within the same PT_LOAD.
if (Config->EMachine == EM_PPC64)
return getPPC64SectionRank(A->getName()) <
getPPC64SectionRank(B->getName());
return false;
}
template <class ELFT> static bool isDiscarded(InputSectionBase<ELFT> *S) {
return !S || S == &InputSection<ELFT>::Discarded || !S->Live;
}
// Program header entry
template<class ELFT>
PhdrEntry<ELFT>::PhdrEntry(unsigned Type, unsigned Flags) {
H.p_type = Type;
H.p_flags = Flags;
}
template<class ELFT>
void PhdrEntry<ELFT>::add(OutputSectionBase<ELFT> *Sec) {
Last = Sec;
if (!First)
First = Sec;
H.p_align = std::max<typename ELFT::uint>(H.p_align, Sec->getAlignment());
}
template <class ELFT>
static Symbol *addOptionalSynthetic(StringRef Name,
OutputSectionBase<ELFT> *Sec,
typename ELFT::uint Val) {
SymbolBody *S = Symtab<ELFT>::X->find(Name);
if (!S)
return nullptr;
if (!S->isUndefined() && !S->isShared())
return S->symbol();
return Symtab<ELFT>::X->addSynthetic(Name, Sec, Val, STV_HIDDEN);
}
template <class ELFT>
static void addSynthetic(StringRef Name, OutputSectionBase<ELFT> *Sec,
typename ELFT::uint Val) {
SymbolBody *S = Symtab<ELFT>::X->find(Name);
if (!S || S->isUndefined() || S->isShared())
Symtab<ELFT>::X->addSynthetic(Name, Sec, Val, STV_HIDDEN);
}
// The beginning and the ending of .rel[a].plt section are marked
// with __rel[a]_iplt_{start,end} symbols if it is a statically linked
// executable. The runtime needs these symbols in order to resolve
// all IRELATIVE relocs on startup. For dynamic executables, we don't
// need these symbols, since IRELATIVE relocs are resolved through GOT
// and PLT. For details, see http://www.airs.com/blog/archives/403.
template <class ELFT> void Writer<ELFT>::addRelIpltSymbols() {
if (Out<ELFT>::DynSymTab || !Out<ELFT>::RelaPlt)
return;
StringRef S = Config->Rela ? "__rela_iplt_start" : "__rel_iplt_start";
addOptionalSynthetic(S, Out<ELFT>::RelaPlt, 0);
S = Config->Rela ? "__rela_iplt_end" : "__rel_iplt_end";
addOptionalSynthetic(S, Out<ELFT>::RelaPlt,
DefinedSynthetic<ELFT>::SectionEnd);
}
// The linker is expected to define some symbols depending on
// the linking result. This function defines such symbols.
template <class ELFT> void Writer<ELFT>::addReservedSymbols() {
if (Config->EMachine == EM_MIPS && !Config->Relocatable) {
// Define _gp for MIPS. st_value of _gp symbol will be updated by Writer
// so that it points to an absolute address which is relative to GOT.
// See "Global Data Symbols" in Chapter 6 in the following document:
// ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf
Symtab<ELFT>::X->addSynthetic("_gp", Out<ELFT>::Got, MipsGPOffset,
STV_HIDDEN);
// On MIPS O32 ABI, _gp_disp is a magic symbol designates offset between
// start of function and 'gp' pointer into GOT.
Symbol *Sym =
addOptionalSynthetic("_gp_disp", Out<ELFT>::Got, MipsGPOffset);
if (Sym)
ElfSym<ELFT>::MipsGpDisp = Sym->body();
// The __gnu_local_gp is a magic symbol equal to the current value of 'gp'
// pointer. This symbol is used in the code generated by .cpload pseudo-op
// in case of using -mno-shared option.
// https://sourceware.org/ml/binutils/2004-12/msg00094.html
addOptionalSynthetic("__gnu_local_gp", Out<ELFT>::Got, MipsGPOffset);
}
// In the assembly for 32 bit x86 the _GLOBAL_OFFSET_TABLE_ symbol
// is magical and is used to produce a R_386_GOTPC relocation.
// The R_386_GOTPC relocation value doesn't actually depend on the
// symbol value, so it could use an index of STN_UNDEF which, according
// to the spec, means the symbol value is 0.
// Unfortunately both gas and MC keep the _GLOBAL_OFFSET_TABLE_ symbol in
// the object file.
// The situation is even stranger on x86_64 where the assembly doesn't
// need the magical symbol, but gas still puts _GLOBAL_OFFSET_TABLE_ as
// an undefined symbol in the .o files.
