hanchenye-llvm-project/clang/Analysis/GRConstants.cpp

946 lines
29 KiB
C++

//===-- GRConstants.cpp - Simple, Path-Sens. Constant Prop. ------*- C++ -*-==//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// Constant Propagation via Graph Reachability
//
// This files defines a simple analysis that performs path-sensitive
// constant propagation within a function. An example use of this analysis
// is to perform simple checks for NULL dereferences.
//
//===----------------------------------------------------------------------===//
#include "RValues.h"
#include "ValueState.h"
#include "clang/Analysis/PathSensitive/GREngine.h"
#include "clang/AST/Expr.h"
#include "clang/AST/ASTContext.h"
#include "clang/Analysis/Analyses/LiveVariables.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/DataTypes.h"
#include "llvm/ADT/APSInt.h"
#include "llvm/ADT/FoldingSet.h"
#include "llvm/ADT/ImmutableMap.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/Support/Allocator.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/Streams.h"
#include <functional>
#ifndef NDEBUG
#include "llvm/Support/GraphWriter.h"
#include <sstream>
#endif
using namespace clang;
using llvm::dyn_cast;
using llvm::cast;
using llvm::APSInt;
//===----------------------------------------------------------------------===//
// The Checker.
//
// FIXME: This checker logic should be eventually broken into two components.
// The first is the "meta"-level checking logic; the code that
// does the Stmt visitation, fetching values from the map, etc.
// The second part does the actual state manipulation. This way we
// get more of a separate of concerns of these two pieces, with the
// latter potentially being refactored back into the main checking
// logic.
//===----------------------------------------------------------------------===//
namespace {
class VISIBILITY_HIDDEN GRConstants {
public:
typedef ValueState StateTy;
typedef GRStmtNodeBuilder<GRConstants> StmtNodeBuilder;
typedef GRBranchNodeBuilder<GRConstants> BranchNodeBuilder;
typedef ExplodedGraph<GRConstants> GraphTy;
typedef GraphTy::NodeTy NodeTy;
class NodeSet {
typedef llvm::SmallVector<NodeTy*,3> ImplTy;
ImplTy Impl;
public:
NodeSet() {}
NodeSet(NodeTy* N) { assert (N && !N->isSink()); Impl.push_back(N); }
void Add(NodeTy* N) { if (N && !N->isSink()) Impl.push_back(N); }
typedef ImplTy::iterator iterator;
typedef ImplTy::const_iterator const_iterator;
unsigned size() const { return Impl.size(); }
bool empty() const { return Impl.empty(); }
iterator begin() { return Impl.begin(); }
iterator end() { return Impl.end(); }
const_iterator begin() const { return Impl.begin(); }
const_iterator end() const { return Impl.end(); }
};
protected:
/// G - the simulation graph.
GraphTy& G;
/// Liveness - live-variables information the ValueDecl* and block-level
/// Expr* in the CFG. Used to prune out dead state.
LiveVariables Liveness;
/// Builder - The current GRStmtNodeBuilder which is used when building the nodes
/// for a given statement.
StmtNodeBuilder* Builder;
/// StateMgr - Object that manages the data for all created states.
StateTy::Factory StateMgr;
/// ValueMgr - Object that manages the data for all created RValues.
ValueManager ValMgr;
/// SymMgr - Object that manages the symbol information.
SymbolManager SymMgr;
/// StmtEntryNode - The immediate predecessor node.
NodeTy* StmtEntryNode;
/// CurrentStmt - The current block-level statement.
Stmt* CurrentStmt;
/// UninitBranches - Nodes in the ExplodedGraph that result from
/// taking a branch based on an uninitialized value.
typedef llvm::SmallPtrSet<NodeTy*,5> UninitBranchesTy;
UninitBranchesTy UninitBranches;
bool StateCleaned;
ASTContext& getContext() const { return G.getContext(); }
public:
GRConstants(GraphTy& g) : G(g), Liveness(G.getCFG(), G.getFunctionDecl()),
Builder(NULL), ValMgr(G.getContext()), StmtEntryNode(NULL),
CurrentStmt(NULL) {
// Compute liveness information.
