hanchenye-llvm-project/polly
Tobias Grosser 8362c26113 Define buildScheduleRec on RegionNodes and pull out the tree traversal [NFC]
This change clarifies that for Not-NonAffine-SubRegions we actually iterate over
the subnodes and for both NonAffine-SubRegions and BasicBlocks, we perform the
schedule construction. As a result, the tree traversal becomes trivial, the
special case for a scop consisting just of a single non-affine region
disappears and the indentation of the code is reduced.

No functional change intended.

llvm-svn: 256940
2016-01-06 15:30:06 +00:00
..
autoconf Generate gitversion.h in autoconf builds 2015-09-09 13:15:11 +00:00
cmake Compile ISL into its own library 2015-09-24 11:30:22 +00:00
include/polly Define buildScheduleRec on RegionNodes and pull out the tree traversal [NFC] 2016-01-06 15:30:06 +00:00
lib Define buildScheduleRec on RegionNodes and pull out the tree traversal [NFC] 2016-01-06 15:30:06 +00:00
test Add option to assume single-loop scops with sufficient compute are profitable 2015-12-21 21:00:43 +00:00
tools Do not compile GPU library with sanitizers 2015-07-28 12:51:23 +00:00
utils Revise polly-{update|check}-format targets 2015-09-14 16:59:50 +00:00
www TODO: Polly can handle boolean expressions (Open->Done) 2016-01-05 11:48:59 +00:00
.arcconfig Adjusted arc linter config for modern version of arcanist 2015-08-12 09:01:16 +00:00
.arclint Adjusted arc linter config for modern version of arcanist 2015-08-12 09:01:16 +00:00
.gitattributes
.gitignore Add git patch files to .gitignore 2015-06-23 20:55:01 +00:00
CMakeLists.txt Add -sort-includes to our automatic source code formatting 2015-10-15 12:18:37 +00:00
CREDITS.txt Add myself to the credits 2014-08-10 03:37:29 +00:00
LICENSE.txt
Makefile
Makefile.common.in
Makefile.config.in Fix autotools build 2015-06-25 16:50:13 +00:00
README
configure Enable ISL's small integer optimization 2015-06-25 20:47:35 +00:00

README

Polly - Polyhedral optimizations for LLVM
-----------------------------------------
http://polly.llvm.org/

Polly uses a mathematical representation, the polyhedral model, to represent and
transform loops and other control flow structures. Using an abstract
representation it is possible to reason about transformations in a more general
way and to use highly optimized linear programming libraries to figure out the
optimal loop structure. These transformations can be used to do constant
propagation through arrays, remove dead loop iterations, optimize loops for
cache locality, optimize arrays, apply advanced automatic parallelization, drive
vectorization, or they can be used to do software pipelining.