hanchenye-llvm-project/lld/lib/ReaderWriter/PECOFF/ReaderCOFF.cpp

1209 lines
45 KiB
C++

//===- lib/ReaderWriter/PECOFF/ReaderCOFF.cpp -----------------------------===//
//
// The LLVM Linker
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#include "Atoms.h"
#include "ReaderImportHeader.h"
#include "lld/Core/Alias.h"
#include "lld/Core/File.h"
#include "lld/Driver/Driver.h"
#include "lld/ReaderWriter/PECOFFLinkingContext.h"
#include "lld/ReaderWriter/Reader.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/Object/COFF.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/Endian.h"
#include "llvm/Support/Errc.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/FileOutputBuffer.h"
#include "llvm/Support/FileUtilities.h"
#include "llvm/Support/Memory.h"
#include "llvm/Support/MemoryBuffer.h"
#include "llvm/Support/Path.h"
#include "llvm/Support/Program.h"
#include "llvm/Support/raw_ostream.h"
#include <algorithm>
#include <map>
#include <mutex>
#include <set>
#include <system_error>
#include <vector>
#define DEBUG_TYPE "ReaderCOFF"
using lld::pecoff::COFFAbsoluteAtom;
using lld::pecoff::COFFBSSAtom;
using lld::pecoff::COFFDefinedAtom;
using lld::pecoff::COFFDefinedFileAtom;
using lld::pecoff::COFFReference;
using lld::pecoff::COFFUndefinedAtom;
using llvm::object::coff_aux_section_definition;
using llvm::object::coff_aux_weak_external;
using llvm::object::coff_relocation;
using llvm::object::coff_section;
using llvm::object::coff_symbol;
using llvm::support::ulittle32_t;
using namespace lld;
namespace {
class FileCOFF : public File {
private:
typedef std::vector<const coff_symbol *> SymbolVectorT;
typedef std::map<const coff_section *, SymbolVectorT> SectionToSymbolsT;
typedef std::map<const StringRef, Atom *> SymbolNameToAtomT;
typedef std::map<const coff_section *, std::vector<COFFDefinedFileAtom *>>
SectionToAtomsT;
public:
typedef const std::map<std::string, std::string> StringMap;
FileCOFF(std::unique_ptr<MemoryBuffer> mb, std::error_code &ec);
std::error_code parse();
StringRef getLinkerDirectives() const { return _directives; }
bool isCompatibleWithSEH() const { return _compatibleWithSEH; }
const atom_collection<DefinedAtom> &defined() const override {
return _definedAtoms;
}
const atom_collection<UndefinedAtom> &undefined() const override {
return _undefinedAtoms;
}
const atom_collection<SharedLibraryAtom> &sharedLibrary() const override {
return _sharedLibraryAtoms;
}
const atom_collection<AbsoluteAtom> &absolute() const override {
return _absoluteAtoms;
}
void addDefinedAtom(const DefinedAtom *atom) {
_definedAtoms._atoms.push_back(atom);
}
mutable llvm::BumpPtrAllocator _alloc;
private:
std::error_code readSymbolTable(std::vector<const coff_symbol *> &result);
void createAbsoluteAtoms(const SymbolVectorT &symbols,
std::vector<const AbsoluteAtom *> &result);
std::error_code
createUndefinedAtoms(const SymbolVectorT &symbols,
std::vector<const UndefinedAtom *> &result);
std::error_code
createDefinedSymbols(const SymbolVectorT &symbols,
std::vector<const DefinedAtom *> &result);
std::error_code cacheSectionAttributes();
std::error_code maybeCreateSXDataAtoms();
std::error_code
AtomizeDefinedSymbolsInSection(const coff_section *section,
std::vector<const coff_symbol *> &symbols,
std::vector<COFFDefinedFileAtom *> &atoms);
std::error_code
AtomizeDefinedSymbols(SectionToSymbolsT &definedSymbols,
std::vector<const DefinedAtom *> &definedAtoms);
std::error_code findAtomAt(const coff_section *section,
uint32_t targetAddress,
COFFDefinedFileAtom *&result,
uint32_t &offsetInAtom);
std::error_code getAtomBySymbolIndex(uint32_t index, Atom *&ret);
std::error_code
addRelocationReference(const coff_relocation *rel,
const coff_section *section,
const std::vector<COFFDefinedFileAtom *> &atoms);
std::error_code getSectionContents(StringRef sectionName,
ArrayRef<uint8_t> &result);
std::error_code getReferenceArch(Reference::KindArch &result);
std::error_code addRelocationReferenceToAtoms();
std::error_code findSection(StringRef name, const coff_section *&result);
StringRef ArrayRefToString(ArrayRef<uint8_t> array);
std::unique_ptr<const llvm::object::COFFObjectFile> _obj;
atom_collection_vector<DefinedAtom> _definedAtoms;
atom_collection_vector<UndefinedAtom> _undefinedAtoms;
atom_collection_vector<SharedLibraryAtom> _sharedLibraryAtoms;
atom_collection_vector<AbsoluteAtom> _absoluteAtoms;
// The target type of the object.
Reference::KindArch _referenceArch;
// The contents of .drectve section.
StringRef _directives;
// True if the object has "@feat.00" symbol.
bool _compatibleWithSEH;
// A map from symbol to its name. All symbols should be in this map except
// unnamed ones.
std::map<const coff_symbol *, StringRef> _symbolName;
// A map from symbol to its resultant atom.
std::map<const coff_symbol *, Atom *> _symbolAtom;
// A map from symbol to its aux symbol.
std::map<const coff_symbol *, const coff_symbol *> _auxSymbol;
// A map from section to its atoms.
std::map<const coff_section *, std::vector<COFFDefinedFileAtom *>>
_sectionAtoms;
// A set of COMDAT sections.
std::set<const coff_section *> _comdatSections;
// A map to get whether the section allows its contents to be merged or not.
std::map<const coff_section *, DefinedAtom::Merge> _merge;
// COMDAT associative sections
std::map<const coff_section *, std::set<const coff_section *>> _association;
// A sorted map to find an atom from a section and an offset within
// the section.
std::map<const coff_section *,
std::map<uint32_t, std::vector<COFFDefinedAtom *>>>
_definedAtomLocations;
uint64_t _ordinal;
};
class BumpPtrStringSaver : public llvm::cl::StringSaver {
public:
const char *SaveString(const char *str) override {
size_t len = strlen(str);
std::lock_guard<std::mutex> lock(_allocMutex);
char *copy = _alloc.Allocate<char>(len + 1);
memcpy(copy, str, len + 1);
return copy;
}
private:
llvm::BumpPtrAllocator _alloc;
std::mutex _allocMutex;
};
// Converts the COFF symbol attribute to the LLD's atom attribute.