Liveness.runOnCFG(G.getCFG());
Liveness.runOnAllBlocks(G.getCFG(), NULL, true);
}
/// getCFG - Returns the CFG associated with this analysis.
CFG& getCFG() { return G.getCFG(); }
/// getInitialState - Return the initial state used for the root vertex
/// in the ExplodedGraph.
StateTy getInitialState() {
StateTy St = StateMgr.GetEmptyMap();
// Iterate the parameters.
FunctionDecl& F = G.getFunctionDecl();
for (FunctionDecl::param_iterator I=F.param_begin(), E=F.param_end();
I!=E; ++I)
St = SetValue(St, LValueDecl(*I), RValue::GetSymbolValue(SymMgr, *I));
return St;
}
bool isUninitControlFlow(const NodeTy* N) const {
return N->isSink() && UninitBranches.count(const_cast<NodeTy*>(N)) != 0;
}
/// ProcessStmt - Called by GREngine. Used to generate new successor
/// nodes by processing the 'effects' of a block-level statement.
void ProcessStmt(Stmt* S, StmtNodeBuilder& builder);
/// ProcessBranch - Called by GREngine. Used to generate successor
/// nodes by processing the 'effects' of a branch condition.
void ProcessBranch(Stmt* Condition, Stmt* Term, BranchNodeBuilder& builder);
/// RemoveDeadBindings - Return a new state that is the same as 'M' except
/// that all subexpression mappings are removed and that any
/// block-level expressions that are not live at 'S' also have their
/// mappings removed.
StateTy RemoveDeadBindings(Stmt* S, StateTy M);
StateTy SetValue(StateTy St, Stmt* S, const RValue& V);
StateTy SetValue(StateTy St, const Stmt* S, const RValue& V) {
return SetValue(St, const_cast<Stmt*>(S), V);
}
StateTy SetValue(StateTy St, const LValue& LV, const RValue& V);
RValue GetValue(const StateTy& St, Stmt* S);
inline RValue GetValue(const StateTy& St, const Stmt* S) {
return GetValue(St, const_cast<Stmt*>(S));
}
RValue GetValue(const StateTy& St, const LValue& LV);
LValue GetLValue(const StateTy& St, Stmt* S);
/// Assume - Create new state by assuming that a given expression
/// is true or false.
inline StateTy Assume(StateTy St, RValue Cond, bool Assumption,
bool& isFeasible) {
if (isa<LValue>(Cond))
return Assume(St, cast<LValue>(Cond), Assumption, isFeasible);
else
return Assume(St, cast<NonLValue>(Cond), Assumption, isFeasible);
}
StateTy Assume(StateTy St, LValue Cond, bool Assumption, bool& isFeasible);
StateTy Assume(StateTy St, NonLValue Cond, bool Assumption, bool& isFeasible);
void Nodify(NodeSet& Dst, Stmt* S, NodeTy* Pred, StateTy St);
/// Visit - Transfer function logic for all statements. Dispatches to
/// other functions that handle specific kinds of statements.
void Visit(Stmt* S, NodeTy* Pred, NodeSet& Dst);
/// VisitCast - Transfer function logic for all casts (implicit and explicit).
void VisitCast(Expr* CastE, Expr* E, NodeTy* Pred, NodeSet& Dst);
/// VisitUnaryOperator - Transfer function logic for unary operators.
void VisitUnaryOperator(UnaryOperator* B, NodeTy* Pred, NodeSet& Dst);
/// VisitBinaryOperator - Transfer function logic for binary operators.
void VisitBinaryOperator(BinaryOperator* B, NodeTy* Pred, NodeSet& Dst);
/// VisitDeclStmt - Transfer function logic for DeclStmts.
