hanchenye-llvm-project/polly
Tobias Grosser 6a2da6b9c8 Add test cases for multi-dimensional variable lengths arrays
At the moment we can handle such arrays only by conservatively assuming that
each access to such an array may touch any element in the array. It would be
great if we could improve Polly/LLVM at some point, such that we can
recover the multi-dimensionality of the accesses.

llvm-svn: 163619
2012-09-11 14:03:19 +00:00
..
autoconf autoconf: Only define GPGPU_CODEGEN, if that feature is requested 2012-08-21 12:29:10 +00:00
cmake Add support for libpluto as the scheduling optimizer. 2012-08-02 07:47:26 +00:00
docs
include Remove dead code 2012-09-08 14:00:32 +00:00
lib ScopInfo: Align parameters when using -polly-allow-nonaffine 2012-09-11 13:50:21 +00:00
test Add test cases for multi-dimensional variable lengths arrays 2012-09-11 14:03:19 +00:00
tools Update libGPURuntime to be dual licensed under MIT and UIUC license. 2012-07-06 10:40:15 +00:00
utils Update isl to a newer version 2012-09-03 07:42:40 +00:00
www Remove executable bits from html files 2012-08-15 05:50:24 +00:00
CMakeLists.txt Add preliminary implementation for GPGPU code generation. 2012-08-03 12:50:07 +00:00
CREDITS.txt (Test commit for polly) 2011-07-16 13:30:03 +00:00
LICENSE.txt Happy new year 2012! 2012-01-01 08:16:56 +00:00
Makefile Revert "Fix a bug introduced by r153739: We are not able to provide the correct" 2012-04-11 07:43:13 +00:00
Makefile.common.in
Makefile.config.in Add support for libpluto as the scheduling optimizer. 2012-08-02 07:47:26 +00:00
README Remove some empty lines 2011-10-04 06:56:36 +00:00
configure autoconf: Only define GPGPU_CODEGEN, if that feature is requested 2012-08-21 12:29:10 +00:00

README

Polly - Polyhedral optimizations for LLVM

Polly uses a mathematical representation, the polyhedral model, to represent and
transform loops and other control flow structures. Using an abstract
representation it is possible to reason about transformations in a more general
way and to use highly optimized linear programming libraries to figure out the
optimal loop structure. These transformations can be used to do constant
propagation through arrays, remove dead loop iterations, optimize loops for
cache locality, optimize arrays, apply advanced automatic parallelization, drive
vectorization, or they can be used to do software pipelining.