Atom::Scope getScope(const coff_symbol *symbol) {
switch (symbol->StorageClass) {
case llvm::COFF::IMAGE_SYM_CLASS_EXTERNAL:
return Atom::scopeGlobal;
case llvm::COFF::IMAGE_SYM_CLASS_STATIC:
case llvm::COFF::IMAGE_SYM_CLASS_LABEL:
return Atom::scopeTranslationUnit;
}
llvm_unreachable("Unknown scope");
}
DefinedAtom::ContentType getContentType(const coff_section *section) {
if (section->Characteristics & llvm::COFF::IMAGE_SCN_CNT_CODE)
return DefinedAtom::typeCode;
if (section->Characteristics & llvm::COFF::IMAGE_SCN_CNT_INITIALIZED_DATA)
return DefinedAtom::typeData;
if (section->Characteristics & llvm::COFF::IMAGE_SCN_CNT_UNINITIALIZED_DATA)
return DefinedAtom::typeZeroFill;
return DefinedAtom::typeUnknown;
}
DefinedAtom::ContentPermissions getPermissions(const coff_section *section) {
if (section->Characteristics & llvm::COFF::IMAGE_SCN_MEM_READ &&
section->Characteristics & llvm::COFF::IMAGE_SCN_MEM_WRITE)
return DefinedAtom::permRW_;
if (section->Characteristics & llvm::COFF::IMAGE_SCN_MEM_READ &&
section->Characteristics & llvm::COFF::IMAGE_SCN_MEM_EXECUTE)
return DefinedAtom::permR_X;
if (section->Characteristics & llvm::COFF::IMAGE_SCN_MEM_READ)
return DefinedAtom::permR__;
return DefinedAtom::perm___;
}
/// Returns the alignment of the section. The contents of the section must be
/// aligned by this value in the resulting executable/DLL.
DefinedAtom::Alignment getAlignment(const coff_section *section) {
if (section->Characteristics & llvm::COFF::IMAGE_SCN_TYPE_NO_PAD)
return DefinedAtom::Alignment(0);
// Bit [20:24] contains section alignment information. We need to decrease
// the value stored by 1 in order to get the real exponent (e.g, ALIGN_1BYTE
// is 0x00100000, but the exponent should be 0)
uint32_t characteristics = (section->Characteristics >> 20) & 0xf;
// If all bits are off, we treat it as if ALIGN_1BYTE was on. The PE/COFF spec
// does not say anything about this case, but CVTRES.EXE does not set any bit
// in characteristics[20:24], and its output is intended to be copied to .rsrc
// section with no padding, so I think doing this is the right thing.
if (characteristics == 0)
return DefinedAtom::Alignment(0);
uint32_t powerOf2 = characteristics - 1;
return DefinedAtom::Alignment(powerOf2);
}
DefinedAtom::Merge getMerge(const coff_aux_section_definition *auxsym) {
switch (auxsym->Selection) {
case llvm::COFF::IMAGE_COMDAT_SELECT_NODUPLICATES:
return DefinedAtom::mergeNo;
case llvm::COFF::IMAGE_COMDAT_SELECT_ANY:
return DefinedAtom::mergeAsWeakAndAddressUsed;
case llvm::COFF::IMAGE_COMDAT_SELECT_EXACT_MATCH:
// TODO: This mapping is wrong. Fix it.
return DefinedAtom::mergeByContent;
case llvm::COFF::IMAGE_COMDAT_SELECT_SAME_SIZE:
return DefinedAtom::mergeSameNameAndSize;
case llvm::COFF::IMAGE_COMDAT_SELECT_LARGEST:
return DefinedAtom::mergeByLargestSection;
case llvm::COFF::IMAGE_COMDAT_SELECT_ASSOCIATIVE:
case llvm::COFF::IMAGE_COMDAT_SELECT_NEWEST:
// FIXME: These attributes has more complicated semantics than the regular
// weak symbol. These are mapped to mergeAsWeakAndAddressUsed for now
// because the core linker does not support them yet. We eventually have
// to implement them for full COFF support.
return DefinedAtom::mergeAsWeakAndAddressUsed;
default:
llvm_unreachable("Unknown merge type");
}
}
FileCOFF::FileCOFF(std::unique_ptr<MemoryBuffer> mb, std::error_code &ec)
: File(mb->getBufferIdentifier(), kindObject), _compatibleWithSEH(false),
_ordinal(0) {
auto binaryOrErr = llvm::object::createBinary(mb);
if ((ec = binaryOrErr.getError()))
return;
std::unique_ptr<llvm::object::Binary> bin(binaryOrErr.get());
_obj.reset(dyn_cast<const llvm::object::COFFObjectFile>(bin.get()));
if (!_obj) {
ec = make_error_code(llvm::object::object_error::invalid_file_type);
return;
}
bin.release();
// Read .drectve section if exists.
ArrayRef<uint8_t> directives;
if ((ec = getSectionContents(".drectve", directives)))
return;
if (!directives.empty())
_directives = ArrayRefToString(directives);
}
std::error_code FileCOFF::parse() {
if (std::error_code ec = getReferenceArch(_referenceArch))
return ec;
// Read the symbol table and atomize them if possible. Defined atoms
// cannot be atomized in one pass, so they will be not be atomized but
// added to symbolToAtom.