void VisitDeclStmt(DeclStmt* DS, NodeTy* Pred, NodeSet& Dst);
};
} // end anonymous namespace
void GRConstants::ProcessBranch(Stmt* Condition, Stmt* Term,
BranchNodeBuilder& builder) {
StateTy PrevState = builder.getState();
// Remove old bindings for subexpressions.
for (StateTy::iterator I=PrevState.begin(), E=PrevState.end(); I!=E; ++I)
if (I.getKey().isSubExpr())
PrevState = StateMgr.Remove(PrevState, I.getKey());
RValue V = GetValue(PrevState, Condition);
switch (V.getBaseKind()) {
default:
break;
case RValue::InvalidKind:
builder.generateNode(PrevState, true);
builder.generateNode(PrevState, false);
return;
case RValue::UninitializedKind: {
NodeTy* N = builder.generateNode(PrevState, true);
if (N) {
N->markAsSink();
UninitBranches.insert(N);
}
builder.markInfeasible(false);
return;
}
}
// Process the true branch.
bool isFeasible = true;
StateTy St = Assume(PrevState, V, true, isFeasible);
if (isFeasible) builder.generateNode(St, true);
else {
builder.markInfeasible(true);
isFeasible = true;
}
// Process the false branch.
St = Assume(PrevState, V, false, isFeasible);
if (isFeasible) builder.generateNode(St, false);
else builder.markInfeasible(false);
}
void GRConstants::ProcessStmt(Stmt* S, StmtNodeBuilder& builder) {
Builder = &builder;
StmtEntryNode = builder.getLastNode();
CurrentStmt = S;
NodeSet Dst;
StateCleaned = false;
Visit(S, StmtEntryNode, Dst);
// If no nodes were generated, generate a new node that has all the
// dead mappings removed.
if (Dst.size() == 1 && *Dst.begin() == StmtEntryNode) {
StateTy St = RemoveDeadBindings(S, StmtEntryNode->getState());
builder.generateNode(S, St, StmtEntryNode);
}
CurrentStmt = NULL;
StmtEntryNode = NULL;
Builder = NULL;
}
RValue GRConstants::GetValue(const StateTy& St, const LValue& LV) {
switch (LV.getSubKind()) {
case LValueDeclKind: {
StateTy::TreeTy* T = St.SlimFind(cast<LValueDecl>(LV).getDecl());
return T ? T->getValue().second : InvalidValue();
}
default:
assert (false && "Invalid LValue.");
break;
}
return InvalidValue();
}
RValue GRConstants::GetValue(const StateTy& St, Stmt* S) {
for (;;) {
switch (S->getStmtClass()) {
// ParenExprs are no-ops.
case Stmt::ParenExprClass:
S = cast<ParenExpr>(S)->getSubExpr();
continue;
// DeclRefExprs can either evaluate to an LValue or a Non-LValue
// (assuming an implicit "load") depending on the context. In this
// context we assume that we are retrieving the value contained
// within the referenced variables.
case Stmt::DeclRefExprClass:
return GetValue(St, LValueDecl(cast<DeclRefExpr>(S)->getDecl()));
// Integer literals evaluate to an RValue. Simply retrieve the
// RValue for the literal.
case Stmt::IntegerLiteralClass:
return NonLValue::GetValue(ValMgr, cast<IntegerLiteral>(S));
// Casts where the source and target type are the same
// are no-ops. We blast through these to get the descendant
// subexpression that has a value.
case Stmt::ImplicitCastExprClass: {
ImplicitCastExpr* C = cast<ImplicitCastExpr>(S);
if (C->getType() == C->getSubExpr()->getType()) {
S = C->getSubExpr();
continue;
}
break;
}
case Stmt::CastExprClass: {
CastExpr* C = cast<CastExpr>(S);
if (C->getType() == C->getSubExpr()->getType()) {
S = C->getSubExpr();
continue;
}
break;
}
// Handle all other Stmt* using a lookup.
