hanchenye-llvm-project/clang-tools-extra/clangd/TUScheduler.cpp

422 lines
14 KiB
C++

//===--- TUScheduler.cpp -----------------------------------------*-C++-*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
// For each file, managed by TUScheduler, we create a single ASTWorker that
// manages an AST for that file. All operations that modify or read the AST are
// run on a separate dedicated thread asynchronously in FIFO order.
//
// We start processing each update immediately after we receive it. If two or
// more updates come subsequently without reads in-between, we attempt to drop
// an older one to not waste time building the ASTs we don't need.
//
// The processing thread of the ASTWorker is also responsible for building the
// preamble. However, unlike AST, the same preamble can be read concurrently, so
// we run each of async preamble reads on its own thread.
//
// To limit the concurrent load that clangd produces we mantain a semaphore that
// keeps more than a fixed number of threads from running concurrently.
//
// Rationale for cancelling updates.
// LSP clients can send updates to clangd on each keystroke. Some files take
// significant time to parse (e.g. a few seconds) and clangd can get starved by
// the updates to those files. Therefore we try to process only the last update,
// if possible.
// Our current strategy to do that is the following:
// - For each update we immediately schedule rebuild of the AST.
// - Rebuild of the AST checks if it was cancelled before doing any actual work.
// If it was, it does not do an actual rebuild, only reports llvm::None to the
// callback
// - When adding an update, we cancel the last update in the queue if it didn't
// have any reads.
// There is probably a optimal ways to do that. One approach we might take is
// the following:
// - For each update we remember the pending inputs, but delay rebuild of the
// AST for some timeout.
// - If subsequent updates come before rebuild was started, we replace the
// pending inputs and reset the timer.
// - If any reads of the AST are scheduled, we start building the AST
// immediately.
#include "TUScheduler.h"
#include "clang/Frontend/PCHContainerOperations.h"
#include "llvm/Support/Errc.h"
#include <memory>
#include <queue>
namespace clang {
namespace clangd {
namespace {
class ASTWorkerHandle;
/// Owns one instance of the AST, schedules updates and reads of it.
/// Also responsible for building and providing access to the preamble.
/// Each ASTWorker processes the async requests sent to it on a separate
/// dedicated thread.
/// The ASTWorker that manages the AST is shared by both the processing thread
/// and the TUScheduler. The TUScheduler should discard an ASTWorker when
/// remove() is called, but its thread may be busy and we don't want to block.
/// So the workers are accessed via an ASTWorkerHandle. Destroying the handle
/// signals the worker to exit its run loop and gives up shared ownership of the
/// worker.
class ASTWorker {
friend class ASTWorkerHandle;
ASTWorker(Semaphore &Barrier, std::shared_ptr<CppFile> AST, bool RunSync);
public:
/// Create a new ASTWorker and return a handle to it.
/// The processing thread is spawned using \p Tasks. However, when \p Tasks
/// is null, all requests will be processed on the calling thread
/// synchronously instead. \p Barrier is acquired when processing each
/// request, it is be used to limit the number of actively running threads.
static ASTWorkerHandle Create(AsyncTaskRunner *Tasks, Semaphore &Barrier,
std::shared_ptr<CppFile> AST);
~ASTWorker();
void update(ParseInputs Inputs,
UniqueFunction<void(llvm::Optional<std::vector<DiagWithFixIts>>)>
OnUpdated);
void runWithAST(UniqueFunction<void(llvm::Expected<InputsAndAST>)> Action);
std::shared_ptr<const PreambleData> getPossiblyStalePreamble() const;
std::size_t getUsedBytes() const;
private:
// Must be called exactly once on processing thread. Will return after
// stop() is called on a separate thread and all pending requests are
// processed.
void run();
/// Signal that run() should finish processing pending requests and exit.
void stop();
/// Adds a new task to the end of the request queue.
void startTask(UniqueFunction<void()> Task, bool isUpdate,
llvm::Optional<CancellationFlag> CF);
using RequestWithCtx = std::pair<UniqueFunction<void()>, Context>;
const bool RunSync;
Semaphore &Barrier;
// AST and FileInputs are only accessed on the processing thread from run().
const std::shared_ptr<CppFile> AST;
// Inputs, corresponding to the current state of AST.
ParseInputs FileInputs;
// Guards members used by both TUScheduler and the worker thread.
mutable std::mutex Mutex;
// Set to true to signal run() to finish processing.
bool Done; /* GUARDED_BY(Mutex) */
std::queue<RequestWithCtx> Requests; /* GUARDED_BY(Mutex) */
// Only set when last request is an update. This allows us to cancel an update
// that was never read, if a subsequent update comes in.
llvm::Optional<CancellationFlag> LastUpdateCF; /* GUARDED_BY(Mutex) */
std::condition_variable RequestsCV;
};
/// A smart-pointer-like class that points to an active ASTWorker.