// Given that the symbol is effectively unused, we just create a dummy
// hidden one to avoid the undefined symbol error.
if (!Config->Relocatable)
Symtab<ELFT>::X->addIgnored("_GLOBAL_OFFSET_TABLE_");
// __tls_get_addr is defined by the dynamic linker for dynamic ELFs. For
// static linking the linker is required to optimize away any references to
// __tls_get_addr, so it's not defined anywhere. Create a hidden definition
// to avoid the undefined symbol error. As usual as special case is MIPS -
// MIPS libc defines __tls_get_addr itself because there are no TLS
// optimizations for this target.
if (!Out<ELFT>::DynSymTab && Config->EMachine != EM_MIPS)
Symtab<ELFT>::X->addIgnored("__tls_get_addr");
// If linker script do layout we do not need to create any standart symbols.
if (ScriptConfig->HasContents)
return;
ElfSym<ELFT>::EhdrStart = Symtab<ELFT>::X->addIgnored("__ehdr_start");
auto Define = [this](StringRef S, DefinedRegular<ELFT> *&Sym1,
DefinedRegular<ELFT> *&Sym2) {
Sym1 = Symtab<ELFT>::X->addIgnored(S, STV_DEFAULT);
// The name without the underscore is not a reserved name,
// so it is defined only when there is a reference against it.
assert(S.startswith("_"));
S = S.substr(1);
if (SymbolBody *B = Symtab<ELFT>::X->find(S))
if (B->isUndefined())
Sym2 = Symtab<ELFT>::X->addAbsolute(S, STV_DEFAULT);
};
Define("_end", ElfSym<ELFT>::End, ElfSym<ELFT>::End2);
Define("_etext", ElfSym<ELFT>::Etext, ElfSym<ELFT>::Etext2);
Define("_edata", ElfSym<ELFT>::Edata, ElfSym<ELFT>::Edata2);
}
// Sort input sections by section name suffixes for
// __attribute__((init_priority(N))).
template <class ELFT> static void sortInitFini(OutputSectionBase<ELFT> *S) {
if (S)
reinterpret_cast<OutputSection<ELFT> *>(S)->sortInitFini();
}
// Sort input sections by the special rule for .ctors and .dtors.
template <class ELFT> static void sortCtorsDtors(OutputSectionBase<ELFT> *S) {
if (S)
reinterpret_cast<OutputSection<ELFT> *>(S)->sortCtorsDtors();
}
template <class ELFT>
void Writer<ELFT>::forEachRelSec(
std::function<void(InputSectionBase<ELFT> &, const typename ELFT::Shdr &)>
Fn) {
for (const std::unique_ptr<elf::ObjectFile<ELFT>> &F :
Symtab<ELFT>::X->getObjectFiles()) {
for (InputSectionBase<ELFT> *C : F->getSections()) {
if (isDiscarded(C))
continue;
// Scan all relocations. Each relocation goes through a series
// of tests to determine if it needs special treatment, such as
// creating GOT, PLT, copy relocations, etc.
// Note that relocations for non-alloc sections are directly
// processed by InputSection::relocateNonAlloc.
if (!(C->getSectionHdr()->sh_flags & SHF_ALLOC))
continue;
if (auto *S = dyn_cast<InputSection<ELFT>>(C)) {
for (const Elf_Shdr *RelSec : S->RelocSections)
Fn(*S, *RelSec);
continue;
}
if (auto *S = dyn_cast<EhInputSection<ELFT>>(C))
if (S->RelocSection)
Fn(*S, *S->RelocSection);
}
}
}
template <class ELFT> void Writer<ELFT>::createSections() {
for (const std::unique_ptr<elf::ObjectFile<ELFT>> &F :
Symtab<ELFT>::X->getObjectFiles()) {
for (InputSectionBase<ELFT> *C : F->getSections()) {
if (isDiscarded(C)) {
reportDiscarded(C);
continue;
}
OutputSectionBase<ELFT> *Sec;
bool IsNew;
std::tie(Sec, IsNew) = Factory.create(C, getOutputSectionName(C));
if (IsNew)
OutputSections.push_back(Sec);
Sec->addSection(C);
}
}
sortInitFini(findSection(".init_array"));
sortInitFini(findSection(".fini_array"));
sortCtorsDtors(findSection(".ctors"));
sortCtorsDtors(findSection(".dtors"));
for (OutputSectionBase<ELFT> *Sec : OutputSections)
Sec->assignOffsets();
}
// Create output section objects and add them to OutputSections.
template <class ELFT> void Writer<ELFT>::finalizeSections() {
Out<ELFT>::PreinitArray = findSection(".preinit_array");
Out<ELFT>::InitArray = findSection(".init_array");
Out<ELFT>::FiniArray = findSection(".fini_array");
// The linker needs to define SECNAME_start, SECNAME_end and SECNAME_stop
// symbols for sections, so that the runtime can get the start and end
// addresses of each section by section name. Add such symbols.
if (!Config->Relocatable) {
addStartEndSymbols();
for (OutputSectionBase<ELFT> *Sec : OutputSections)
addStartStopSymbols(Sec);
}
// Add _DYNAMIC symbol. Unlike GNU gold, our _DYNAMIC symbol has no type.
