hanchenye-llvm-project/lld/lib/Passes/LayoutPass.cpp

571 lines
22 KiB
C++

//===- Passes/LayoutPass.cpp - Layout atoms -------------------------------===//
//
// The LLVM Linker
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "LayoutPass"
#include <set>
#include "lld/Passes/LayoutPass.h"
#include "lld/Core/Instrumentation.h"
#include "llvm/ADT/Twine.h"
#include "llvm/Support/Debug.h"
using namespace lld;
#ifndef NDEBUG
namespace {
// Return "reason (leftval, rightval)"
std::string formatReason(StringRef reason, int leftVal, int rightVal) {
Twine msg =
Twine(reason) + " (" + Twine(leftVal) + ", " + Twine(rightVal) + ")";
return std::move(msg.str());
}
} // end anonymous namespace
// Less-than relationship of two atoms must be transitive, which is, if a < b
// and b < c, a < c must be true. This function checks the transitivity by
// checking the sort results.
void LayoutPass::checkTransitivity(DefinedAtomIter begin,
DefinedAtomIter end) const {
for (DefinedAtomIter i = begin; (i + 1) != end; ++i) {
for (DefinedAtomIter j = i + 1; j != end; ++j) {
assert(_compareAtoms(*i, *j));
assert(!_compareAtoms(*j, *i));
}
}
}
#endif // NDEBUG
/// The function compares atoms by sorting atoms in the following order
/// a) Sorts atoms by Section position preference
/// b) Sorts atoms by their ordinal overrides
/// (layout-after/layout-before/ingroup)
/// c) Sorts atoms by their permissions
/// d) Sorts atoms by their content
/// e) Sorts atoms on how they appear using File Ordinality
/// f) Sorts atoms on how they appear within the File
bool LayoutPass::CompareAtoms::compare(const DefinedAtom *left,
const DefinedAtom *right,
std::string &reason) const {
if (left == right) {
reason = "same";
return false;
}
// Sort by section position preference.
DefinedAtom::SectionPosition leftPos = left->sectionPosition();
DefinedAtom::SectionPosition rightPos = right->sectionPosition();
bool leftSpecialPos = (leftPos != DefinedAtom::sectionPositionAny);
bool rightSpecialPos = (rightPos != DefinedAtom::sectionPositionAny);
if (leftSpecialPos || rightSpecialPos) {
if (leftPos != rightPos) {
DEBUG(reason = formatReason("sectionPos", (int)leftPos, (int)rightPos));
return leftPos < rightPos;
}
}
// Find the root of the chain if it is a part of a follow-on chain.
auto leftFind = _layout._followOnRoots.find(left);
auto rightFind = _layout._followOnRoots.find(right);
const DefinedAtom *leftRoot =
(leftFind == _layout._followOnRoots.end()) ? left : leftFind->second;
const DefinedAtom *rightRoot =
(rightFind == _layout._followOnRoots.end()) ? right : rightFind->second;
// Sort atoms by their ordinal overrides only if they fall in the same
// chain.
AtomToOrdinalT::const_iterator lPos = _layout._ordinalOverrideMap.find(left);
AtomToOrdinalT::const_iterator rPos = _layout._ordinalOverrideMap.find(right);
AtomToOrdinalT::const_iterator end = _layout._ordinalOverrideMap.end();
if (leftRoot == rightRoot && lPos != end && rPos != end) {
DEBUG(reason = formatReason("override", lPos->second, rPos->second));
return lPos->second < rPos->second;
}
// Sort same permissions together.
DefinedAtom::ContentPermissions leftPerms = leftRoot->permissions();
DefinedAtom::ContentPermissions rightPerms = rightRoot->permissions();
if (leftPerms != rightPerms) {
DEBUG(reason =
formatReason("contentPerms", (int)leftPerms, (int)rightPerms));
return leftPerms < rightPerms;
}
// Sort same content types together.