default:
break;
};
break;
}
StateTy::TreeTy* T = St.SlimFind(S);
return T ? T->getValue().second : InvalidValue();
}
LValue GRConstants::GetLValue(const StateTy& St, Stmt* S) {
while (ParenExpr* P = dyn_cast<ParenExpr>(S))
S = P->getSubExpr();
if (DeclRefExpr* DR = dyn_cast<DeclRefExpr>(S))
return LValueDecl(DR->getDecl());
return cast<LValue>(GetValue(St, S));
}
GRConstants::StateTy GRConstants::SetValue(StateTy St, Stmt* S,
const RValue& V) {
assert (S);
if (!StateCleaned) {
St = RemoveDeadBindings(CurrentStmt, St);
StateCleaned = true;
}
bool isBlkExpr = false;
if (S == CurrentStmt) {
isBlkExpr = getCFG().isBlkExpr(S);
if (!isBlkExpr)
return St;
}
return V.isValid() ? StateMgr.Add(St, ValueKey(S,isBlkExpr), V)
: St;
}
GRConstants::StateTy GRConstants::SetValue(StateTy St, const LValue& LV,
const RValue& V) {
if (!LV.isValid())
return St;
if (!StateCleaned) {
St = RemoveDeadBindings(CurrentStmt, St);
StateCleaned = true;
}
switch (LV.getSubKind()) {
case LValueDeclKind:
return V.isValid() ? StateMgr.Add(St, cast<LValueDecl>(LV).getDecl(), V)
: StateMgr.Remove(St, cast<LValueDecl>(LV).getDecl());
default:
assert ("SetValue for given LValue type not yet implemented.");
return St;
}
}
GRConstants::StateTy GRConstants::RemoveDeadBindings(Stmt* Loc, StateTy M) {
// Note: in the code below, we can assign a new map to M since the
// iterators are iterating over the tree of the *original* map.
StateTy::iterator I = M.begin(), E = M.end();
for (; I!=E && !I.getKey().isSymbol(); ++I) {
// Remove old bindings for subexpressions and "dead"
// block-level expressions.
if (I.getKey().isSubExpr() ||
I.getKey().isBlkExpr() && !Liveness.isLive(Loc,cast<Stmt>(I.getKey()))){
M = StateMgr.Remove(M, I.getKey());
}
else if (I.getKey().isDecl()) { // Remove bindings for "dead" decls.
if (VarDecl* V = dyn_cast<VarDecl>(cast<ValueDecl>(I.getKey())))
if (!Liveness.isLive(Loc, V))
M = StateMgr.Remove(M, I.getKey());
}
}
return M;
}
void GRConstants::Nodify(NodeSet& Dst, Stmt* S, GRConstants::NodeTy* Pred,
GRConstants::StateTy St) {
// If the state hasn't changed, don't generate a new node.
if (St == Pred->getState())
return;
Dst.Add(Builder->generateNode(S, St, Pred));
}
void GRConstants::VisitCast(Expr* CastE, Expr* E, GRConstants::NodeTy* Pred,
GRConstants::NodeSet& Dst) {
QualType T = CastE->getType();
// Check for redundant casts.