// It should be okay as no one seems to care about the type.
// Even the author of gold doesn't remember why gold behaves that way.
// https://sourceware.org/ml/binutils/2002-03/msg00360.html
if (Out<ELFT>::DynSymTab)
Symtab<ELFT>::X->addSynthetic("_DYNAMIC", Out<ELFT>::Dynamic, 0,
STV_HIDDEN);
// Define __rel[a]_iplt_{start,end} symbols if needed.
addRelIpltSymbols();
if (!Out<ELFT>::EhFrame->empty()) {
OutputSections.push_back(Out<ELFT>::EhFrame);
Out<ELFT>::EhFrame->finalize();
}
// Scan relocations. This must be done after every symbol is declared so that
// we can correctly decide if a dynamic relocation is needed.
forEachRelSec(scanRelocations<ELFT>);
// Now that we have defined all possible symbols including linker-
// synthesized ones. Visit all symbols to give the finishing touches.
for (Symbol *S : Symtab<ELFT>::X->getSymbols()) {
SymbolBody *Body = S->body();
// We only report undefined symbols in regular objects. This means that we
// will accept an undefined reference in bitcode if it can be optimized out.
if (S->IsUsedInRegularObj && Body->isUndefined() && !S->isWeak())
reportUndefined<ELFT>(Body);
if (!includeInSymtab<ELFT>(*Body))
continue;
if (Out<ELFT>::SymTab)
Out<ELFT>::SymTab->addSymbol(Body);
if (Out<ELFT>::DynSymTab && S->includeInDynsym()) {
Out<ELFT>::DynSymTab->addSymbol(Body);
if (auto *SS = dyn_cast<SharedSymbol<ELFT>>(Body))
if (SS->file()->isNeeded())
Out<ELFT>::VerNeed->addSymbol(SS);
}
}
// Do not proceed if there was an undefined symbol.
if (HasError)
return;
// If linker script processor hasn't added common symbol section yet,
// then add it to .bss now.
if (!CommonInputSection<ELFT>::X->OutSec) {
Out<ELFT>::Bss->addSection(CommonInputSection<ELFT>::X);
Out<ELFT>::Bss->assignOffsets();
}
// So far we have added sections from input object files.
// This function adds linker-created Out<ELFT>::* sections.
addPredefinedSections();
std::stable_sort(OutputSections.begin(), OutputSections.end(),
compareSections<ELFT>);
unsigned I = 1;
for (OutputSectionBase<ELFT> *Sec : OutputSections) {
Sec->SectionIndex = I++;
Sec->setSHName(Out<ELFT>::ShStrTab->addString(Sec->getName()));
}
// Finalizers fix each section's size.
// .dynsym is finalized early since that may fill up .gnu.hash.
if (Out<ELFT>::DynSymTab)
Out<ELFT>::DynSymTab->finalize();
// Fill other section headers. The dynamic table is finalized
// at the end because some tags like RELSZ depend on result
// of finalizing other sections. The dynamic string table is
// finalized once the .dynamic finalizer has added a few last
// strings. See DynamicSection::finalize()
for (OutputSectionBase<ELFT> *Sec : OutputSections)
if (Sec != Out<ELFT>::DynStrTab && Sec != Out<ELFT>::Dynamic)
Sec->finalize();
if (Out<ELFT>::DynSymTab)
Out<ELFT>::Dynamic->finalize();
// Now that all output offsets are fixed. Finalize mergeable sections
// to fix their maps from input offsets to output offsets.
for (OutputSectionBase<ELFT> *Sec : OutputSections)
Sec->finalizePieces();
}
template <class ELFT> bool Writer<ELFT>::needsGot() {
if (!Out<ELFT>::Got->empty())
return true;
// We add the .got section to the result for dynamic MIPS target because
// its address and properties are mentioned in the .dynamic section.
if (Config->EMachine == EM_MIPS && !Config->Relocatable)
return true;
// If we have a relocation that is relative to GOT (such as GOTOFFREL),
// we need to emit a GOT even if it's empty.
return Out<ELFT>::Got->HasGotOffRel;
}
// This function add Out<ELFT>::* sections to OutputSections.
