//===--- Preprocess.cpp - C Language Family Preprocessor Implementation ---===// // // The LLVM Compiler Infrastructure // // This file was developed by Chris Lattner and is distributed under // the University of Illinois Open Source License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file implements the Preprocessor interface. // //===----------------------------------------------------------------------===// // // Options to support: // -H - Print the name of each header file used. // -d[MDNI] - Dump various things. // -fworking-directory - #line's with preprocessor's working dir. // -fpreprocessed // -dependency-file,-M,-MM,-MF,-MG,-MP,-MT,-MQ,-MD,-MMD // -W* // -w // // Messages to emit: // "Multiple include guards may be useful for:\n" // //===----------------------------------------------------------------------===// #include "clang/Lex/Preprocessor.h" #include "clang/Lex/HeaderSearch.h" #include "clang/Lex/MacroInfo.h" #include "clang/Lex/PPCallbacks.h" #include "clang/Lex/Pragma.h" #include "clang/Lex/ScratchBuffer.h" #include "clang/Basic/Diagnostic.h" #include "clang/Basic/FileManager.h" #include "clang/Basic/SourceManager.h" #include "clang/Basic/TargetInfo.h" #include "llvm/ADT/SmallVector.h" #include "llvm/Support/MemoryBuffer.h" #include #include using namespace clang; //===----------------------------------------------------------------------===// Preprocessor::Preprocessor(Diagnostic &diags, const LangOptions &opts, TargetInfo &target, SourceManager &SM, HeaderSearch &Headers) : Diags(diags), Features(opts), Target(target), FileMgr(Headers.getFileMgr()), SourceMgr(SM), HeaderInfo(Headers), Identifiers(opts), CurLexer(0), CurDirLookup(0), CurMacroExpander(0), Callbacks(0) { ScratchBuf = new ScratchBuffer(SourceMgr); // Clear stats. NumDirectives = NumDefined = NumUndefined = NumPragma = 0; NumIf = NumElse = NumEndif = 0; NumEnteredSourceFiles = 0; NumMacroExpanded = NumFnMacroExpanded = NumBuiltinMacroExpanded = 0; NumFastMacroExpanded = NumTokenPaste = NumFastTokenPaste = 0; MaxIncludeStackDepth = 0; NumSkipped = 0; // Default to discarding comments. KeepComments = false; KeepMacroComments = false; // Macro expansion is enabled. DisableMacroExpansion = false; InMacroArgs = false; NumCachedMacroExpanders = 0; // "Poison" __VA_ARGS__, which can only appear in the expansion of a macro. // This gets unpoisoned where it is allowed. (Ident__VA_ARGS__ = getIdentifierInfo("__VA_ARGS__"))->setIsPoisoned(); Predefines = 0; // Initialize the pragma handlers. PragmaHandlers = new PragmaNamespace(0); RegisterBuiltinPragmas(); // Initialize builtin macros like __LINE__ and friends. RegisterBuiltinMacros(); } Preprocessor::~Preprocessor() { // Free any active lexers. delete CurLexer; while (!IncludeMacroStack.empty()) { delete IncludeMacroStack.back().TheLexer; delete IncludeMacroStack.back().TheMacroExpander; IncludeMacroStack.pop_back(); } // Free any macro definitions. for (llvm::DenseMap::iterator I = Macros.begin(), E = Macros.end(); I != E; ++I) { // Free the macro definition. delete I->second; I->second = 0; I->first->setHasMacroDefinition(false); } // Free any cached macro expanders. for (unsigned i = 0, e = NumCachedMacroExpanders; i != e; ++i) delete MacroExpanderCache[i]; // Release pragma information. delete PragmaHandlers; // Delete the scratch buffer info. delete ScratchBuf; } PPCallbacks::~PPCallbacks() { } /// Diag - Forwarding function for diagnostics. This emits a diagnostic at /// the specified Token's location, translating the token's start /// position in the current buffer into a SourcePosition object for rendering. void Preprocessor::Diag(SourceLocation Loc, unsigned DiagID) { Diags.Report(getFullLoc(Loc), DiagID); } void Preprocessor::Diag(SourceLocation Loc, unsigned DiagID, const std::string &Msg) { Diags.Report(getFullLoc(Loc), DiagID, &Msg, 1); } void