DefinedAtom::ContentType leftType = leftRoot->contentType();
DefinedAtom::ContentType rightType = rightRoot->contentType();
if (leftType != rightType) {
DEBUG(reason = formatReason("contentType", (int)leftType, (int)rightType));
return leftType < rightType;
}
// Sort by .o order.
const File *leftFile = &leftRoot->file();
const File *rightFile = &rightRoot->file();
if (leftFile != rightFile) {
DEBUG(reason = formatReason(".o order", (int)leftFile->ordinal(),
(int)rightFile->ordinal()));
return leftFile->ordinal() < rightFile->ordinal();
}
// Sort by atom order with .o file.
uint64_t leftOrdinal = leftRoot->ordinal();
uint64_t rightOrdinal = rightRoot->ordinal();
if (leftOrdinal != rightOrdinal) {
DEBUG(reason = formatReason("ordinal", (int)leftRoot->ordinal(),
(int)rightRoot->ordinal()));
return leftOrdinal < rightOrdinal;
}
DEBUG(llvm::dbgs() << "Unordered\n");
llvm_unreachable("Atoms with Same Ordinal!");
}
bool LayoutPass::CompareAtoms::operator()(const DefinedAtom *left,
const DefinedAtom *right) const {
std::string reason;
bool result = compare(left, right, reason);
DEBUG({
StringRef comp = result ? "<" : ">=";
llvm::dbgs() << "Layout: '" << left->name() << "' " << comp << " '"
<< right->name() << "' (" << reason << ")\n";
});
return result;
}
// Returns the atom immediately followed by the given atom in the followon
// chain.
const DefinedAtom *LayoutPass::findAtomFollowedBy(
const DefinedAtom *targetAtom) {
// Start from the beginning of the chain and follow the chain until
// we find the targetChain.
const DefinedAtom *atom = _followOnRoots[targetAtom];
while (true) {
const DefinedAtom *prevAtom = atom;
AtomToAtomT::iterator targetFollowOnAtomsIter = _followOnNexts.find(atom);
// The target atom must be in the chain of its root.
assert(targetFollowOnAtomsIter != _followOnNexts.end());
atom = targetFollowOnAtomsIter->second;
if (atom == targetAtom)
return prevAtom;
}
}
// Check if all the atoms followed by the given target atom are of size zero.
// When this method is called, an atom being added is not of size zero and
// will be added to the head of the followon chain. All the atoms between the
// atom and the targetAtom (specified by layout-after) need to be of size zero
// in this case. Otherwise the desired layout is impossible.
bool LayoutPass::checkAllPrevAtomsZeroSize(const DefinedAtom *targetAtom) {
const DefinedAtom *atom = _followOnRoots[targetAtom];
while (true) {
if (atom == targetAtom)
return true;
if (atom->size() != 0)
// TODO: print warning that an impossible layout is being desired by the
// user.
return false;
AtomToAtomT::iterator targetFollowOnAtomsIter = _followOnNexts.find(atom);
// The target atom must be in the chain of its root.
assert(targetFollowOnAtomsIter != _followOnNexts.end());
atom = targetFollowOnAtomsIter->second;
}
}
// Set the root of all atoms in targetAtom's chain to the given root.
void LayoutPass::setChainRoot(const DefinedAtom *targetAtom,
const DefinedAtom *root) {
// Walk through the followon chain and override each node's root.
while (true) {
_followOnRoots[targetAtom] = root;
AtomToAtomT::iterator targetFollowOnAtomsIter =
_followOnNexts.find(targetAtom);
if (targetFollowOnAtomsIter == _followOnNexts.end())
return;
targetAtom = targetFollowOnAtomsIter->second;
}
}
/// This pass builds the followon tables described by two DenseMaps
/// followOnRoots and followonNexts.
/// The followOnRoots map contains a mapping of a DefinedAtom to its root
/// The followOnNexts map contains a mapping of what DefinedAtom follows the
/// current Atom
/// The algorithm follows a very simple approach
/// a) If the atom is first seen, then make that as the root atom
/// b) The targetAtom which this Atom contains, has the root thats set to the
/// root of the current atom
/// c) If the targetAtom is part of a different tree and the root of the
/// targetAtom is itself, Chain all the atoms that are contained in the tree
/// to the current Tree
/// d) If the targetAtom is part of a different chain and the root of the
/// targetAtom until the targetAtom has all atoms of size 0, then chain the
/// targetAtoms and its tree to the current chain
void LayoutPass::buildFollowOnTable(MutableFile::DefinedAtomRange &range) {
ScopedTask task(getDefaultDomain(), "LayoutPass::buildFollowOnTable");
// Set the initial size of the followon and the followonNext hash to the
// number of atoms that we have.