if (E->getType() == T) {
Dst.Add(Pred);
return;
}
NodeSet S1;
Visit(E, Pred, S1);
for (NodeSet::iterator I1=S1.begin(), E1=S1.end(); I1 != E1; ++I1) {
NodeTy* N = *I1;
StateTy St = N->getState();
const RValue& V = GetValue(St, E);
Nodify(Dst, CastE, N, SetValue(St, CastE, V.Cast(ValMgr, CastE)));
}
}
void GRConstants::VisitDeclStmt(DeclStmt* DS, GRConstants::NodeTy* Pred,
GRConstants::NodeSet& Dst) {
StateTy St = Pred->getState();
for (const ScopedDecl* D = DS->getDecl(); D; D = D->getNextDeclarator())
if (const VarDecl* VD = dyn_cast<VarDecl>(D)) {
const Expr* E = VD->getInit();
St = SetValue(St, LValueDecl(VD),
E ? GetValue(St, E) : UninitializedValue());
}
Nodify(Dst, DS, Pred, St);
if (Dst.empty())
Dst.Add(Pred);
}
void GRConstants::VisitUnaryOperator(UnaryOperator* U,
GRConstants::NodeTy* Pred,
GRConstants::NodeSet& Dst) {
NodeSet S1;
Visit(U->getSubExpr(), Pred, S1);
for (NodeSet::iterator I1=S1.begin(), E1=S1.end(); I1 != E1; ++I1) {
NodeTy* N1 = *I1;
StateTy St = N1->getState();
switch (U->getOpcode()) {
case UnaryOperator::PostInc: {
const LValue& L1 = GetLValue(St, U->getSubExpr());
NonLValue R1 = cast<NonLValue>(GetValue(St, L1));
NonLValue R2 = NonLValue::GetValue(ValMgr, 1U, U->getType(),
U->getLocStart());
NonLValue Result = R1.Add(ValMgr, R2);
Nodify(Dst, U, N1, SetValue(SetValue(St, U, R1), L1, Result));
break;
}
case UnaryOperator::PostDec: {
const LValue& L1 = GetLValue(St, U->getSubExpr());
NonLValue R1 = cast<NonLValue>(GetValue(St, L1));
NonLValue R2 = NonLValue::GetValue(ValMgr, 1U, U->getType(),
U->getLocStart());
NonLValue Result = R1.Sub(ValMgr, R2);
Nodify(Dst, U, N1, SetValue(SetValue(St, U, R1), L1, Result));
break;
}
case UnaryOperator::PreInc: {
const LValue& L1 = GetLValue(St, U->getSubExpr());
NonLValue R1 = cast<NonLValue>(GetValue(St, L1));
NonLValue R2 = NonLValue::GetValue(ValMgr, 1U, U->getType(),
U->getLocStart());
NonLValue Result = R1.Add(ValMgr, R2);
Nodify(Dst, U, N1, SetValue(SetValue(St, U, Result), L1, Result));
break;
}
case UnaryOperator::PreDec: {
const LValue& L1 = GetLValue(St, U->getSubExpr());
NonLValue R1 = cast<NonLValue>(GetValue(St, L1));
NonLValue R2 = NonLValue::GetValue(ValMgr, 1U, U->getType(),
U->getLocStart());
NonLValue Result = R1.Sub(ValMgr, R2);
Nodify(Dst, U, N1, SetValue(SetValue(St, U, Result), L1, Result));
break;
}
case UnaryOperator::Minus: {
const NonLValue& R1 = cast<NonLValue>(GetValue(St, U->getSubExpr()));
Nodify(Dst, U, N1, SetValue(St, U, R1.UnaryMinus(ValMgr, U)));
break;
}
case UnaryOperator::AddrOf: {
const LValue& L1 = GetLValue(St, U->getSubExpr());
Nodify(Dst, U, N1, SetValue(St, U, L1));
break;
}
case UnaryOperator::Deref: {
const LValue& L1 = GetLValue(St, U->getSubExpr());
Nodify(Dst, U, N1, SetValue(St, U, GetValue(St, L1)));
break;
}
default: ;
assert (false && "Not implemented.");
}
}
}
void GRConstants::VisitBinaryOperator(BinaryOperator* B,
GRConstants::NodeTy* Pred,
GRConstants::NodeSet& Dst) {
NodeSet S1;
Visit(B->getLHS(), Pred, S1);
for (NodeSet::iterator I1=S1.begin(), E1=S1.end(); I1 != E1; ++I1) {
NodeTy* N1 = *I1;
// When getting the value for the LHS, check if we are in an assignment.