SymbolVectorT symbols;
if (std::error_code ec = readSymbolTable(symbols))
return ec;
createAbsoluteAtoms(symbols, _absoluteAtoms._atoms);
if (std::error_code ec =
createUndefinedAtoms(symbols, _undefinedAtoms._atoms))
return ec;
if (std::error_code ec = createDefinedSymbols(symbols, _definedAtoms._atoms))
return ec;
if (std::error_code ec = addRelocationReferenceToAtoms())
return ec;
if (std::error_code ec = maybeCreateSXDataAtoms())
return ec;
return std::error_code();
}
/// Iterate over the symbol table to retrieve all symbols.
std::error_code
FileCOFF::readSymbolTable(std::vector<const coff_symbol *> &result) {
const llvm::object::coff_file_header *header = nullptr;
if (std::error_code ec = _obj->getHeader(header))
return ec;
for (uint32_t i = 0, e = header->NumberOfSymbols; i != e; ++i) {
// Retrieve the symbol.
const coff_symbol *sym;
StringRef name;
if (std::error_code ec = _obj->getSymbol(i, sym))
return ec;
if (sym->SectionNumber == llvm::COFF::IMAGE_SYM_DEBUG)
goto next;
result.push_back(sym);
if (std::error_code ec = _obj->getSymbolName(sym, name))
return ec;
// Existence of the symbol @feat.00 indicates that object file is compatible
// with Safe Exception Handling.
if (name == "@feat.00") {
_compatibleWithSEH = true;
goto next;
}
// Cache the name.
_symbolName[sym] = name;
// Symbol may be followed by auxiliary symbol table records. The aux
// record can be in any format, but the size is always the same as the
// regular symbol. The aux record supplies additional information for the
// standard symbol. We do not interpret the aux record here, but just
// store it to _auxSymbol.
if (sym->NumberOfAuxSymbols > 0) {
const coff_symbol *aux = nullptr;
if (std::error_code ec = _obj->getAuxSymbol(i + 1, aux))
return ec;
_auxSymbol[sym] = aux;
}
next:
i += sym->NumberOfAuxSymbols;
}
return std::error_code();
}
/// Create atoms for the absolute symbols.
void FileCOFF::createAbsoluteAtoms(const SymbolVectorT &symbols,
std::vector<const AbsoluteAtom *> &result) {
for (const coff_symbol *sym : symbols) {
if (sym->SectionNumber != llvm::COFF::IMAGE_SYM_ABSOLUTE)
continue;
auto *atom = new (_alloc)
COFFAbsoluteAtom(*this, _symbolName[sym], getScope(sym), sym->Value);
result.push_back(atom);
_symbolAtom[sym] = atom;
}
}
/// Create atoms for the undefined symbols. This code is bit complicated
/// because it supports "weak externals" mechanism of COFF. If an undefined
/// symbol (sym1) has auxiliary data, the data contains a symbol table index
/// at which the "second symbol" (sym2) for sym1 exists. If sym1 is resolved,
/// it's linked normally. If not, sym1 is resolved as if it has sym2's
/// name. This relationship between sym1 and sym2 is represented using
/// fallback mechanism of undefined symbol.
std::error_code
FileCOFF::createUndefinedAtoms(const SymbolVectorT &symbols,
std::vector<const UndefinedAtom *> &result) {
// Sort out undefined symbols from all symbols.
std::set<const coff_symbol *> undefines;
std::map<const coff_symbol *, const coff_symbol *> weakExternal;
for (const coff_symbol *sym : symbols) {
if (sym->SectionNumber != llvm::COFF::IMAGE_SYM_UNDEFINED)
continue;
undefines.insert(sym);
// Create a mapping from sym1 to sym2, if the undefined symbol has
// auxiliary data.
auto iter = _auxSymbol.find(sym);
if (iter == _auxSymbol.end())
continue;
const coff_aux_weak_external *aux =
reinterpret_cast<const coff_aux_weak_external *>(iter->second);
const coff_symbol *sym2;
if (std::error_code ec = _obj->getSymbol(aux->TagIndex, sym2))
return ec;
weakExternal[sym] = sym2;
}
// Sort out sym1s from sym2s. Sym2s shouldn't be added to the undefined atom
// list because they shouldn't be resolved unless sym1 is failed to
// be resolved.
for (auto i : weakExternal)
undefines.erase(i.second);
// Create atoms for the undefined symbols.
for (const coff_symbol *sym : undefines) {
// If the symbol has sym2, create an undefiend atom for sym2, so that we
// can pass it as a fallback atom.
UndefinedAtom *fallback = nullptr;
auto iter = weakExternal.find(sym);
if (iter != weakExternal.end()) {
const coff_symbol *sym2 = iter->second;
fallback = new (_alloc) COFFUndefinedAtom(*this, _symbolName[sym2]);
_symbolAtom[sym2] = fallback;
}
// Create an atom for the symbol.
auto *atom =
new (_alloc) COFFUndefinedAtom(*this, _symbolName[sym], fallback);
result.push_back(atom);
_symbolAtom[sym] = atom;
}
return std::error_code();
}
/// Create atoms for the defined symbols. This pass is a bit complicated than
/// the other two, because in order to create the atom for the defined symbol
/// we need to know the adjacent symbols.
std::error_code
FileCOFF::createDefinedSymbols(const SymbolVectorT &symbols,
std::vector<const DefinedAtom *> &result) {
// A defined atom can be merged if its section attribute allows its contents
// to be merged. In COFF, it's not very easy to get the section attribute
// for the symbol, so scan all sections in advance and cache the attributes
// for later use.
if (std::error_code ec = cacheSectionAttributes())
return ec;
// Filter non-defined atoms, and group defined atoms by its section.
SectionToSymbolsT definedSymbols;
for (const coff_symbol *sym : symbols) {
// A symbol with section number 0 and non-zero value represents a common
// symbol. The MS COFF spec did not give a definition of what the common
// symbol is. We should probably follow ELF's definition shown below.
//
// - If one object file has a common symbol and another has a definition,
// the common symbol is treated as an undefined reference.
