hanchenye-llvm-project/lldb/source/Core/Timer.cpp

268 lines
6.6 KiB
C++

//===-- Timer.cpp -----------------------------------------------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#include "lldb/Core/Timer.h"
#include <map>
#include <vector>
#include <algorithm>
#include "lldb/Core/Stream.h"
#include "lldb/Host/Mutex.h"
#include "lldb/Host/Host.h"
#include <stdio.h>
using namespace lldb_private;
#define TIMER_INDENT_AMOUNT 2
namespace
{
typedef std::map<const char*, uint64_t> TimerCategoryMap;
struct TimerStack
{
TimerStack() :
m_depth(0)
{}
uint32_t m_depth;
std::vector<Timer*> m_stack;
};
} // end of anonymous namespace
std::atomic<bool> Timer::g_quiet(true);
std::atomic<unsigned> Timer::g_display_depth(0);
std::mutex Timer::g_file_mutex;
FILE* Timer::g_file = nullptr;
static lldb::thread_key_t g_key;
static Mutex &
GetCategoryMutex()
{
static Mutex g_category_mutex(Mutex::eMutexTypeNormal);
return g_category_mutex;
}
static TimerCategoryMap &
GetCategoryMap()
{
static TimerCategoryMap g_category_map;
return g_category_map;
}
static TimerStack *
GetTimerStackForCurrentThread ()
{
void *timer_stack = Host::ThreadLocalStorageGet(g_key);
if (timer_stack == NULL)
{
Host::ThreadLocalStorageSet(g_key, new TimerStack);
timer_stack = Host::ThreadLocalStorageGet(g_key);
}
return (TimerStack *)timer_stack;
}
void
ThreadSpecificCleanup (void *p)
{
delete (TimerStack *)p;
}
void
Timer::SetQuiet (bool value)
{
g_quiet = value;
}
void
Timer::Initialize ()
{
Timer::g_file = stdout;
g_key = Host::ThreadLocalStorageCreate(ThreadSpecificCleanup);
}
Timer::Timer (const char *category, const char *format, ...) :
m_category (category),
m_total_start (),
m_timer_start (),
m_total_ticks (0),
m_timer_ticks (0)
{
TimerStack *stack = GetTimerStackForCurrentThread ();
if (!stack)
return;
if (stack->m_depth++ < g_display_depth)
{
if (g_quiet == false)
{
std::lock_guard<std::mutex> lock(g_file_mutex);
// Indent
::fprintf (g_file, "%*s", stack->m_depth * TIMER_INDENT_AMOUNT, "");
// Print formatted string
va_list args;
va_start (args, format);
::vfprintf (g_file, format, args);
va_end (args);
// Newline
::fprintf (g_file, "\n");
}
TimeValue start_time(TimeValue::Now());
m_total_start = start_time;
m_timer_start = start_time;
if (!stack->m_stack.empty())
stack->m_stack.back()->ChildStarted (start_time);
stack->m_stack.push_back(this);
}
}
Timer::~Timer()
{
TimerStack *stack = GetTimerStackForCurrentThread ();
if (!stack)
return;
if (m_total_start.IsValid())
{
TimeValue stop_time = TimeValue::Now();
if (m_total_start.IsValid())
{
m_total_ticks += (stop_time - m_total_start);
m_total_start.Clear();
}
if (m_timer_start.IsValid())
{
m_timer_ticks += (stop_time - m_timer_start);
m_timer_start.Clear();
}
assert (stack->m_stack.back() == this);
stack->m_stack.pop_back();
if (stack->m_stack.empty() == false)
stack->m_stack.back()->ChildStopped(stop_time);
const uint64_t total_nsec_uint = GetTotalElapsedNanoSeconds();
const uint64_t timer_nsec_uint = GetTimerElapsedNanoSeconds();
const double total_nsec = total_nsec_uint;
const double timer_nsec = timer_nsec_uint;
if (g_quiet == false)
{
std::lock_guard<std::mutex> lock(g_file_mutex);
::fprintf (g_file,
"%*s%.9f sec (%.9f sec)\n",
(stack->m_depth - 1) *TIMER_INDENT_AMOUNT, "",
total_nsec / 1000000000.0,
timer_nsec / 1000000000.0);
}
// Keep total results for each category so we can dump results.
Mutex::Locker locker (GetCategoryMutex());
TimerCategoryMap &category_map = GetCategoryMap();
category_map[m_category] += timer_nsec_uint;
}
if (stack->m_depth > 0)
--stack->m_depth;
}
uint64_t
Timer::GetTotalElapsedNanoSeconds()
{
uint64_t total_ticks = m_total_ticks;
// If we are currently running, we need to add the current
// elapsed time of the running timer...
if (m_total_start.IsValid())
total_ticks += (TimeValue::Now() - m_total_start);
return total_ticks;
}
uint64_t
Timer::GetTimerElapsedNanoSeconds()
{
uint64_t timer_ticks = m_timer_ticks;
// If we are currently running, we need to add the current
// elapsed time of the running timer...
if (m_timer_start.IsValid())
timer_ticks += (TimeValue::Now() - m_timer_start);
return timer_ticks;
}
void
Timer::ChildStarted (const TimeValue& start_time)
{
if (m_timer_start.IsValid())
{
m_timer_ticks += (start_time - m_timer_start);
m_timer_start.Clear();
}
}
void
Timer::ChildStopped (const TimeValue& stop_time)
{
if (!m_timer_start.IsValid())
m_timer_start = stop_time;
}
void
Timer::SetDisplayDepth (uint32_t depth)
{
g_display_depth = depth;
}
/* binary function predicate:
* - returns whether a person is less than another person
*/
static bool
CategoryMapIteratorSortCriterion (const TimerCategoryMap::const_iterator& lhs, const TimerCategoryMap::const_iterator& rhs)
{
return lhs->second > rhs->second;
}
void
Timer::ResetCategoryTimes ()
{
Mutex::Locker locker (GetCategoryMutex());
TimerCategoryMap &category_map = GetCategoryMap();
category_map.clear();
}
void
Timer::DumpCategoryTimes (Stream *s)
{
Mutex::Locker locker (GetCategoryMutex());
TimerCategoryMap &category_map = GetCategoryMap();
std::vector<TimerCategoryMap::const_iterator> sorted_iterators;
TimerCategoryMap::const_iterator pos, end = category_map.end();
for (pos = category_map.begin(); pos != end; ++pos)
{
sorted_iterators.push_back (pos);
}
std::sort (sorted_iterators.begin(), sorted_iterators.end(), CategoryMapIteratorSortCriterion);
const size_t count = sorted_iterators.size();
for (size_t i=0; i<count; ++i)
{
const double timer_nsec = sorted_iterators[i]->second;
s->Printf("%.9f sec for %s\n", timer_nsec / 1000000000.0, sorted_iterators[i]->first);
}
}