/// In destructor, signals to the underlying ASTWorker that no new requests will
/// be sent and the processing loop may exit (after running all pending
/// requests).
class ASTWorkerHandle {
friend class ASTWorker;
ASTWorkerHandle(std::shared_ptr<ASTWorker> Worker)
: Worker(std::move(Worker)) {
assert(this->Worker);
}
public:
ASTWorkerHandle(const ASTWorkerHandle &) = delete;
ASTWorkerHandle &operator=(const ASTWorkerHandle &) = delete;
ASTWorkerHandle(ASTWorkerHandle &&) = default;
ASTWorkerHandle &operator=(ASTWorkerHandle &&) = default;
~ASTWorkerHandle() {
if (Worker)
Worker->stop();
}
ASTWorker &operator*() {
assert(Worker && "Handle was moved from");
return *Worker;
}
ASTWorker *operator->() {
assert(Worker && "Handle was moved from");
return Worker.get();
}
/// Returns an owning reference to the underlying ASTWorker that can outlive
/// the ASTWorkerHandle. However, no new requests to an active ASTWorker can
/// be schedule via the returned reference, i.e. only reads of the preamble
/// are possible.
std::shared_ptr<const ASTWorker> lock() { return Worker; }
private:
std::shared_ptr<ASTWorker> Worker;
};
ASTWorkerHandle ASTWorker::Create(AsyncTaskRunner *Tasks, Semaphore &Barrier,
std::shared_ptr<CppFile> AST) {
std::shared_ptr<ASTWorker> Worker(
new ASTWorker(Barrier, std::move(AST), /*RunSync=*/!Tasks));
if (Tasks)
Tasks->runAsync([Worker]() { Worker->run(); });
return ASTWorkerHandle(std::move(Worker));
}
ASTWorker::ASTWorker(Semaphore &Barrier, std::shared_ptr<CppFile> AST,
bool RunSync)
: RunSync(RunSync), Barrier(Barrier), AST(std::move(AST)), Done(false) {
if (RunSync)
return;
}
ASTWorker::~ASTWorker() {
#ifndef NDEBUG
std::lock_guard<std::mutex> Lock(Mutex);
assert(Done && "handle was not destroyed");
assert(Requests.empty() && "unprocessed requests when destroying ASTWorker");
#endif
}
void ASTWorker::update(
ParseInputs Inputs,
UniqueFunction<void(llvm::Optional<std::vector<DiagWithFixIts>>)>
OnUpdated) {
auto Task = [=](CancellationFlag CF, decltype(OnUpdated) OnUpdated) mutable {
if (CF.isCancelled()) {
OnUpdated(llvm::None);
return;
}
FileInputs = Inputs;
auto Diags = AST->rebuild(std::move(Inputs));
// We want to report the diagnostics even if this update was cancelled.
// It seems more useful than making the clients wait indefinitely if they
// spam us with updates.
OnUpdated(std::move(Diags));
};
CancellationFlag UpdateCF;
startTask(BindWithForward(Task, UpdateCF, std::move(OnUpdated)),
/*isUpdate=*/true, UpdateCF);
}
void ASTWorker::runWithAST(
UniqueFunction<void(llvm::Expected<InputsAndAST>)> Action) {
auto Task = [=](decltype(Action) Action) {
auto ASTWrapper = this->AST->getAST().get();
// FIXME: no need to lock here, cleanup the CppFile interface to get rid of
// them.
ASTWrapper->runUnderLock([&](ParsedAST *AST) {
if (!AST) {
Action(llvm::make_error<llvm::StringError>(
"invalid AST", llvm::errc::invalid_argument));
return;
}
Action(InputsAndAST{FileInputs, *AST});
});
};
startTask(BindWithForward(Task, std::move(Action)), /*isUpdate=*/false,
llvm::None);
}
std::shared_ptr<const PreambleData>
ASTWorker::getPossiblyStalePreamble() const {
return AST->getPossiblyStalePreamble();
}
std::size_t ASTWorker::getUsedBytes() const {
// FIXME(ibiryukov): we'll need to take locks here after we remove
// thread-safety from CppFile. For now, CppFile is thread-safe and we can
// safely call methods on it without acquiring a lock.
return AST->getUsedBytes();
}
void ASTWorker::stop() {
{
std::lock_guard<std::mutex> Lock(Mutex);
assert(!Done && "stop() called twice");
Done = true;
}
RequestsCV.notify_one();
}
void ASTWorker::startTask(UniqueFunction<void()> Task, bool isUpdate,
llvm::Optional<CancellationFlag> CF) {
assert(isUpdate == CF.hasValue() &&
"Only updates are expected to pass CancellationFlag");
if (RunSync) {
assert(!Done && "running a task after stop()");
Task();
return;
}
{
std::lock_guard<std::mutex> Lock(Mutex);
assert(!Done && "running a task after stop()");
if (isUpdate) {
if (!Requests.empty() && LastUpdateCF) {
// There were no reads for the last unprocessed update, let's cancel it
// to not waste time on it.