_followOnRoots.resize(range.size());
_followOnNexts.resize(range.size());
for (const DefinedAtom *ai : range) {
for (const Reference *r : *ai) {
if (r->kind() != lld::Reference::kindLayoutAfter)
continue;
const DefinedAtom *targetAtom = llvm::dyn_cast<DefinedAtom>(r->target());
_followOnNexts[ai] = targetAtom;
// If we find a followon for the first time, lets make that atom as the
// root atom.
if (_followOnRoots.count(ai) == 0)
_followOnRoots[ai] = ai;
auto iter = _followOnRoots.find(targetAtom);
if (iter == _followOnRoots.end()) {
// If the targetAtom is not a root of any chain, lets make the root of
// the targetAtom to the root of the current chain.
_followOnRoots[targetAtom] = _followOnRoots[ai];
} else if (iter->second == targetAtom) {
// If the targetAtom is the root of a chain, the chain becomes part of
// the current chain. Rewrite the subchain's root to the current
// chain's root.
setChainRoot(targetAtom, _followOnRoots[ai]);
} else {
// The targetAtom is already a part of a chain. If the current atom is
// of size zero, we can insert it in the middle of the chain just
// before the target atom, while not breaking other atom's followon
// relationships. If it's not, we can only insert the current atom at
// the beginning of the chain. All the atoms followed by the target
// atom must be of size zero in that case to satisfy the followon
// relationships.
size_t currentAtomSize = ai->size();
if (currentAtomSize == 0) {
const DefinedAtom *targetPrevAtom = findAtomFollowedBy(targetAtom);
_followOnNexts[targetPrevAtom] = ai;
_followOnRoots[ai] = _followOnRoots[targetPrevAtom];
} else {
if (!checkAllPrevAtomsZeroSize(targetAtom))
break;
_followOnNexts[ai] = _followOnRoots[targetAtom];
setChainRoot(_followOnRoots[targetAtom], _followOnRoots[ai]);
}
}
}
}
}
/// This pass builds the followon tables using InGroup relationships
/// The algorithm follows a very simple approach
/// a) If the rootAtom is not part of any root, create a new root with the
/// as the head
/// b) If the current Atom root is not found, then make the current atoms root
/// point to the rootAtom
/// c) If the root of the current Atom is itself a root of some other tree
/// make all the atoms in the chain point to the ingroup reference
/// d) Check to see if the current atom is part of the chain from the rootAtom
/// if not add the atom to the chain, so that the current atom is part of the
/// the chain where the rootAtom is in
void LayoutPass::buildInGroupTable(MutableFile::DefinedAtomRange &range) {
ScopedTask task(getDefaultDomain(), "LayoutPass::buildInGroupTable");
// This table would convert precededby references to follow on
// references so that we have only one table
for (const DefinedAtom *ai : range) {
for (const Reference *r : *ai) {
if (r->kind() == lld::Reference::kindInGroup) {
const DefinedAtom *rootAtom = llvm::dyn_cast<DefinedAtom>(r->target());
// If the root atom is not part of any root
// create a new root
if (_followOnRoots.count(rootAtom) == 0) {
_followOnRoots[rootAtom] = rootAtom;
}
// If the current Atom has not been seen yet and there is no root
// that has been set, set the root of the atom to the targetAtom
// as the targetAtom points to the ingroup root
auto iter = _followOnRoots.find(ai);
if (iter == _followOnRoots.end()) {
_followOnRoots[ai] = rootAtom;
} else if (iter->second == ai) {
if (iter->second != rootAtom)
setChainRoot(iter->second, rootAtom);
} else {
// TODO : Flag an error that the root of the tree
// is different, Here is an example
// Say there are atoms
// chain 1 : a->b->c
// chain 2 : d->e->f
// and e,f have their ingroup reference as a
// this could happen only if the root of e,f that is d
// has root as 'a'
continue;
}
// Check if the current atom is part of the chain
bool isAtomInChain = false;
const DefinedAtom *lastAtom = rootAtom;
while (true) {
AtomToAtomT::iterator followOnAtomsIter =
_followOnNexts.find(lastAtom);
if (followOnAtomsIter != _followOnNexts.end()) {
lastAtom = followOnAtomsIter->second;
if (lastAtom == ai) {
isAtomInChain = true;
break;
}
}
else
break;
} // findAtomInChain
if (!isAtomInChain)
_followOnNexts[lastAtom] = ai;
}
}
}
}
/// This pass builds the followon tables using Preceded By relationships
/// The algorithm follows a very simple approach
/// a) If the targetAtom is not part of any root and the current atom is not
/// part of any root, create a chain with the current atom as root and
/// the targetAtom as following the current atom
/// b) Chain the targetAtom to the current Atom if the targetAtom is not part
/// of any chain and the currentAtom has no followOn's
/// c) If the targetAtom is part of a different tree and the root of the
/// targetAtom is itself, and if the current atom is not part of any root
/// chain all the atoms together
/// d) If the current atom has no followon and the root of the targetAtom is
/// not equal to the root of the current atom(the targetAtom is not in the
/// same chain), chain all the atoms that are lead by the targetAtom into
/// the current chain
void LayoutPass::buildPrecededByTable(MutableFile::DefinedAtomRange &range) {
ScopedTask task(getDefaultDomain(), "LayoutPass::buildPrecededByTable");
// This table would convert precededby references to follow on
// references so that we have only one table
for (const DefinedAtom *ai : range) {
for (const Reference *r : *ai) {
if (r->kind() == lld::Reference::kindLayoutBefore) {
const DefinedAtom *targetAtom = llvm::dyn_cast<DefinedAtom>(r->target());
// Is the targetAtom not chained
if (_followOnRoots.count(targetAtom) == 0) {
// Is the current atom not part of any root ?