// - If there is no definition for a common symbol, the program linker
// acts as though it saw a definition initialized to zero of the
// appropriate size.
// - Two object files may have common symbols of
// different sizes, in which case the program linker will use the
// largest size.
//
// FIXME: We are currently treating the common symbol as a normal
// mergeable atom. Implement the above semantcis.
if (sym->SectionNumber == llvm::COFF::IMAGE_SYM_UNDEFINED &&
sym->Value > 0) {
StringRef name = _symbolName[sym];
uint32_t size = sym->Value;
auto *atom = new (_alloc)
COFFBSSAtom(*this, name, getScope(sym), DefinedAtom::permRW_,
DefinedAtom::mergeAsWeakAndAddressUsed, size, _ordinal++);
// Common symbols should be aligned on natural boundaries with the maximum
// of 32 byte. It's not documented anywhere, but it's what MSVC link.exe
// seems to be doing.
uint64_t alignment = std::min((uint64_t)32, llvm::NextPowerOf2(size));
atom->setAlignment(
DefinedAtom::Alignment(llvm::countTrailingZeros(alignment)));
result.push_back(atom);
continue;
}
// Skip if it's not for defined atom.
if (sym->SectionNumber == llvm::COFF::IMAGE_SYM_DEBUG ||
sym->SectionNumber == llvm::COFF::IMAGE_SYM_ABSOLUTE ||
sym->SectionNumber == llvm::COFF::IMAGE_SYM_UNDEFINED)
continue;
const coff_section *sec;
if (std::error_code ec = _obj->getSection(sym->SectionNumber, sec))
return ec;
assert(sec && "SectionIndex > 0, Sec must be non-null!");
// Skip if it's a section symbol for a COMDAT section. A section symbol
// has the name of the section and value 0. A translation unit may contain
// multiple COMDAT sections whose section name are the same. We don't want
// to make atoms for them as they would become duplicate symbols.
StringRef sectionName;
if (std::error_code ec = _obj->getSectionName(sec, sectionName))
return ec;
if (_symbolName[sym] == sectionName && sym->Value == 0 &&
_merge[sec] != DefinedAtom::mergeNo)
continue;
uint8_t sc = sym->StorageClass;
if (sc != llvm::COFF::IMAGE_SYM_CLASS_EXTERNAL &&
sc != llvm::COFF::IMAGE_SYM_CLASS_STATIC &&
sc != llvm::COFF::IMAGE_SYM_CLASS_FUNCTION &&
sc != llvm::COFF::IMAGE_SYM_CLASS_LABEL) {
llvm::errs() << "Unable to create atom for: " << _symbolName[sym] << " ("
<< static_cast<int>(sc) << ")\n";
return llvm::object::object_error::parse_failed;
}
definedSymbols[sec].push_back(sym);
}
// Atomize the defined symbols.
if (std::error_code ec = AtomizeDefinedSymbols(definedSymbols, result))
return ec;
return std::error_code();
}
// Cache the COMDAT attributes, which indicate whether the symbols in the
// section can be merged or not.
std::error_code FileCOFF::cacheSectionAttributes() {
// The COMDAT section attribute is not an attribute of coff_section, but is
// stored in the auxiliary symbol for the first symbol referring a COMDAT
// section. It feels to me that it's unnecessarily complicated, but this is
// how COFF works.
for (auto i : _auxSymbol) {
// Read a section from the file
const coff_symbol *sym = i.first;
if (sym->SectionNumber == llvm::COFF::IMAGE_SYM_ABSOLUTE ||
sym->SectionNumber == llvm::COFF::IMAGE_SYM_UNDEFINED)
continue;
const coff_section *sec;
if (std::error_code ec = _obj->getSection(sym->SectionNumber, sec))
return ec;
const coff_aux_section_definition *aux =
reinterpret_cast<const coff_aux_section_definition *>(i.second);
if (sec->Characteristics & llvm::COFF::IMAGE_SCN_LNK_COMDAT) {
// Read aux symbol data.
_comdatSections.insert(sec);
_merge[sec] = getMerge(aux);
}
// Handle associative sections.
if (aux->Selection == llvm::COFF::IMAGE_COMDAT_SELECT_ASSOCIATIVE) {
const coff_section *parent;
if (std::error_code ec = _obj->getSection(aux->Number, parent))
return ec;
_association[parent].insert(sec);
}
}
// The sections that does not have auxiliary symbol are regular sections, in
// which symbols are not allowed to be merged.
for (const auto &section : _obj->sections()) {
const coff_section *sec = _obj->getCOFFSection(section);
if (!_merge.count(sec))
_merge[sec] = DefinedAtom::mergeNo;
}
return std::error_code();
}
/// Atomize \p symbols and append the results to \p atoms. The symbols are
/// assumed to have been defined in the \p section.
std::error_code FileCOFF::AtomizeDefinedSymbolsInSection(
const coff_section *section, std::vector<const coff_symbol *> &symbols,
std::vector<COFFDefinedFileAtom *> &atoms) {
// Sort symbols by position.
std::stable_sort(
symbols.begin(), symbols.end(),
// For some reason MSVC fails to allow the lambda in this context with a
// "illegal use of local type in type instantiation". MSVC is clearly
// wrong here. Force a conversion to function pointer to work around.
static_cast<bool (*)(const coff_symbol *, const coff_symbol *)>(
[](const coff_symbol *a, const coff_symbol *b)
-> bool { return a->Value < b->Value; }));
StringRef sectionName;
if (std::error_code ec = _obj->getSectionName(section, sectionName))
return ec;
// BSS section does not have contents. If this is the BSS section, create
// COFFBSSAtom instead of COFFDefinedAtom.