// In such cases, we want to (initially) treat the LHS as an LValue,
// so we use GetLValue instead of GetValue so that DeclRefExpr's are
// evaluated to LValueDecl's instead of to an NonLValue.
const RValue& V1 =
B->isAssignmentOp() ? GetLValue(N1->getState(), B->getLHS())
: GetValue(N1->getState(), B->getLHS());
NodeSet S2;
Visit(B->getRHS(), N1, S2);
for (NodeSet::iterator I2=S2.begin(), E2=S2.end(); I2 != E2; ++I2) {
NodeTy* N2 = *I2;
StateTy St = N2->getState();
const RValue& V2 = GetValue(St, B->getRHS());
switch (B->getOpcode()) {
default:
Dst.Add(N2);
break;
// Arithmetic opreators.
case BinaryOperator::Add: {
const NonLValue& R1 = cast<NonLValue>(V1);
const NonLValue& R2 = cast<NonLValue>(V2);
Nodify(Dst, B, N2, SetValue(St, B, R1.Add(ValMgr, R2)));
break;
}
case BinaryOperator::Sub: {
const NonLValue& R1 = cast<NonLValue>(V1);
const NonLValue& R2 = cast<NonLValue>(V2);
Nodify(Dst, B, N2, SetValue(St, B, R1.Sub(ValMgr, R2)));
break;
}
case BinaryOperator::Mul: {
const NonLValue& R1 = cast<NonLValue>(V1);
const NonLValue& R2 = cast<NonLValue>(V2);
Nodify(Dst, B, N2, SetValue(St, B, R1.Mul(ValMgr, R2)));
break;
}
case BinaryOperator::Div: {
const NonLValue& R1 = cast<NonLValue>(V1);
const NonLValue& R2 = cast<NonLValue>(V2);
Nodify(Dst, B, N2, SetValue(St, B, R1.Div(ValMgr, R2)));
break;
}
case BinaryOperator::Rem: {
const NonLValue& R1 = cast<NonLValue>(V1);
const NonLValue& R2 = cast<NonLValue>(V2);
Nodify(Dst, B, N2, SetValue(St, B, R1.Rem(ValMgr, R2)));
break;
}
// Assignment operators.
case BinaryOperator::Assign: {
const LValue& L1 = cast<LValue>(V1);
const NonLValue& R2 = cast<NonLValue>(V2);
Nodify(Dst, B, N2, SetValue(SetValue(St, B, R2), L1, R2));
break;
}
case BinaryOperator::AddAssign: {
const LValue& L1 = cast<LValue>(V1);
NonLValue R1 = cast<NonLValue>(GetValue(N1->getState(), L1));
NonLValue Result = R1.Add(ValMgr, cast<NonLValue>(V2));
Nodify(Dst, B, N2, SetValue(SetValue(St, B, Result), L1, Result));
break;
}
case BinaryOperator::SubAssign: {
const LValue& L1 = cast<LValue>(V1);
NonLValue R1 = cast<NonLValue>(GetValue(N1->getState(), L1));
NonLValue Result = R1.Sub(ValMgr, cast<NonLValue>(V2));
Nodify(Dst, B, N2, SetValue(SetValue(St, B, Result), L1, Result));
break;
}
case BinaryOperator::MulAssign: {
const LValue& L1 = cast<LValue>(V1);
NonLValue R1 = cast<NonLValue>(GetValue(N1->getState(), L1));
NonLValue Result = R1.Mul(ValMgr, cast<NonLValue>(V2));
Nodify(Dst, B, N2, SetValue(SetValue(St, B, Result), L1, Result));
break;
}
case BinaryOperator::DivAssign: {
const LValue& L1 = cast<LValue>(V1);
NonLValue R1 = cast<NonLValue>(GetValue(N1->getState(), L1));
NonLValue Result = R1.Div(ValMgr, cast<NonLValue>(V2));
Nodify(Dst, B, N2, SetValue(SetValue(St, B, Result), L1, Result));
break;
}
case BinaryOperator::RemAssign: {
const LValue& L1 = cast<LValue>(V1);
NonLValue R1 = cast<NonLValue>(GetValue(N1->getState(), L1));
NonLValue Result = R1.Rem(ValMgr, cast<NonLValue>(V2));
Nodify(Dst, B, N2, SetValue(SetValue(St, B, Result), L1, Result));
break;
}
// Equality operators.