template <class ELFT> void Writer<ELFT>::addPredefinedSections() {
auto Add = [&](OutputSectionBase<ELFT> *C) {
if (C)
OutputSections.push_back(C);
};
// A core file does not usually contain unmodified segments except
// the first page of the executable. Add the build ID section to beginning of
// the file so that the section is included in the first page.
if (Out<ELFT>::BuildId)
OutputSections.insert(OutputSections.begin(), Out<ELFT>::BuildId);
// Add .interp at first because some loaders want to see that section
// on the first page of the executable file when loaded into memory.
if (Out<ELFT>::Interp)
OutputSections.insert(OutputSections.begin(), Out<ELFT>::Interp);
// This order is not the same as the final output order
// because we sort the sections using their attributes below.
Add(Out<ELFT>::SymTab);
Add(Out<ELFT>::ShStrTab);
Add(Out<ELFT>::StrTab);
if (Out<ELFT>::DynSymTab) {
Add(Out<ELFT>::DynSymTab);
bool HasVerNeed = Out<ELFT>::VerNeed->getNeedNum() != 0;
if (Out<ELFT>::VerDef || HasVerNeed)
Add(Out<ELFT>::VerSym);
Add(Out<ELFT>::VerDef);
if (HasVerNeed)
Add(Out<ELFT>::VerNeed);
Add(Out<ELFT>::GnuHashTab);
Add(Out<ELFT>::HashTab);
Add(Out<ELFT>::Dynamic);
Add(Out<ELFT>::DynStrTab);
if (Out<ELFT>::RelaDyn->hasRelocs())
Add(Out<ELFT>::RelaDyn);
Add(Out<ELFT>::MipsRldMap);
}
// We always need to add rel[a].plt to output if it has entries.
// Even during static linking it can contain R_[*]_IRELATIVE relocations.
if (Out<ELFT>::RelaPlt && Out<ELFT>::RelaPlt->hasRelocs())
Add(Out<ELFT>::RelaPlt);
if (needsGot())
Add(Out<ELFT>::Got);
if (Out<ELFT>::GotPlt && !Out<ELFT>::GotPlt->empty())
Add(Out<ELFT>::GotPlt);
if (!Out<ELFT>::Plt->empty())
Add(Out<ELFT>::Plt);
if (!Out<ELFT>::EhFrame->empty())
Add(Out<ELFT>::EhFrameHdr);
if (Out<ELFT>::Bss->getSize() > 0)
Add(Out<ELFT>::Bss);
}
// The linker is expected to define SECNAME_start and SECNAME_end
// symbols for a few sections. This function defines them.
template <class ELFT> void Writer<ELFT>::addStartEndSymbols() {
auto Define = [&](StringRef Start, StringRef End,
OutputSectionBase<ELFT> *OS) {
if (OS) {
addSynthetic(Start, OS, 0);
addSynthetic(End, OS, DefinedSynthetic<ELFT>::SectionEnd);
} else {
addOptionalSynthetic(Start, (OutputSectionBase<ELFT> *)nullptr, 0);
addOptionalSynthetic(End, (OutputSectionBase<ELFT> *)nullptr, 0);
}
};
Define("__preinit_array_start", "__preinit_array_end",
Out<ELFT>::PreinitArray);
Define("__init_array_start", "__init_array_end", Out<ELFT>::InitArray);
Define("__fini_array_start", "__fini_array_end", Out<ELFT>::FiniArray);
}
// If a section name is valid as a C identifier (which is rare because of
// the leading '.'), linkers are expected to define __start_<secname> and
// __stop_<secname> symbols. They are at beginning and end of the section,
// respectively. This is not requested by the ELF standard, but GNU ld and
// gold provide the feature, and used by many programs.
template <class ELFT>
void Writer<ELFT>::addStartStopSymbols(OutputSectionBase<ELFT> *Sec) {
StringRef S = Sec->getName();
if (!isValidCIdentifier(S))
return;
StringSaver Saver(Alloc);
StringRef Start = Saver.save("__start_" + S);
StringRef Stop = Saver.save("__stop_" + S);
if (SymbolBody *B = Symtab<ELFT>::X->find(Start))
if (B->isUndefined())
Symtab<ELFT>::X->addSynthetic(Start, Sec, 0, B->getVisibility());
if (SymbolBody *B = Symtab<ELFT>::X->find(Stop))
if (B->isUndefined())
Symtab<ELFT>::X->addSynthetic(
Stop, Sec, DefinedSynthetic<ELFT>::SectionEnd, B->getVisibility());
}
template <class ELFT>
OutputSectionBase<ELFT> *Writer<ELFT>::findSection(StringRef Name) {
for (OutputSectionBase<ELFT> *Sec : OutputSections)
if (Sec->getName() == Name)
return Sec;
return nullptr;
}
template <class ELFT> static bool needsPtLoad(OutputSectionBase<ELFT> *Sec) {
if (!(Sec->getFlags() & SHF_ALLOC))
return false;
// Don't allocate VA space for TLS NOBITS sections. The PT_TLS PHDR is
// responsible for allocating space for them, not the PT_LOAD that
// contains the TLS initialization image.
