Go to file
Melanie Blower 759948467e Reapply "Fix crash on switch conditions of non-integer types in templates"
This patch reapplies commit 76945821b9. The first version broke
buildbots due to clang-tidy test fails. The fails are because some
errors in templates are now diagnosed earlier (does not wait till
instantiation). I have modified the tests to add checks for these
diagnostics/prevent these diagnostics. There are no additional code
changes.

Summary of code changes:

Clang currently crashes for switch statements inside a template when the
condition is a non-integer field member because contextual implicit
conversion is skipped when parsing the condition. This conversion is
however later checked in an assert when the case statement is handled.
The conversion is skipped when parsing the condition because
the field member is set as type-dependent based on its containing class.
This patch sets the type dependency based on the field's type instead.

This patch fixes Bug 40982.

Reviewers: rnk, gribozavr2

Patch by: Elizabeth Andrews (eandrews)

Differential revision: https://reviews.llvm.org/D69950
2019-11-08 10:17:06 -08:00
clang Reapply "Fix crash on switch conditions of non-integer types in templates" 2019-11-08 10:17:06 -08:00
clang-tools-extra Reapply "Fix crash on switch conditions of non-integer types in templates" 2019-11-08 10:17:06 -08:00
compiler-rt [PowerPC][compiler-rt][builtins]Fix __fixunstfti builtin on PowerPC 2019-11-08 11:57:09 -06:00
debuginfo-tests [dexter] Fix feature tests on Windows 2019-11-05 10:49:57 -08:00
libc Illustrate a redirector using the example of round function from math.h. 2019-11-01 11:06:12 -07:00
libclc libclc: Drop the old python based build system 2019-11-08 09:59:40 -05:00
libcxx [libc++] Fix potential OOB in poisson_distribution 2019-11-07 13:29:40 +00:00
libcxxabi [demangle] NFC: get rid of NodeOrString 2019-11-04 12:17:12 -08:00
libunwind Correctly update isSignalFrame when unwinding the stack via dwarf. 2019-11-07 14:48:35 -08:00
lld [ELF] Suggest extern "C" when the definition is mangled while an undefined reference is not 2019-11-08 09:46:45 -08:00
lldb Properly propagate is_variadic. 2019-11-08 09:53:51 -08:00
llgo
llvm [cmake] Remove SVN support from VersionFromVCS.cmake 2019-11-08 09:59:42 -08:00
openmp [openmp] [test] Skip one more test that kills NetBSD buildbot 2019-11-07 17:29:57 +01:00
parallel-libs
polly [www] Change URLs to HTTPS. 2019-10-24 13:25:15 -07:00
pstl [pstl] Allow customizing whether per-TU insulation is provided 2019-08-13 12:49:00 +00:00
.arcconfig
.clang-format
.clang-tidy
.git-blame-ignore-revs Add LLDB reformatting to .git-blame-ignore-revs 2019-09-04 09:31:55 +00:00
.gitignore Add a newline at the end of the file 2019-09-04 06:33:46 +00:00
README.md Add beginning of LLVM's GettingStarted to GitHub readme 2019-10-23 18:03:37 -07:00

README.md

The LLVM Compiler Infrastructure

This directory and its subdirectories contain source code for LLVM, a toolkit for the construction of highly optimized compilers, optimizers, and runtime environments.

Getting Started with the LLVM System

Taken from https://llvm.org/docs/GettingStarted.html.

Overview

Welcome to the LLVM project!

The LLVM project has multiple components. The core of the project is itself called "LLVM". This contains all of the tools, libraries, and header files needed to process intermediate representations and converts it into object files. Tools include an assembler, disassembler, bitcode analyzer, and bitcode optimizer. It also contains basic regression tests.

C-like languages use the Clang front end. This component compiles C, C++, Objective C, and Objective C++ code into LLVM bitcode -- and from there into object files, using LLVM.

Other components include: the libc++ C++ standard library, the LLD linker, and more.

Getting the Source Code and Building LLVM

The LLVM Getting Started documentation may be out of date. The Clang Getting Started page might have more accurate information.

This is an example workflow and configuration to get and build the LLVM source:

  1. Checkout LLVM (including related subprojects like Clang):

    • git clone https://github.com/llvm/llvm-project.git

    • Or, on windows, git clone --config core.autocrlf=false https://github.com/llvm/llvm-project.git

  2. Configure and build LLVM and Clang:

    • cd llvm-project

    • mkdir build

    • cd build

    • cmake -G <generator> [options] ../llvm

      Some common generators are:

      • Ninja --- for generating Ninja build files. Most llvm developers use Ninja.
      • Unix Makefiles --- for generating make-compatible parallel makefiles.
      • Visual Studio --- for generating Visual Studio projects and solutions.
      • Xcode --- for generating Xcode projects.

      Some Common options:

      • -DLLVM_ENABLE_PROJECTS='...' --- semicolon-separated list of the LLVM subprojects you'd like to additionally build. Can include any of: clang, clang-tools-extra, libcxx, libcxxabi, libunwind, lldb, compiler-rt, lld, polly, or debuginfo-tests.

        For example, to build LLVM, Clang, libcxx, and libcxxabi, use -DLLVM_ENABLE_PROJECTS="clang;libcxx;libcxxabi".

      • -DCMAKE_INSTALL_PREFIX=directory --- Specify for directory the full pathname of where you want the LLVM tools and libraries to be installed (default /usr/local).

      • -DCMAKE_BUILD_TYPE=type --- Valid options for type are Debug, Release, RelWithDebInfo, and MinSizeRel. Default is Debug.

      • -DLLVM_ENABLE_ASSERTIONS=On --- Compile with assertion checks enabled (default is Yes for Debug builds, No for all other build types).

    • Run your build tool of choice!

      • The default target (i.e. ninja or make) will build all of LLVM.

      • The check-all target (i.e. ninja check-all) will run the regression tests to ensure everything is in working order.

      • CMake will generate build targets for each tool and library, and most LLVM sub-projects generate their own check-<project> target.

      • Running a serial build will be slow. To improve speed, try running a parallel build. That's done by default in Ninja; for make, use make -j NNN (NNN is the number of parallel jobs, use e.g. number of CPUs you have.)

    • For more information see CMake

Consult the Getting Started with LLVM page for detailed information on configuring and compiling LLVM. You can visit Directory Layout to learn about the layout of the source code tree.