LastUpdateCF->cancel();
}
LastUpdateCF = std::move(*CF);
} else {
LastUpdateCF = llvm::None;
}
Requests.emplace(std::move(Task), Context::current().clone());
} // unlock Mutex.
RequestsCV.notify_one();
}
void ASTWorker::run() {
while (true) {
RequestWithCtx Req;
{
std::unique_lock<std::mutex> Lock(Mutex);
RequestsCV.wait(Lock, [&]() { return Done || !Requests.empty(); });
if (Requests.empty()) {
assert(Done);
return;
}
// Even when Done is true, we finish processing all pending requests
// before exiting the processing loop.
Req = std::move(Requests.front());
Requests.pop();
} // unlock Mutex
std::lock_guard<Semaphore> BarrierLock(Barrier);
WithContext Guard(std::move(Req.second));
Req.first();
}
}
} // namespace
unsigned getDefaultAsyncThreadsCount() {
unsigned HardwareConcurrency = std::thread::hardware_concurrency();
// C++ standard says that hardware_concurrency()
// may return 0, fallback to 1 worker thread in
// that case.
if (HardwareConcurrency == 0)
return 1;
return HardwareConcurrency;
}
struct TUScheduler::FileData {
/// Latest inputs, passed to TUScheduler::update().
ParseInputs Inputs;
ASTWorkerHandle Worker;
};
TUScheduler::TUScheduler(unsigned AsyncThreadsCount,
bool StorePreamblesInMemory,
ASTParsedCallback ASTCallback)
: StorePreamblesInMemory(StorePreamblesInMemory),
PCHOps(std::make_shared<PCHContainerOperations>()),
ASTCallback(std::move(ASTCallback)), Barrier(AsyncThreadsCount) {
if (0 < AsyncThreadsCount)
Tasks.emplace();
}
TUScheduler::~TUScheduler() {
// Notify all workers that they need to stop.
Files.clear();
// Wait for all in-flight tasks to finish.
if (Tasks)
Tasks->waitForAll();
}
void TUScheduler::update(
PathRef File, ParseInputs Inputs,
UniqueFunction<void(llvm::Optional<std::vector<DiagWithFixIts>>)>
OnUpdated) {
std::unique_ptr<FileData> &FD = Files[File];
if (!FD) {
// Create a new worker to process the AST-related tasks.
ASTWorkerHandle Worker = ASTWorker::Create(
Tasks ? Tasks.getPointer() : nullptr, Barrier,
CppFile::Create(File, StorePreamblesInMemory, PCHOps, ASTCallback));
FD = std::unique_ptr<FileData>(new FileData{Inputs, std::move(Worker)});
} else {
FD->Inputs = Inputs;
}
FD->Worker->update(std::move(Inputs), std::move(OnUpdated));
}
void TUScheduler::remove(PathRef File,
UniqueFunction<void(llvm::Error)> Action) {
auto It = Files.find(File);
if (It == Files.end()) {
Action(llvm::make_error<llvm::StringError>(
"trying to remove non-added document", llvm::errc::invalid_argument));
return;
}
Files.erase(It);
}
void TUScheduler::runWithAST(
PathRef File, UniqueFunction<void(llvm::Expected<InputsAndAST>)> Action) {
auto It = Files.find(File);
if (It == Files.end()) {
Action(llvm::make_error<llvm::StringError>(
"trying to get AST for non-added document",
llvm::errc::invalid_argument));
return;
}
It->second->Worker->runWithAST(std::move(Action));
}
void TUScheduler::runWithPreamble(
PathRef File,
UniqueFunction<void(llvm::Expected<InputsAndPreamble>)> Action) {
auto It = Files.find(File);
if (It == Files.end()) {
Action(llvm::make_error<llvm::StringError>(
"trying to get preamble for non-added document",
llvm::errc::invalid_argument));
return;
}
if (!Tasks) {
std::shared_ptr<const PreambleData> Preamble =
It->second->Worker->getPossiblyStalePreamble();
Action(InputsAndPreamble{It->second->Inputs, Preamble.get()});
return;
}
ParseInputs InputsCopy = It->second->Inputs;
std::shared_ptr<const ASTWorker> Worker = It->second->Worker.lock();
auto Task = [InputsCopy, Worker, this](Context Ctx,
decltype(Action) Action) mutable {
std::lock_guard<Semaphore> BarrierLock(Barrier);
WithContext Guard(std::move(Ctx));
std::shared_ptr<const PreambleData> Preamble =
Worker->getPossiblyStalePreamble();
Action(InputsAndPreamble{InputsCopy, Preamble.get()});
};
Tasks->runAsync(
BindWithForward(Task, Context::current().clone(), std::move(Action)));
}
std::vector<std::pair<Path, std::size_t>>
TUScheduler::getUsedBytesPerFile() const {
std::vector<std::pair<Path, std::size_t>> Result;
Result.reserve(Files.size());
for (auto &&PathAndFile : Files)
Result.push_back(
{PathAndFile.first(), PathAndFile.second->Worker->getUsedBytes()});
return Result;
}
} // namespace clangd
} // namespace clang