if (Sec->getFlags() & SHF_TLS && Sec->getType() == SHT_NOBITS)
return false;
return true;
}
// Decide which program headers to create and which sections to include in each
// one.
template <class ELFT>
std::vector<PhdrEntry<ELFT>> Writer<ELFT>::createPhdrs() {
std::vector<Phdr> Ret;
auto AddHdr = [&](unsigned Type, unsigned Flags) -> Phdr * {
Ret.emplace_back(Type, Flags);
return &Ret.back();
};
// The first phdr entry is PT_PHDR which describes the program header itself.
Phdr &Hdr = *AddHdr(PT_PHDR, PF_R);
Hdr.add(Out<ELFT>::ProgramHeaders);
// PT_INTERP must be the second entry if exists.
if (Out<ELFT>::Interp) {
Phdr &Hdr = *AddHdr(PT_INTERP, Out<ELFT>::Interp->getPhdrFlags());
Hdr.add(Out<ELFT>::Interp);
}
// Add the first PT_LOAD segment for regular output sections.
uintX_t Flags = PF_R;
Phdr *Load = AddHdr(PT_LOAD, Flags);
Load->add(Out<ELFT>::ElfHeader);
Load->add(Out<ELFT>::ProgramHeaders);
Phdr TlsHdr(PT_TLS, PF_R);
Phdr RelRo(PT_GNU_RELRO, PF_R);
Phdr Note(PT_NOTE, PF_R);
for (OutputSectionBase<ELFT> *Sec : OutputSections) {
if (!(Sec->getFlags() & SHF_ALLOC))
break;
// If we meet TLS section then we create TLS header
// and put all TLS sections inside for futher use when
// assign addresses.
if (Sec->getFlags() & SHF_TLS)
TlsHdr.add(Sec);
if (!needsPtLoad(Sec))
continue;
// Segments are contiguous memory regions that has the same attributes
// (e.g. executable or writable). There is one phdr for each segment.
// Therefore, we need to create a new phdr when the next section has
// different flags or is loaded at a discontiguous address using AT linker
// script command.
uintX_t NewFlags = Sec->getPhdrFlags();
if (Script<ELFT>::X->getLma(Sec->getName()) || Flags != NewFlags) {
Load = AddHdr(PT_LOAD, NewFlags);
Flags = NewFlags;
}
Load->add(Sec);
if (isRelroSection(Sec))
RelRo.add(Sec);
if (Sec->getType() == SHT_NOTE)
Note.add(Sec);
}
// Add the TLS segment unless it's empty.
if (TlsHdr.First)
Ret.push_back(std::move(TlsHdr));
// Add an entry for .dynamic.
if (Out<ELFT>::DynSymTab) {
Phdr &H = *AddHdr(PT_DYNAMIC, Out<ELFT>::Dynamic->getPhdrFlags());
H.add(Out<ELFT>::Dynamic);
}
// PT_GNU_RELRO includes all sections that should be marked as
// read-only by dynamic linker after proccessing relocations.
if (RelRo.First)
Ret.push_back(std::move(RelRo));
// PT_GNU_EH_FRAME is a special section pointing on .eh_frame_hdr.
if (!Out<ELFT>::EhFrame->empty() && Out<ELFT>::EhFrameHdr) {
Phdr &Hdr = *AddHdr(PT_GNU_EH_FRAME, Out<ELFT>::EhFrameHdr->getPhdrFlags());
Hdr.add(Out<ELFT>::EhFrameHdr);
}
// PT_GNU_STACK is a special section to tell the loader to make the
// pages for the stack non-executable.
if (!Config->ZExecStack) {
Phdr &Hdr = *AddHdr(PT_GNU_STACK, PF_R | PF_W);
if (Config->ZStackSize != uint64_t(-1))
Hdr.H.p_memsz = Config->ZStackSize;
}
if (Note.First)
Ret.push_back(std::move(Note));
return Ret;
}
// The first section of each PT_LOAD and the first section after PT_GNU_RELRO
// have to be page aligned so that the dynamic linker can set the permissions.