if (section->Characteristics & llvm::COFF::IMAGE_SCN_CNT_UNINITIALIZED_DATA) {
for (auto si = symbols.begin(), se = symbols.end(); si != se; ++si) {
const coff_symbol *sym = *si;
uint32_t size = (si + 1 == se) ? section->SizeOfRawData - sym->Value
: si[1]->Value - sym->Value;
auto *atom = new (_alloc) COFFBSSAtom(
*this, _symbolName[sym], getScope(sym), getPermissions(section),
DefinedAtom::mergeAsWeakAndAddressUsed, size, _ordinal++);
atoms.push_back(atom);
_symbolAtom[sym] = atom;
}
return std::error_code();
}
ArrayRef<uint8_t> secData;
if (std::error_code ec = _obj->getSectionContents(section, secData))
return ec;
// A section with IMAGE_SCN_LNK_{INFO,REMOVE} attribute will never become
// a part of the output image. That's what the COFF spec says.
if (section->Characteristics & llvm::COFF::IMAGE_SCN_LNK_INFO ||
section->Characteristics & llvm::COFF::IMAGE_SCN_LNK_REMOVE)
return std::error_code();
// Supporting debug info needs more work than just linking and combining
// .debug sections. We don't support it yet. Let's discard .debug sections at
// the very beginning of the process so that we don't spend time on linking
// blobs that nobody would understand.
if ((section->Characteristics & llvm::COFF::IMAGE_SCN_MEM_DISCARDABLE) &&
(sectionName == ".debug" || sectionName.startswith(".debug$"))) {
return std::error_code();
}
DefinedAtom::ContentType type = getContentType(section);
DefinedAtom::ContentPermissions perms = getPermissions(section);
bool isComdat = (_comdatSections.count(section) == 1);
// Create an atom for the entire section.
if (symbols.empty()) {
ArrayRef<uint8_t> data(secData.data(), secData.size());
auto *atom = new (_alloc) COFFDefinedAtom(
*this, "", sectionName, Atom::scopeTranslationUnit, type, isComdat,
perms, _merge[section], data, _ordinal++);
atoms.push_back(atom);
_definedAtomLocations[section][0].push_back(atom);
return std::error_code();
}
// Create an unnamed atom if the first atom isn't at the start of the
// section.
if (symbols[0]->Value != 0) {
uint64_t size = symbols[0]->Value;
ArrayRef<uint8_t> data(secData.data(), size);
auto *atom = new (_alloc) COFFDefinedAtom(
*this, "", sectionName, Atom::scopeTranslationUnit, type, isComdat,
perms, _merge[section], data, _ordinal++);
atoms.push_back(atom);
_definedAtomLocations[section][0].push_back(atom);
}
for (auto si = symbols.begin(), se = symbols.end(); si != se; ++si) {
const uint8_t *start = secData.data() + (*si)->Value;
// if this is the last symbol, take up the remaining data.
const uint8_t *end = (si + 1 == se) ? secData.data() + secData.size()
: secData.data() + (*(si + 1))->Value;
ArrayRef<uint8_t> data(start, end);
auto *atom = new (_alloc) COFFDefinedAtom(
*this, _symbolName[*si], sectionName, getScope(*si), type, isComdat,
perms, _merge[section], data, _ordinal++);
atoms.push_back(atom);
_symbolAtom[*si] = atom;
_definedAtomLocations[section][(*si)->Value].push_back(atom);
}
// Finally, set alignment to the first atom so that the section contents
// will be aligned as specified by the object section header.
_definedAtomLocations[section][0][0]->setAlignment(getAlignment(section));
return std::error_code();
}
std::error_code FileCOFF::AtomizeDefinedSymbols(
SectionToSymbolsT &definedSymbols,
std::vector<const DefinedAtom *> &definedAtoms) {
// For each section, make atoms for all the symbols defined in the
// section, and append the atoms to the result objects.
for (auto &i : definedSymbols) {
const coff_section *section = i.first;
std::vector<const coff_symbol *> &symbols = i.second;
std::vector<COFFDefinedFileAtom *> atoms;
if (std::error_code ec =
AtomizeDefinedSymbolsInSection(section, symbols, atoms))
return ec;
// Connect atoms with layout-before/layout-after edges.
connectAtomsWithLayoutEdge(atoms);
for (COFFDefinedFileAtom *atom : atoms) {
_sectionAtoms[section].push_back(atom);
definedAtoms.push_back(atom);
}
}
// A COMDAT section with SELECT_ASSOCIATIVE attribute refer to other
// section. If the referred section is linked to a binary, the
// referring section needs to be linked too. A typical use case of
// this attribute is a static initializer; a parent is a comdat BSS
// section, and a child is a static initializer code for the data.
//
// We add referring section contents to the referred section's
// associate list, so that Resolver takes care of them.
for (auto i : _association) {
const coff_section *parent = i.first;
const std::set<const coff_section *> &childSections = i.second;
assert(_sectionAtoms[parent].size() > 0);
COFFDefinedFileAtom *p = _sectionAtoms[parent][0];
for (const coff_section *sec : childSections) {
if (_sectionAtoms.count(sec)) {
assert(_sectionAtoms[sec].size() > 0);
p->addAssociate(_sectionAtoms[sec][0]);
}
}
}
return std::error_code();
}
/// Find the atom that is at \p targetAddress in \p section.
std::error_code FileCOFF::findAtomAt(const coff_section *section,
uint32_t targetAddress,
COFFDefinedFileAtom *&result,
uint32_t &offsetInAtom) {
for (auto i : _definedAtomLocations[section]) {
uint32_t atomAddress = i.first;
std::vector<COFFDefinedAtom *> &atomsAtSameLocation = i.second;
COFFDefinedAtom *atom = atomsAtSameLocation.back();
if (atomAddress <= targetAddress &&
targetAddress < atomAddress + atom->size()) {
result = atom;
offsetInAtom = targetAddress - atomAddress;
return std::error_code();
}
}
// Relocation target is out of range
return llvm::object::object_error::parse_failed;
}
/// Find the atom for the symbol that was at the \p index in the symbol
/// table.
std::error_code FileCOFF::getAtomBySymbolIndex(uint32_t index, Atom *&ret) {
const coff_symbol *symbol;
if (std::error_code ec = _obj->getSymbol(index, symbol))
return ec;
ret = _symbolAtom[symbol];
assert(ret);
return std::error_code();
}
/// Add relocation information to an atom based on \p rel. \p rel is an
/// relocation entry for the \p section, and \p atoms are all the atoms
/// defined in the \p section.