if (_followOnRoots.count(ai) == 0) {
_followOnRoots[ai] = ai;
_followOnNexts[ai] = targetAtom;
_followOnRoots[targetAtom] = _followOnRoots[ai];
} else if (_followOnNexts.count(ai) == 0) {
// Chain the targetAtom to the current Atom
// if the currentAtom has no followon references
_followOnNexts[ai] = targetAtom;
_followOnRoots[targetAtom] = _followOnRoots[ai];
}
} else if (_followOnRoots.find(targetAtom)->second == targetAtom) {
// Is the targetAtom in chain with the targetAtom as the root ?
bool changeRoots = false;
if (_followOnRoots.count(ai) == 0) {
_followOnRoots[ai] = ai;
_followOnNexts[ai] = targetAtom;
_followOnRoots[targetAtom] = _followOnRoots[ai];
changeRoots = true;
} else if (_followOnNexts.count(ai) == 0) {
// Chain the targetAtom to the current Atom
// if the currentAtom has no followon references
if (_followOnRoots[ai] != _followOnRoots[targetAtom]) {
_followOnNexts[ai] = targetAtom;
_followOnRoots[targetAtom] = _followOnRoots[ai];
changeRoots = true;
}
}
// Change the roots of the targetAtom and its chain to
// the current atoms root
if (changeRoots) {
setChainRoot(_followOnRoots[targetAtom], _followOnRoots[ai]);
}
} // Is targetAtom root
} // kindLayoutBefore
} // Reference
} // atom iteration
} // end function
/// Build an ordinal override map by traversing the followon chain, and
/// assigning ordinals to each atom, if the atoms have their ordinals
/// already assigned skip the atom and move to the next. This is the
/// main map thats used to sort the atoms while comparing two atoms together
void LayoutPass::buildOrdinalOverrideMap(MutableFile::DefinedAtomRange &range) {
ScopedTask task(getDefaultDomain(), "LayoutPass::buildOrdinalOverrideMap");
uint64_t index = 0;
for (const DefinedAtom *ai : range) {
const DefinedAtom *atom = ai;
if (_ordinalOverrideMap.find(atom) != _ordinalOverrideMap.end())
continue;
AtomToAtomT::iterator start = _followOnRoots.find(atom);
if (start != _followOnRoots.end()) {
for (const DefinedAtom *nextAtom = start->second; nextAtom != NULL;
nextAtom = _followOnNexts[nextAtom]) {
AtomToOrdinalT::iterator pos = _ordinalOverrideMap.find(nextAtom);
if (pos == _ordinalOverrideMap.end()) {
_ordinalOverrideMap[nextAtom] = index++;
}
}
}
}
}
// Helper functions to check follow-on graph.