template <class ELFT> void Writer<ELFT>::fixSectionAlignments() {
for (const Phdr &P : Phdrs)
if (P.H.p_type == PT_LOAD)
P.First->PageAlign = true;
for (const Phdr &P : Phdrs) {
if (P.H.p_type != PT_GNU_RELRO)
continue;
// Find the first section after PT_GNU_RELRO. If it is in a PT_LOAD we
// have to align it to a page.
auto End = OutputSections.end();
auto I = std::find(OutputSections.begin(), End, P.Last);
if (I == End || (I + 1) == End)
continue;
OutputSectionBase<ELFT> *Sec = *(I + 1);
if (needsPtLoad(Sec))
Sec->PageAlign = true;
}
}
// We should set file offsets and VAs for elf header and program headers
// sections. These are special, we do not include them into output sections
// list, but have them to simplify the code.
template <class ELFT> void Writer<ELFT>::fixHeaders() {
uintX_t BaseVA = ScriptConfig->HasContents ? 0 : Config->ImageBase;
Out<ELFT>::ElfHeader->setVA(BaseVA);
uintX_t Off = Out<ELFT>::ElfHeader->getSize();
Out<ELFT>::ProgramHeaders->setVA(Off + BaseVA);
Out<ELFT>::ProgramHeaders->setSize(sizeof(Elf_Phdr) * Phdrs.size());
}
// Assign VAs (addresses at run-time) to output sections.
template <class ELFT> void Writer<ELFT>::assignAddresses() {
uintX_t VA = Config->ImageBase;
if (!Config->OFormatBinary)
VA +=
Out<ELFT>::ElfHeader->getSize() + Out<ELFT>::ProgramHeaders->getSize();
uintX_t ThreadBssOffset = 0;
for (OutputSectionBase<ELFT> *Sec : OutputSections) {
uintX_t Alignment = Sec->getAlignment();
if (Sec->PageAlign)
Alignment = std::max<uintX_t>(Alignment, Target->PageSize);
// We only assign VAs to allocated sections.
if (needsPtLoad(Sec)) {
VA = alignTo(VA, Alignment);
Sec->setVA(VA);
VA += Sec->getSize();
} else if (Sec->getFlags() & SHF_TLS && Sec->getType() == SHT_NOBITS) {
uintX_t TVA = VA + ThreadBssOffset;
TVA = alignTo(TVA, Alignment);
Sec->setVA(TVA);
ThreadBssOffset = TVA - VA + Sec->getSize();
}
}
}
// Adjusts the file alignment for a given output section and returns
// its new file offset. The file offset must be the same with its
// virtual address (modulo the page size) so that the loader can load
// executables without any address adjustment.
template <class ELFT, class uintX_t>
static uintX_t getFileAlignment(uintX_t Off, OutputSectionBase<ELFT> *Sec) {
uintX_t Alignment = Sec->getAlignment();
if (Sec->PageAlign)
Alignment = std::max<uintX_t>(Alignment, Target->PageSize);
Off = alignTo(Off, Alignment);
// Relocatable output does not have program headers
// and does not need any other offset adjusting.
if (Config->Relocatable || !(Sec->getFlags() & SHF_ALLOC))
return Off;
return alignTo(Off, Target->PageSize, Sec->getVA());
}
template <class ELFT, class uintX_t>
void setOffset(OutputSectionBase<ELFT> *Sec, uintX_t &Off) {
if (Sec->getType() == SHT_NOBITS) {
Sec->setFileOffset(Off);
return;
}
Off = getFileAlignment<ELFT>(Off, Sec);
Sec->setFileOffset(Off);
Off += Sec->getSize();
}
template <class ELFT> void Writer<ELFT>::assignFileOffsetsBinary() {
uintX_t Off = 0;
for (OutputSectionBase<ELFT> *Sec : OutputSections)
if (Sec->getFlags() & SHF_ALLOC)
setOffset(Sec, Off);
FileSize = alignTo(Off, sizeof(uintX_t));
}
// Assign file offsets to output sections.
template <class ELFT> void Writer<ELFT>::assignFileOffsets() {
uintX_t Off = 0;
setOffset(Out<ELFT>::ElfHeader, Off);
setOffset(Out<ELFT>::ProgramHeaders, Off);
for (OutputSectionBase<ELFT> *Sec : OutputSections)
setOffset(Sec, Off);
SectionHeaderOff = alignTo(Off, sizeof(uintX_t));
FileSize = SectionHeaderOff + (OutputSections.size() + 1) * sizeof(Elf_Shdr);
}
// Finalize the program headers. We call this function after we assign
// file offsets and VAs to all sections.