std::error_code FileCOFF::addRelocationReference(
const coff_relocation *rel, const coff_section *section,
const std::vector<COFFDefinedFileAtom *> &atoms) {
assert(atoms.size() > 0);
// The address of the item which relocation is applied. Section's
// VirtualAddress needs to be added for historical reasons, but the value
// is usually just zero, so adding it is usually no-op.
uint32_t itemAddress = rel->VirtualAddress + section->VirtualAddress;
Atom *targetAtom = nullptr;
if (std::error_code ec =
getAtomBySymbolIndex(rel->SymbolTableIndex, targetAtom))
return ec;
COFFDefinedFileAtom *atom;
uint32_t offsetInAtom;
if (std::error_code ec = findAtomAt(section, itemAddress, atom, offsetInAtom))
return ec;
atom->addReference(std::unique_ptr<COFFReference>(
new COFFReference(targetAtom, offsetInAtom, rel->Type,
Reference::KindNamespace::COFF, _referenceArch)));
return std::error_code();
}
// Read section contents.
std::error_code FileCOFF::getSectionContents(StringRef sectionName,
ArrayRef<uint8_t> &result) {
const coff_section *section = nullptr;
if (std::error_code ec = findSection(sectionName, section))
return ec;
if (!section)
return std::error_code();
if (std::error_code ec = _obj->getSectionContents(section, result))
return ec;
return std::error_code();
}
/// Returns the target machine type of the current object file.
std::error_code FileCOFF::getReferenceArch(Reference::KindArch &result) {
const llvm::object::coff_file_header *header = nullptr;
if (std::error_code ec = _obj->getHeader(header))
return ec;
switch (header->Machine) {
case llvm::COFF::IMAGE_FILE_MACHINE_I386:
result = Reference::KindArch::x86;
return std::error_code();
case llvm::COFF::IMAGE_FILE_MACHINE_AMD64:
result = Reference::KindArch::x86_64;
return std::error_code();
case llvm::COFF::IMAGE_FILE_MACHINE_UNKNOWN:
result = Reference::KindArch::all;
return std::error_code();
}
llvm::errs() << "Unsupported machine type: " << header->Machine << "\n";
return llvm::object::object_error::parse_failed;
}
/// Add relocation information to atoms.
std::error_code FileCOFF::addRelocationReferenceToAtoms() {
// Relocation entries are defined for each section.
for (const auto &sec : _obj->sections()) {
const coff_section *section = _obj->getCOFFSection(sec);
// Skip there's no atom for the section. Currently we do not create any
// atoms for some sections, such as "debug$S", and such sections need to
// be skipped here too.
if (_sectionAtoms.find(section) == _sectionAtoms.end())
continue;
for (const auto &reloc : sec.relocations()) {
const coff_relocation *rel = _obj->getCOFFRelocation(reloc);
if (auto ec =
addRelocationReference(rel, section, _sectionAtoms[section]))
return ec;
}
}
return std::error_code();
}
// Read .sxdata section if exists. .sxdata is a x86-only section that contains a
// vector of symbol offsets. The symbols pointed by this section are SEH handler
// functions contained in the same object file. The linker needs to construct a
// SEH table and emit it to executable.
//
// On x86, exception handler addresses are in stack, so they are vulnerable to
// stack overflow attack. In order to protect against it, Windows runtime uses
// the SEH table to check if a SEH handler address in stack is a real address of
// a handler created by compiler.
//
// What we want to emit from the linker is a vector of SEH handler VAs, but here
// we have a vector of offsets to the symbol table. So we convert the latter to
// the former.
std::error_code FileCOFF::maybeCreateSXDataAtoms() {
ArrayRef<uint8_t> sxdata;
if (std::error_code ec = getSectionContents(".sxdata", sxdata))
return ec;
if (sxdata.empty())
return std::error_code();
std::vector<uint8_t> atomContent =
*new (_alloc) std::vector<uint8_t>((size_t)sxdata.size());
auto *atom = new (_alloc) COFFDefinedAtom(
*this, "", ".sxdata", Atom::scopeTranslationUnit, DefinedAtom::typeData,
false /*isComdat*/, DefinedAtom::permR__, DefinedAtom::mergeNo,
atomContent, _ordinal++);
const ulittle32_t *symbolIndex =
reinterpret_cast<const ulittle32_t *>(sxdata.data());
int numSymbols = sxdata.size() / sizeof(uint32_t);
for (int i = 0; i < numSymbols; ++i) {
Atom *handlerFunc;
if (std::error_code ec = getAtomBySymbolIndex(symbolIndex[i], handlerFunc))
return ec;
int offsetInAtom = i * sizeof(uint32_t);
atom->addReference(std::unique_ptr<COFFReference>(new COFFReference(
handlerFunc, offsetInAtom, llvm::COFF::IMAGE_REL_I386_DIR32,
Reference::KindNamespace::COFF, _referenceArch)));
}
_definedAtoms._atoms.push_back(atom);
return std::error_code();
}
/// Find a section by name.
std::error_code FileCOFF::findSection(StringRef name,
const coff_section *&result) {
for (const auto &sec : _obj->sections()) {
const coff_section *section = _obj->getCOFFSection(sec);
StringRef sectionName;
if (auto ec = _obj->getSectionName(section, sectionName))
return ec;
if (sectionName == name) {
result = section;
return std::error_code();
}
}
// Section was not found, but it's not an error. This method returns
// an error only when there's a read error.
return std::error_code();
}
// Convert ArrayRef<uint8_t> to std::string. The array contains a string which
// may not be terminated by NUL.
StringRef FileCOFF::ArrayRefToString(ArrayRef<uint8_t> array) {
// Skip the UTF-8 byte marker if exists. The contents of .drectve section
// is, according to the Microsoft PE/COFF spec, encoded as ANSI or UTF-8
// with the BOM marker.