#ifndef NDEBUG
namespace {
typedef llvm::DenseMap<const DefinedAtom *, const DefinedAtom *> AtomToAtomT;
std::string atomToDebugString(const Atom *atom) {
const DefinedAtom *definedAtom = llvm::dyn_cast<DefinedAtom>(atom);
std::string str;
llvm::raw_string_ostream s(str);
if (definedAtom->name().empty())
s << "<anonymous " << definedAtom << ">";
else
s << definedAtom->name();
s << " in ";
if (definedAtom->customSectionName().empty())
s << "<anonymous>";
else
s << definedAtom->customSectionName();
s.flush();
return str;
}
void showCycleDetectedError(AtomToAtomT &followOnNexts,
const DefinedAtom *atom) {
const DefinedAtom *start = atom;
llvm::dbgs() << "There's a cycle in a follow-on chain!\n";
do {
llvm::dbgs() << " " << atomToDebugString(atom) << "\n";
for (const Reference *ref : *atom) {
llvm::dbgs() << " " << ref->kindToString()
<< ": " << atomToDebugString(ref->target()) << "\n";
}
atom = followOnNexts[atom];
} while (atom != start);
llvm::report_fatal_error("Cycle detected");
}
/// Exit if there's a cycle in a followon chain reachable from the
/// given root atom. Uses the tortoise and hare algorithm to detect a
/// cycle.
void checkNoCycleInFollowonChain(AtomToAtomT &followOnNexts,
const DefinedAtom *root) {
const DefinedAtom *tortoise = root;
const DefinedAtom *hare = followOnNexts[root];
while (true) {
if (!tortoise || !hare)
return;
if (tortoise == hare)
showCycleDetectedError(followOnNexts, tortoise);
tortoise = followOnNexts[tortoise];
hare = followOnNexts[followOnNexts[hare]];
}
}
void checkReachabilityFromRoot(AtomToAtomT &followOnRoots,
const DefinedAtom *atom) {
if (!atom) return;
auto i = followOnRoots.find(atom);
if (i == followOnRoots.end()) {
Twine msg(Twine("Atom <") + atomToDebugString(atom)
+ "> has no follow-on root!");
llvm_unreachable(msg.str().c_str());
}
const DefinedAtom *ap = i->second;
while (true) {
const DefinedAtom *next = followOnRoots[ap];
if (!next) {
Twine msg(Twine("Atom <" + atomToDebugString(atom)
+ "> is not reachable from its root!"));
llvm_unreachable(msg.str().c_str());
}
if (next == ap)
return;
ap = next;
}
}
void printDefinedAtoms(const MutableFile::DefinedAtomRange &atomRange) {
for (const DefinedAtom *atom : atomRange) {
llvm::dbgs() << " file=" << atom->file().path()
<< ", name=" << atom->name()
<< ", size=" << atom->size()
<< ", type=" << atom->contentType()
<< ", ordinal=" << atom->ordinal()
<< "\n";
}
}
} // end anonymous namespace
/// Verify that the followon chain is sane. Should not be called in
/// release binary.
void LayoutPass::checkFollowonChain(MutableFile::DefinedAtomRange &range) {
ScopedTask task(getDefaultDomain(), "LayoutPass::checkFollowonChain");
// Verify that there's no cycle in follow-on chain.
std::set<const DefinedAtom *> roots;
for (const auto &ai : _followOnRoots)
roots.insert(ai.second);
for (const DefinedAtom *root : roots)
checkNoCycleInFollowonChain(_followOnNexts, root);
// Verify that all the atoms in followOnNexts have references to
// their roots.
for (const auto &ai : _followOnNexts) {
checkReachabilityFromRoot(_followOnRoots, ai.first);
checkReachabilityFromRoot(_followOnRoots, ai.second);
}
}
#endif // #ifndef NDEBUG
/// Perform the actual pass
void LayoutPass::perform(MutableFile &mergedFile) {
ScopedTask task(getDefaultDomain(), "LayoutPass");
MutableFile::DefinedAtomRange atomRange = mergedFile.definedAtoms();
// Build follow on tables
buildFollowOnTable(atomRange);
// Build Ingroup reference table
buildInGroupTable(atomRange);
// Build preceded by tables
buildPrecededByTable(atomRange);
// Check the structure of followon graph if running in debug mode.
DEBUG(checkFollowonChain(atomRange));
// Build override maps
buildOrdinalOverrideMap(atomRange);
DEBUG({
llvm::dbgs() << "unsorted atoms:\n";
printDefinedAtoms(atomRange);
});
// sort the atoms
std::sort(atomRange.begin(), atomRange.end(), _compareAtoms);
DEBUG(checkTransitivity(atomRange.begin(), atomRange.end()));
DEBUG({
llvm::dbgs() << "sorted atoms:\n";
printDefinedAtoms(atomRange);
});
}