template <class ELFT> void Writer<ELFT>::setPhdrs() {
for (Phdr &P : Phdrs) {
Elf_Phdr &H = P.H;
OutputSectionBase<ELFT> *First = P.First;
OutputSectionBase<ELFT> *Last = P.Last;
if (First) {
H.p_filesz = Last->getFileOff() - First->getFileOff();
if (Last->getType() != SHT_NOBITS)
H.p_filesz += Last->getSize();
H.p_memsz = Last->getVA() + Last->getSize() - First->getVA();
H.p_offset = First->getFileOff();
H.p_vaddr = First->getVA();
}
if (H.p_type == PT_LOAD)
H.p_align = Target->PageSize;
else if (H.p_type == PT_GNU_RELRO)
H.p_align = 1;
H.p_paddr = H.p_vaddr;
if (H.p_type == PT_LOAD && First)
if (Expr LmaExpr = Script<ELFT>::X->getLma(First->getName()))
H.p_paddr = LmaExpr(H.p_vaddr);
// The TLS pointer goes after PT_TLS. At least glibc will align it,
// so round up the size to make sure the offsets are correct.
if (H.p_type == PT_TLS) {
Out<ELFT>::TlsPhdr = &H;
if (H.p_memsz)
H.p_memsz = alignTo(H.p_memsz, H.p_align);
}
}
}
template <class ELFT> static typename ELFT::uint getEntryAddr() {
if (Symbol *S = Config->EntrySym)
return S->body()->getVA<ELFT>();
return Config->EntryAddr;
}
template <class ELFT> static uint8_t getELFEncoding() {
if (ELFT::TargetEndianness == llvm::support::little)
return ELFDATA2LSB;
return ELFDATA2MSB;
}
static uint16_t getELFType() {
if (Config->Pic)
return ET_DYN;
if (Config->Relocatable)
return ET_REL;
return ET_EXEC;
}
// This function is called after we have assigned address and size
// to each section. This function fixes some predefined absolute
// symbol values that depend on section address and size.
template <class ELFT> void Writer<ELFT>::fixAbsoluteSymbols() {
// __ehdr_start is the location of program headers.
if (ElfSym<ELFT>::EhdrStart)
ElfSym<ELFT>::EhdrStart->Value = Out<ELFT>::ProgramHeaders->getVA();
auto Set = [](DefinedRegular<ELFT> *S1, DefinedRegular<ELFT> *S2, uintX_t V) {
if (S1)
S1->Value = V;
if (S2)
S2->Value = V;
};
// _etext is the first location after the last read-only loadable segment.
// _edata is the first location after the last read-write loadable segment.
// _end is the first location after the uninitialized data region.
for (Phdr &P : Phdrs) {
Elf_Phdr &H = P.H;
if (H.p_type != PT_LOAD)
continue;
Set(ElfSym<ELFT>::End, ElfSym<ELFT>::End2, H.p_vaddr + H.p_memsz);
uintX_t Val = H.p_vaddr + H.p_filesz;
if (H.p_flags & PF_W)
Set(ElfSym<ELFT>::Edata, ElfSym<ELFT>::Edata2, Val);
else
Set(ElfSym<ELFT>::Etext, ElfSym<ELFT>::Etext2, Val);
}
}
template <class ELFT> void Writer<ELFT>::writeHeader() {
uint8_t *Buf = Buffer->getBufferStart();
memcpy(Buf, "\177ELF", 4);
auto &FirstObj = cast<ELFFileBase<ELFT>>(*Config->FirstElf);
// Write the ELF header.
auto *EHdr = reinterpret_cast<Elf_Ehdr *>(Buf);
EHdr->e_ident[EI_CLASS] = ELFT::Is64Bits ? ELFCLASS64 : ELFCLASS32;
EHdr->e_ident[EI_DATA] = getELFEncoding<ELFT>();
EHdr->e_ident[EI_VERSION] = EV_CURRENT;
EHdr->e_ident[EI_OSABI] = FirstObj.getOSABI();
EHdr->e_type = getELFType();
EHdr->e_machine = FirstObj.EMachine;
EHdr->e_version = EV_CURRENT;
EHdr->e_entry = getEntryAddr<ELFT>();
EHdr->e_shoff = SectionHeaderOff;
EHdr->e_ehsize = sizeof(Elf_Ehdr);
EHdr->e_phnum = Phdrs.size();
EHdr->e_shentsize = sizeof(Elf_Shdr);
EHdr->e_shnum = OutputSections.size() + 1;
EHdr->e_shstrndx = Out<ELFT>::ShStrTab->SectionIndex;
if (Config->EMachine == EM_MIPS)
EHdr->e_flags = getMipsEFlags<ELFT>();
if (!Config->Relocatable) {
EHdr->e_phoff = sizeof(Elf_Ehdr);
EHdr->e_phentsize = sizeof(Elf_Phdr);
}
// Write the program header table.