//
// FIXME: I think "ANSI" in the spec means Windows-1252 encoding, which is a
// superset of ASCII. We need to convert it to UTF-8.
if (array.size() >= 3 && array[0] == 0xEF && array[1] == 0xBB &&
array[2] == 0xBF) {
array = array.slice(3);
}
if (array.empty())
return "";
size_t len = 0;
size_t e = array.size();
while (len < e && array[len] != '\0')
++len;
std::string *contents =
new (_alloc) std::string(reinterpret_cast<const char *>(&array[0]), len);
return StringRef(*contents).trim();
}
// Convert .res file to .coff file and then parse it. Resource file is a file
// containing various types of data, such as icons, translation texts,
// etc. "cvtres.exe" command reads an RC file to create a COFF file which
// encapsulates resource data into rsrc$N sections, where N is an integer.
//
// The linker is not capable to handle RC files directly. Instead, it runs
// cvtres.exe on RC files and then then link its outputs.
class ResourceFileReader : public Reader {
public:
bool canParse(file_magic magic, StringRef ext,
const MemoryBuffer &) const override {
return (magic == llvm::sys::fs::file_magic::windows_resource);
}
std::error_code
parseFile(std::unique_ptr<MemoryBuffer> &mb, const class Registry &,
std::vector<std::unique_ptr<File>> &result) const override {
// Convert RC file to COFF
ErrorOr<std::string> coffPath = convertResourceFileToCOFF(std::move(mb));
if (std::error_code ec = coffPath.getError())
return ec;
llvm::FileRemover coffFileRemover(*coffPath);
// Read and parse the COFF
std::unique_ptr<MemoryBuffer> newmb;
if (std::error_code ec = MemoryBuffer::getFile(*coffPath, newmb))
return ec;
std::error_code ec;
std::unique_ptr<FileCOFF> file(new FileCOFF(std::move(newmb), ec));
if (ec)
return ec;
if (std::error_code ec = file->parse())
return ec;
result.push_back(std::move(file));
return std::error_code();
}
private:
static ErrorOr<std::string>
writeResToTemporaryFile(std::unique_ptr<MemoryBuffer> mb) {
// Get a temporary file path for .res file.
SmallString<128> tempFilePath;
if (std::error_code ec =
llvm::sys::fs::createTemporaryFile("tmp", "res", tempFilePath))
return ec;
// Write the memory buffer contents to .res file, so that we can run
// cvtres.exe on it.
std::unique_ptr<llvm::FileOutputBuffer> buffer;
if (std::error_code ec = llvm::FileOutputBuffer::create(
tempFilePath.str(), mb->getBufferSize(), buffer))
return ec;
memcpy(buffer->getBufferStart(), mb->getBufferStart(), mb->getBufferSize());
if (std::error_code ec = buffer->commit())
return ec;
// Convert SmallString -> StringRef -> std::string.
return tempFilePath.str().str();
}
static ErrorOr<std::string>
convertResourceFileToCOFF(std::unique_ptr<MemoryBuffer> mb) {
// Write the resource file to a temporary file.
ErrorOr<std::string> inFilePath = writeResToTemporaryFile(std::move(mb));
if (std::error_code ec = inFilePath.getError())
return ec;
llvm::FileRemover inFileRemover(*inFilePath);
// Create an output file path.
SmallString<128> outFilePath;
if (std::error_code ec =
llvm::sys::fs::createTemporaryFile("tmp", "obj", outFilePath))
return ec;
std::string outFileArg = ("/out:" + outFilePath).str();
// Construct CVTRES.EXE command line and execute it.
std::string program = "cvtres.exe";
std::string programPath = llvm::sys::FindProgramByName(program);
if (programPath.empty()) {
llvm::errs() << "Unable to find " << program << " in PATH\n";
return llvm::errc::broken_pipe;
}
std::vector<const char *> args;
args.push_back(programPath.c_str());
args.push_back("/machine:x86");
args.push_back("/readonly");
args.push_back("/nologo");
args.push_back(outFileArg.c_str());
args.push_back(inFilePath->c_str());
args.push_back(nullptr);
DEBUG({
for (const char **p = &args[0]; *p; ++p)
llvm::dbgs() << *p << " ";
llvm::dbgs() << "\n";
});
if (llvm::sys::ExecuteAndWait(programPath.c_str(), &args[0]) != 0) {
llvm::errs() << program << " failed\n";
return llvm::errc::broken_pipe;
}
return outFilePath.str().str();
}
};
class COFFObjectReader : public Reader {
public:
COFFObjectReader(PECOFFLinkingContext &ctx) : _ctx(ctx) {}
bool canParse(file_magic magic, StringRef ext,
const MemoryBuffer &) const override {
return magic == llvm::sys::fs::file_magic::coff_object;
}
std::error_code
parseFile(std::unique_ptr<MemoryBuffer> &mb, const Registry &registry,
std::vector<std::unique_ptr<File>> &result) const override {
// Parse the memory buffer as PECOFF file.
const char *mbName = mb->getBufferIdentifier();
std::error_code ec;
std::unique_ptr<FileCOFF> file(new FileCOFF(std::move(mb), ec));
if (ec)
return ec;
// Interpret .drectve section if the section has contents.
StringRef directives = file->getLinkerDirectives();
if (!directives.empty())
if (std::error_code ec = handleDirectiveSection(registry, directives))
return ec;
if (std::error_code ec = file->parse())
return ec;
// Check for /SAFESEH.
if (_ctx.requireSEH() && !file->isCompatibleWithSEH()) {
llvm::errs() << "/SAFESEH is specified, but " << mbName
<< " is not compatible with SEH.\n";
return llvm::object::object_error::parse_failed;
}
// In order to emit SEH table, all input files need to be compatible with
// SEH. Disable SEH if the file being read is not compatible.
if (!file->isCompatibleWithSEH())
_ctx.setSafeSEH(false);
// One can define alias symbols using /alternatename:<sym>=<sym> option.
