hanchenye-llvm-project/clang/lib/Analysis/SymbolManager.cpp

204 lines
6.0 KiB
C++

//== SymbolManager.h - Management of Symbolic Values ------------*- C++ -*--==//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines SymbolManager, a class that manages symbolic values
// created for use by GRExprEngine and related classes.
//
//===----------------------------------------------------------------------===//
#include "clang/Analysis/PathSensitive/SymbolManager.h"
#include "clang/Analysis/PathSensitive/MemRegion.h"
#include "llvm/Support/raw_ostream.h"
using namespace clang;
static void print(llvm::raw_ostream& os, const SymExpr *SE);
static void print(llvm::raw_ostream& os, BinaryOperator::Opcode Op) {
switch (Op) {
default:
assert(false && "operator printing not implemented");
break;
case BinaryOperator::Mul: os << '*' ; break;
case BinaryOperator::Div: os << '/' ; break;
case BinaryOperator::Rem: os << '%' ; break;
case BinaryOperator::Add: os << '+' ; break;
case BinaryOperator::Sub: os << '-' ; break;
case BinaryOperator::Shl: os << "<<" ; break;
case BinaryOperator::Shr: os << ">>" ; break;
case BinaryOperator::LT: os << "<" ; break;
case BinaryOperator::GT: os << '>' ; break;
case BinaryOperator::LE: os << "<=" ; break;
case BinaryOperator::GE: os << ">=" ; break;
case BinaryOperator::EQ: os << "==" ; break;
case BinaryOperator::NE: os << "!=" ; break;
case BinaryOperator::And: os << '&' ; break;
case BinaryOperator::Xor: os << '^' ; break;
case BinaryOperator::Or: os << '|' ; break;
}
}
static void print(llvm::raw_ostream& os, const SymIntExpr *SE) {
os << '(';
print(os, SE->getLHS());
os << ") ";
print(os, SE->getOpcode());
os << ' ' << SE->getRHS().getZExtValue();
if (SE->getRHS().isUnsigned()) os << 'U';
}
static void print(llvm::raw_ostream& os, const SymSymExpr *SE) {
os << '(';
print(os, SE->getLHS());
os << ") ";
os << '(';
print(os, SE->getRHS());
os << ')';
}
static void print(llvm::raw_ostream& os, const SymExpr *SE) {
switch (SE->getKind()) {
case SymExpr::BEGIN_SYMBOLS:
case SymExpr::RegionRValue:
case SymExpr::ConjuredKind:
case SymExpr::END_SYMBOLS:
os << '$' << cast<SymbolData>(SE)->getSymbolID();
return;
case SymExpr::SymIntKind:
print(os, cast<SymIntExpr>(SE));
return;
case SymExpr::SymSymKind:
print(os, cast<SymSymExpr>(SE));
return;
}
}
llvm::raw_ostream& llvm::operator<<(llvm::raw_ostream& os, const SymExpr *SE) {
print(os, SE);
return os;
}
std::ostream& std::operator<<(std::ostream& os, const SymExpr *SE) {
llvm::raw_os_ostream O(os);
print(O, SE);
return os;
}
const SymbolRegionRValue*
SymbolManager::getRegionRValueSymbol(const MemRegion* R) {
llvm::FoldingSetNodeID profile;
SymbolRegionRValue::Profile(profile, R);
void* InsertPos;
SymExpr *SD = DataSet.FindNodeOrInsertPos(profile, InsertPos);
if (!SD) {
SD = (SymExpr*) BPAlloc.Allocate<SymbolRegionRValue>();
new (SD) SymbolRegionRValue(SymbolCounter, R);
DataSet.InsertNode(SD, InsertPos);
++SymbolCounter;
}
return cast<SymbolRegionRValue>(SD);
}
const SymbolConjured*
SymbolManager::getConjuredSymbol(const Stmt* E, QualType T, unsigned Count,
const void* SymbolTag) {
llvm::FoldingSetNodeID profile;
SymbolConjured::Profile(profile, E, T, Count, SymbolTag);
void* InsertPos;
SymExpr *SD = DataSet.FindNodeOrInsertPos(profile, InsertPos);
if (!SD) {
SD = (SymExpr*) BPAlloc.Allocate<SymbolConjured>();
new (SD) SymbolConjured(SymbolCounter, E, T, Count, SymbolTag);
DataSet.InsertNode(SD, InsertPos);
++SymbolCounter;
}
return cast<SymbolConjured>(SD);
}
const SymIntExpr *SymbolManager::getSymIntExpr(const SymExpr *lhs,
BinaryOperator::Opcode op,
const llvm::APSInt& v,
QualType t) {
llvm::FoldingSetNodeID ID;
SymIntExpr::Profile(ID, lhs, op, v, t);
void *InsertPos;
SymExpr *data = DataSet.FindNodeOrInsertPos(ID, InsertPos);
if (!data) {
data = (SymIntExpr*) BPAlloc.Allocate<SymIntExpr>();
new (data) SymIntExpr(lhs, op, v, t);
DataSet.InsertNode(data, InsertPos);
}
return cast<SymIntExpr>(data);
}
const SymSymExpr *SymbolManager::getSymSymExpr(const SymExpr *lhs,
BinaryOperator::Opcode op,
const SymExpr *rhs,
QualType t) {
llvm::FoldingSetNodeID ID;
SymSymExpr::Profile(ID, lhs, op, rhs, t);
void *InsertPos;
SymExpr *data = DataSet.FindNodeOrInsertPos(ID, InsertPos);
if (!data) {
data = (SymSymExpr*) BPAlloc.Allocate<SymSymExpr>();
new (data) SymSymExpr(lhs, op, rhs, t);
DataSet.InsertNode(data, InsertPos);
}
return cast<SymSymExpr>(data);
}
QualType SymbolConjured::getType(ASTContext&) const {
return T;
}
QualType SymbolRegionRValue::getType(ASTContext& C) const {
if (const TypedRegion* TR = dyn_cast<TypedRegion>(R))
return TR->getRValueType(C);
return QualType();
}
SymbolManager::~SymbolManager() {}
bool SymbolManager::canSymbolicate(QualType T) {
return Loc::IsLocType(T) || T->isIntegerType();
}
void SymbolReaper::markLive(SymbolRef sym) {
TheLiving = F.Add(TheLiving, sym);
TheDead = F.Remove(TheDead, sym);
}
bool SymbolReaper::maybeDead(SymbolRef sym) {
if (isLive(sym))
return false;
TheDead = F.Add(TheDead, sym);
return true;
}
bool SymbolReaper::isLive(SymbolRef sym) {
if (TheLiving.contains(sym))
return true;
// Interogate the symbol. It may derive from an input value to
// the analyzed function/method.
return isa<SymbolRegionRValue>(sym);
}
SymbolVisitor::~SymbolVisitor() {}