hanchenye-llvm-project/polly
Tobias Grosser 2ea6deb62f IslCodegen: Do not build upper bound in vector for
For for-nodes that are translated to a set of vector lanes, we already know the
overall number of iterations. Calculating the upper bound is consequently not
necessary. This change removes the code for upper bound calculation, which was
probably copy/pasted from the code generation for the normal for-loop.

This issue was found by Sylvestre's scan-build server.

llvm-svn: 193925
2013-11-02 12:59:39 +00:00
..
autoconf [autoconf/cmake] Make sure we detect the latest version of isl. 2013-07-02 14:11:32 +00:00
cmake [autoconf/cmake] Make sure we detect the latest version of isl. 2013-07-02 14:11:32 +00:00
docs
include Update comments to address Sebastian's review 2013-10-31 11:50:52 +00:00
lib IslCodegen: Do not build upper bound in vector for 2013-11-02 12:59:39 +00:00
test ScopInfo: Add support for AssumedContext 2013-10-29 21:05:49 +00:00
tools Reformat with clang-format 2013-05-07 07:30:56 +00:00
utils Move to CLooG 0.18.1 and isl 0.12.1 2013-10-11 07:38:50 +00:00
www Fix a typo in my family name. Tobias: ;) 2013-10-29 11:05:18 +00:00
.gitattributes gitattributes: .png and .txt are no text files 2013-07-28 09:05:20 +00:00
CMakeLists.txt cmake: Add target to reformat with clang-format 2013-05-07 07:30:31 +00:00
CREDITS.txt
LICENSE.txt Update the copyright coredits -- Happy new year 2013! 2013-01-01 10:00:19 +00:00
Makefile
Makefile.common.in
Makefile.config.in
README
configure [autoconf/cmake] Make sure we detect the latest version of isl. 2013-07-02 14:11:32 +00:00

README

Polly - Polyhedral optimizations for LLVM
-----------------------------------------
http://polly.llvm.org/

Polly uses a mathematical representation, the polyhedral model, to represent and
transform loops and other control flow structures. Using an abstract
representation it is possible to reason about transformations in a more general
way and to use highly optimized linear programming libraries to figure out the
optimal loop structure. These transformations can be used to do constant
propagation through arrays, remove dead loop iterations, optimize loops for
cache locality, optimize arrays, apply advanced automatic parallelization, drive
vectorization, or they can be used to do software pipelining.