// The mapping for /alternatename is in the context object. This helper
// function iterate over defined atoms and create alias atoms if needed.
createAlternateNameAtoms(*file);
result.push_back(std::move(file));
return std::error_code();
}
private:
// Interpret the contents of .drectve section. If exists, the section contains
// a string containing command line options. The linker is expected to
// interpret the options as if they were given via the command line.
//
// The section mainly contains /defaultlib (-l in Unix), but can contain any
// options as long as they are valid.
std::error_code handleDirectiveSection(const Registry &registry,
StringRef directives) const {
DEBUG(llvm::dbgs() << ".drectve: " << directives << "\n");
// Split the string into tokens, as the shell would do for argv.
SmallVector<const char *, 16> tokens;
tokens.push_back("link"); // argv[0] is the command name. Will be ignored.
llvm::cl::TokenizeWindowsCommandLine(directives, _stringSaver, tokens);
tokens.push_back(nullptr);
// Calls the command line parser to interpret the token string as if they
// were given via the command line.
int argc = tokens.size() - 1;
const char **argv = &tokens[0];
std::string errorMessage;
llvm::raw_string_ostream stream(errorMessage);
bool parseFailed = !WinLinkDriver::parse(argc, argv, _ctx, stream,
/*isDirective*/ true);
stream.flush();
// Print error message if error.
if (parseFailed) {
auto msg = Twine("Failed to parse '") + directives + "'\n"
+ "Reason: " + errorMessage;
return make_dynamic_error_code(msg);
}
if (!errorMessage.empty()) {
llvm::errs() << "lld warning: " << errorMessage << "\n";
}
return std::error_code();
}
AliasAtom *createAlias(FileCOFF &file, StringRef name,
const DefinedAtom *target) const {
AliasAtom *alias = new (file._alloc) AliasAtom(file, name);
alias->addReference(Reference::KindNamespace::all, Reference::KindArch::all,
Reference::kindLayoutAfter, 0, target, 0);
alias->setMerge(DefinedAtom::mergeAsWeak);
if (target->contentType() == DefinedAtom::typeCode)
alias->setDeadStrip(DefinedAtom::deadStripNever);
return alias;
}
// Iterates over defined atoms and create alias atoms if needed.
void createAlternateNameAtoms(FileCOFF &file) const {
std::vector<const DefinedAtom *> aliases;
for (const DefinedAtom *atom : file.defined()) {
auto it = _ctx.alternateNames().find(atom->name());
if (it != _ctx.alternateNames().end())
aliases.push_back(createAlias(file, it->second, atom));
}
for (const DefinedAtom *alias : aliases) {
file.addDefinedAtom(alias);
}
}
PECOFFLinkingContext &_ctx;
mutable BumpPtrStringSaver _stringSaver;
};
using namespace llvm::COFF;
const Registry::KindStrings kindStringsI386[] = {
LLD_KIND_STRING_ENTRY(IMAGE_REL_I386_ABSOLUTE),
LLD_KIND_STRING_ENTRY(IMAGE_REL_I386_DIR16),
LLD_KIND_STRING_ENTRY(IMAGE_REL_I386_REL16),
LLD_KIND_STRING_ENTRY(IMAGE_REL_I386_DIR32),
LLD_KIND_STRING_ENTRY(IMAGE_REL_I386_DIR32NB),
LLD_KIND_STRING_ENTRY(IMAGE_REL_I386_SEG12),
LLD_KIND_STRING_ENTRY(IMAGE_REL_I386_SECTION),
LLD_KIND_STRING_ENTRY(IMAGE_REL_I386_SECREL),
LLD_KIND_STRING_ENTRY(IMAGE_REL_I386_TOKEN),
LLD_KIND_STRING_ENTRY(IMAGE_REL_I386_SECREL7),
LLD_KIND_STRING_ENTRY(IMAGE_REL_I386_REL32),
LLD_KIND_STRING_END};
const Registry::KindStrings kindStringsAMD64[] = {
LLD_KIND_STRING_ENTRY(IMAGE_REL_AMD64_ABSOLUTE),
LLD_KIND_STRING_ENTRY(IMAGE_REL_AMD64_ADDR64),
LLD_KIND_STRING_ENTRY(IMAGE_REL_AMD64_ADDR32),
LLD_KIND_STRING_ENTRY(IMAGE_REL_AMD64_ADDR32NB),
LLD_KIND_STRING_ENTRY(IMAGE_REL_AMD64_REL32),
LLD_KIND_STRING_ENTRY(IMAGE_REL_AMD64_REL32_1),
LLD_KIND_STRING_ENTRY(IMAGE_REL_AMD64_REL32_2),
LLD_KIND_STRING_ENTRY(IMAGE_REL_AMD64_REL32_3),
LLD_KIND_STRING_ENTRY(IMAGE_REL_AMD64_REL32_4),
LLD_KIND_STRING_ENTRY(IMAGE_REL_AMD64_REL32_5),
LLD_KIND_STRING_ENTRY(IMAGE_REL_AMD64_SECTION),
LLD_KIND_STRING_ENTRY(IMAGE_REL_AMD64_SECREL),
LLD_KIND_STRING_ENTRY(IMAGE_REL_AMD64_SECREL7),
LLD_KIND_STRING_ENTRY(IMAGE_REL_AMD64_TOKEN),
LLD_KIND_STRING_ENTRY(IMAGE_REL_AMD64_SREL32),
LLD_KIND_STRING_ENTRY(IMAGE_REL_AMD64_PAIR),
LLD_KIND_STRING_ENTRY(IMAGE_REL_AMD64_SSPAN32),
LLD_KIND_STRING_END};
} // end namespace anonymous
namespace lld {
void Registry::addSupportCOFFObjects(PECOFFLinkingContext &ctx) {
add(std::unique_ptr<Reader>(new COFFObjectReader(ctx)));
addKindTable(Reference::KindNamespace::COFF, Reference::KindArch::x86,
kindStringsI386);
addKindTable(Reference::KindNamespace::COFF, Reference::KindArch::x86_64,
kindStringsAMD64);
}
void Registry::addSupportWindowsResourceFiles() {
add(std::unique_ptr<Reader>(new ResourceFileReader()));
}
}