auto *HBuf = reinterpret_cast<Elf_Phdr *>(Buf + EHdr->e_phoff);
for (Phdr &P : Phdrs)
*HBuf++ = P.H;
// Write the section header table. Note that the first table entry is null.
auto *SHdrs = reinterpret_cast<Elf_Shdr *>(Buf + EHdr->e_shoff);
for (OutputSectionBase<ELFT> *Sec : OutputSections)
Sec->writeHeaderTo(++SHdrs);
}
template <class ELFT> void Writer<ELFT>::openFile() {
ErrorOr<std::unique_ptr<FileOutputBuffer>> BufferOrErr =
FileOutputBuffer::create(Config->OutputFile, FileSize,
FileOutputBuffer::F_executable);
if (auto EC = BufferOrErr.getError())
error(EC, "failed to open " + Config->OutputFile);
else
Buffer = std::move(*BufferOrErr);
}
template <class ELFT> void Writer<ELFT>::writeSectionsBinary() {
uint8_t *Buf = Buffer->getBufferStart();
for (OutputSectionBase<ELFT> *Sec : OutputSections)
if (Sec->getFlags() & SHF_ALLOC)
Sec->writeTo(Buf + Sec->getFileOff());
}
// Write section contents to a mmap'ed file.
template <class ELFT> void Writer<ELFT>::writeSections() {
uint8_t *Buf = Buffer->getBufferStart();
// PPC64 needs to process relocations in the .opd section
// before processing relocations in code-containing sections.
Out<ELFT>::Opd = findSection(".opd");
if (Out<ELFT>::Opd) {
Out<ELFT>::OpdBuf = Buf + Out<ELFT>::Opd->getFileOff();
Out<ELFT>::Opd->writeTo(Buf + Out<ELFT>::Opd->getFileOff());
}
for (OutputSectionBase<ELFT> *Sec : OutputSections)
if (Sec != Out<ELFT>::Opd && Sec != Out<ELFT>::EhFrameHdr)
Sec->writeTo(Buf + Sec->getFileOff());
// The .eh_frame_hdr depends on .eh_frame section contents, therefore
// it should be written after .eh_frame is written.
if (!Out<ELFT>::EhFrame->empty() && Out<ELFT>::EhFrameHdr)
Out<ELFT>::EhFrameHdr->writeTo(Buf + Out<ELFT>::EhFrameHdr->getFileOff());
}
template <class ELFT> void Writer<ELFT>::writeBuildId() {
if (!Out<ELFT>::BuildId)
return;
// Compute a hash of all sections of the output file.
uint8_t *Start = Buffer->getBufferStart();
uint8_t *End = Start + FileSize;
Out<ELFT>::BuildId->writeBuildId({Start, End});
}
template void elf::writeResult<ELF32LE>();
template void elf::writeResult<ELF32BE>();
template void elf::writeResult<ELF64LE>();
template void elf::writeResult<ELF64BE>();
template struct elf::PhdrEntry<ELF32LE>;
template struct elf::PhdrEntry<ELF32BE>;
template struct elf::PhdrEntry<ELF64LE>;
template struct elf::PhdrEntry<ELF64BE>;
template bool elf::isRelroSection<ELF32LE>(OutputSectionBase<ELF32LE> *);
template bool elf::isRelroSection<ELF32BE>(OutputSectionBase<ELF32BE> *);
template bool elf::isRelroSection<ELF64LE>(OutputSectionBase<ELF64LE> *);
template bool elf::isRelroSection<ELF64BE>(OutputSectionBase<ELF64BE> *);
template StringRef elf::getOutputSectionName<ELF32LE>(InputSectionBase<ELF32LE> *);
template StringRef elf::getOutputSectionName<ELF32BE>(InputSectionBase<ELF32BE> *);
template StringRef elf::getOutputSectionName<ELF64LE>(InputSectionBase<ELF64LE> *);
template StringRef elf::getOutputSectionName<ELF64BE>(InputSectionBase<ELF64BE> *);
template void elf::reportDiscarded<ELF32LE>(InputSectionBase<ELF32LE> *);
template void elf::reportDiscarded<ELF32BE>(InputSectionBase<ELF32BE> *);
template void elf::reportDiscarded<ELF64LE>(InputSectionBase<ELF64LE> *);
template void elf::reportDiscarded<ELF64BE>(InputSectionBase<ELF64BE> *);