case BinaryOperator::EQ:
// FIXME: should we allow XX.EQ() to return a set of values,
// allowing state bifurcation? In such cases, they will also
// modify the state (meaning that a new state will be returned
// as well).
assert (B->getType() == getContext().IntTy);
if (isa<LValue>(V1)) {
const LValue& L1 = cast<LValue>(V1);
const LValue& L2 = cast<LValue>(V2);
St = SetValue(St, B, L1.EQ(ValMgr, L2));
}
else {
const NonLValue& R1 = cast<NonLValue>(V1);
const NonLValue& R2 = cast<NonLValue>(V2);
St = SetValue(St, B, R1.EQ(ValMgr, R2));
}
Nodify(Dst, B, N2, St);
break;
}
}
}
}
void GRConstants::Visit(Stmt* S, GRConstants::NodeTy* Pred,
GRConstants::NodeSet& Dst) {
// FIXME: add metadata to the CFG so that we can disable
// this check when we KNOW that there is no block-level subexpression.
// The motivation is that this check requires a hashtable lookup.
if (S != CurrentStmt && getCFG().isBlkExpr(S)) {
Dst.Add(Pred);
return;
}
switch (S->getStmtClass()) {
case Stmt::BinaryOperatorClass:
case Stmt::CompoundAssignOperatorClass:
VisitBinaryOperator(cast<BinaryOperator>(S), Pred, Dst);
break;
case Stmt::UnaryOperatorClass:
VisitUnaryOperator(cast<UnaryOperator>(S), Pred, Dst);
break;
case Stmt::ParenExprClass:
Visit(cast<ParenExpr>(S)->getSubExpr(), Pred, Dst);
break;
case Stmt::ImplicitCastExprClass: {
ImplicitCastExpr* C = cast<ImplicitCastExpr>(S);
VisitCast(C, C->getSubExpr(), Pred, Dst);
break;
}
case Stmt::CastExprClass: {
CastExpr* C = cast<CastExpr>(S);
VisitCast(C, C->getSubExpr(), Pred, Dst);
break;
}
case Stmt::DeclStmtClass:
VisitDeclStmt(cast<DeclStmt>(S), Pred, Dst);
break;
default:
Dst.Add(Pred); // No-op. Simply propagate the current state unchanged.
break;
}
}
//===----------------------------------------------------------------------===//
// "Assume" logic.
//===----------------------------------------------------------------------===//
GRConstants::StateTy GRConstants::Assume(StateTy St, LValue Cond, bool Assumption,
bool& isFeasible) {
switch (Cond.getSubKind()) {
default:
assert (false && "'Assume' not implemented for this NonLValue.");
return St;
case LValueDeclKind:
isFeasible = Assumption;
return St;
case ConcreteIntLValueKind: {
bool b = cast<ConcreteIntLValue>(Cond).getValue() != 0;
isFeasible = b ? Assumption : !Assumption;
return St;
}
}
}
GRConstants::StateTy GRConstants::Assume(StateTy St, NonLValue Cond, bool Assumption,
bool& isFeasible) {
switch (Cond.getSubKind()) {
default:
assert (false && "'Assume' not implemented for this NonLValue.");
return St;
case ConcreteIntKind: {
bool b = cast<ConcreteInt>(Cond).getValue() != 0;
isFeasible = b ? Assumption : !Assumption;
return St;
}
}
}
//===----------------------------------------------------------------------===//
// Driver.
//===----------------------------------------------------------------------===//
#ifndef NDEBUG
static GRConstants* GraphPrintCheckerState;
namespace llvm {
template<>
struct VISIBILITY_HIDDEN DOTGraphTraits<GRConstants::NodeTy*> :
public DefaultDOTGraphTraits {
static void PrintKindLabel(std::ostream& Out, ValueKey::Kind kind) {
switch (kind) {
case ValueKey::IsSubExpr: Out << "Sub-Expressions:\\l"; break;
case ValueKey::IsDecl: Out << "Variables:\\l"; break;
case ValueKey::IsBlkExpr: Out << "Block-level Expressions:\\l"; break;
default: assert (false && "Unknown ValueKey type.");
}
}
static void PrintKind(std::ostream& Out, GRConstants::StateTy M,
ValueKey::Kind kind, bool isFirstGroup = false) {
bool isFirst = true;
for (GRConstants::StateTy::iterator I=M.begin(), E=M.end();I!=E;++I) {
if (I.getKey().getKind() != kind)
continue;
if (isFirst) {
if (!isFirstGroup) Out << "\\l\\l";
PrintKindLabel(Out, kind);
isFirst = false;
}
else
Out << "\\l";
Out << ' ';
if (ValueDecl* V = dyn_cast<ValueDecl>(I.getKey()))
Out << V->getName();
else {
Stmt* E = cast<Stmt>(I.getKey());
Out << " (" << (void*) E << ") ";
E->printPretty(Out);
}
Out << " : ";
I.getData().print(Out);
}
}
static std::string getNodeLabel(const GRConstants::NodeTy* N, void*) {
std::ostringstream Out;
// Program Location.
ProgramPoint Loc = N->getLocation();
switch (Loc.getKind()) {
case ProgramPoint::BlockEntranceKind:
Out << "Block Entrance: B"
<< cast<BlockEntrance>(Loc).getBlock()->getBlockID();
break;
case ProgramPoint::BlockExitKind:
assert (false);
break;
case ProgramPoint::PostStmtKind: {
const PostStmt& L = cast<PostStmt>(Loc);
Out << L.getStmt()->getStmtClassName() << ':'
<< (void*) L.getStmt() << ' ';
L.getStmt()->printPretty(Out);
break;
}
default: {
const BlockEdge& E = cast<BlockEdge>(Loc);
Out << "Edge: (B" << E.getSrc()->getBlockID() << ", B"
<< E.getDst()->getBlockID() << ')';
if (Stmt* T = E.getSrc()->getTerminator()) {
Out << "\\|Terminator: ";
E.getSrc()->printTerminator(Out);
if (isa<SwitchStmt>(T)) {
// FIXME
}
else {
Out << "\\lCondition: ";
if (*E.getSrc()->succ_begin() == E.getDst())
Out << "true";
else
Out << "false";
}
Out << "\\l";
}
if (GraphPrintCheckerState->isUninitControlFlow(N)) {
Out << "\\|Control-flow based on\\lUninitialized value.\\l";
}
}
}
Out << "\\|StateID: " << (void*) N->getState().getRoot() << "\\|";
PrintKind(Out, N->getState(), ValueKey::IsDecl, true);
PrintKind(Out, N->getState(), ValueKey::IsBlkExpr);
PrintKind(Out, N->getState(), ValueKey::IsSubExpr);
Out << "\\l";
return Out.str();
}
};
} // end llvm namespace
#endif
namespace clang {
void RunGRConstants(CFG& cfg, FunctionDecl& FD, ASTContext& Ctx) {
GREngine<GRConstants> Engine(cfg, FD, Ctx);
Engine.ExecuteWorkList();
#ifndef NDEBUG
GraphPrintCheckerState = &Engine.getCheckerState();
llvm::ViewGraph(*Engine.getGraph().roots_begin(),"GRConstants");
GraphPrintCheckerState = NULL;
#endif
}
} // end clang namespace