Preprocessor::DumpToken(const Token &Tok, bool DumpFlags) const { std::cerr << tok::getTokenName(Tok.getKind()) << " '" << getSpelling(Tok) << "'"; if (!DumpFlags) return; std::cerr << "\t"; if (Tok.isAtStartOfLine()) std::cerr << " [StartOfLine]"; if (Tok.hasLeadingSpace()) std::cerr << " [LeadingSpace]"; if (Tok.isExpandDisabled()) std::cerr << " [ExpandDisabled]"; if (Tok.needsCleaning()) { const char *Start = SourceMgr.getCharacterData(Tok.getLocation()); std::cerr << " [UnClean='" << std::string(Start, Start+Tok.getLength()) << "']"; } std::cerr << "\tLoc=<"; DumpLocation(Tok.getLocation()); std::cerr << ">"; } void Preprocessor::DumpLocation(SourceLocation Loc) const { SourceLocation LogLoc = SourceMgr.getLogicalLoc(Loc); std::cerr << SourceMgr.getSourceName(LogLoc) << ':' << SourceMgr.getLineNumber(LogLoc) << ':' << SourceMgr.getLineNumber(LogLoc); SourceLocation PhysLoc = SourceMgr.getPhysicalLoc(Loc); if (PhysLoc != LogLoc) { std::cerr << " "; } } void Preprocessor::DumpMacro(const MacroInfo &MI) const { std::cerr << "MACRO: "; for (unsigned i = 0, e = MI.getNumTokens(); i != e; ++i) { DumpToken(MI.getReplacementToken(i)); std::cerr << " "; } std::cerr << "\n"; } void Preprocessor::PrintStats() { std::cerr << "\n*** Preprocessor Stats:\n"; std::cerr << NumDirectives << " directives found:\n"; std::cerr << " " << NumDefined << " #define.\n"; std::cerr << " " << NumUndefined << " #undef.\n"; std::cerr << " #include/#include_next/#import:\n"; std::cerr << " " << NumEnteredSourceFiles << " source files entered.\n"; std::cerr << " " << MaxIncludeStackDepth << " max include stack depth\n"; std::cerr << " " << NumIf << " #if/#ifndef/#ifdef.\n"; std::cerr << " " << NumElse << " #else/#elif.\n"; std::cerr << " " << NumEndif << " #endif.\n"; std::cerr << " " << NumPragma << " #pragma.\n"; std::cerr << NumSkipped << " #if/#ifndef#ifdef regions skipped\n"; std::cerr << NumMacroExpanded << "/" << NumFnMacroExpanded << "/" << NumBuiltinMacroExpanded << " obj/fn/builtin macros expanded, " << NumFastMacroExpanded << " on the fast path.\n"; std::cerr << (NumFastTokenPaste+NumTokenPaste) << " token paste (##) operations performed, " << NumFastTokenPaste << " on the fast path.\n"; } //===----------------------------------------------------------------------===// // Token Spelling //===----------------------------------------------------------------------===// /// getSpelling() - Return the 'spelling' of this token. The spelling of a /// token are the characters used to represent the token in the source file /// after trigraph expansion and escaped-newline folding. In particular, this /// wants to get the true, uncanonicalized, spelling of things like digraphs /// UCNs, etc. std::string Preprocessor::getSpelling(const Token &Tok) const { assert((int)Tok.getLength() >= 0 && "Token character range is bogus!"); // If this token contains nothing interesting, return it directly. const char *TokStart = SourceMgr.getCharacterData(Tok.getLocation()); if (!Tok.needsCleaning()) return std::string(TokStart, TokStart+Tok.getLength()); std::string Result; Result.reserve(Tok.getLength()); // Otherwise, hard case, relex the characters into the string. for (const char *Ptr = TokStart, *End = TokStart+Tok.getLength(); Ptr != End; ) { unsigned CharSize; Result.push_back(Lexer::getCharAndSizeNoWarn(Ptr, CharSize, Features)); Ptr += CharSize; } assert(Result.size() != unsigned(Tok.getLength()) && "NeedsCleaning flag set on something that didn't need cleaning!"); return Result; } /// getSpelling - This method is used to get the spelling of a token into a /// preallocated buffer, instead of as an std::string. The caller is required /// to allocate enough space for the token, which is guaranteed to be at least /// Tok.getLength() bytes long. The actual length of the token is returned. /// /// Note that this method may do two possible things: it may either fill in /// the buffer specified with characters, or it may *change the input pointer* /// to point to a constant buffer with the data already in it (avoiding a /// copy). The caller is not allowed to modify the returned buffer pointer /// if an internal buffer is returned. unsigned Preprocessor::getSpelling(const Token &Tok, const char *&Buffer) const { assert((int)Tok.getLength() >= 0 && "Token character range is bogus!"); // If this token is an identifier, just return the string from the identifier // table, which is very quick. if (const IdentifierInfo *II = Tok.getIdentifierInfo()) { Buffer = II->getName(); // Return the length of the token. If the token needed cleaning, don't // include the size of the newlines or trigraphs in it. if (!Tok.needsCleaning()) return Tok.getLength(); else return strlen(Buffer); } // Otherwise, compute the start of the token in the input lexer buffer. const char *TokStart = SourceMgr.getCharacterData(Tok.getLocation()); // If this token contains nothing interesting, return it directly. if (!Tok.needsCleaning()) { Buffer = TokStart; return Tok.getLength(); } // Otherwise, hard case, relex the characters into the string. char *OutBuf = const_cast(Buffer); for (const char *Ptr = TokStart, *End = TokStart+Tok.getLength(); Ptr != End; ) { unsigned CharSize; *OutBuf++ = Lexer::getCharAndSizeNoWarn(Ptr, CharSize, Features); Ptr += CharSize; } assert(unsigned(OutBuf-Buffer) != Tok.getLength() && "NeedsCleaning flag set on something that didn't need cleaning!"); return OutBuf-Buffer; } /// CreateString - Plop the specified string into a scratch buffer and return a /// location for it. If specified, the source location provides a source /// location for the token. SourceLocation Preprocessor:: CreateString(const char *Buf, unsigned Len, SourceLocation SLoc) { if (SLoc.isValid()) return ScratchBuf->getToken(Buf, Len, SLoc); return ScratchBuf->getToken(Buf, Len); } /// AdvanceToTokenCharacter - Given a location that specifies the start of a /// token, return a new location that specifies a character within the token. SourceLocation Preprocessor::AdvanceToTokenCharacter(SourceLocation TokStart, unsigned CharNo) { // If they request the first char of the token, we're trivially done. If this // is a macro expansion, it doesn't make sense to point to a character within // the instantiation point (the name). We could point to the source // character, but without also pointing to instantiation info, this is // confusing. if (CharNo == 0 || TokStart.isMacroID()) return TokStart; // Figure out how many physical characters away the specified logical // character is. This needs to take into consideration newlines and // trigraphs. const char *TokPtr = SourceMgr.getCharacterData(TokStart); unsigned PhysOffset = 0; // The usual case is that tokens don't contain anything interesting. Skip // over the uninteresting characters. If a token only consists of simple // chars, this method is extremely fast. while (CharNo && Lexer::isObviouslySimpleCharacter(*TokPtr)) ++TokPtr, --CharNo, ++PhysOffset; // If we have a character that may be a trigraph or escaped newline, create a // lexer to parse it correctly. if (CharNo != 0) { // Create a lexer starting at this token position. Lexer TheLexer(TokStart, *this, TokPtr); Token Tok; // Skip over characters the remaining characters. const char *TokStartPtr = TokPtr; for (; CharNo; --CharNo) TheLexer.getAndAdvanceChar(TokPtr, Tok); PhysOffset += TokPtr-TokStartPtr; } return TokStart.getFileLocWithOffset(PhysOffset); } //===----------------------------------------------------------------------===// // Preprocessor Initialization Methods //===----------------------------------------------------------------------===// // Append a #define line to Buf for Macro. Macro should be of the form XXX, // in which case we emit "#define XXX 1" or "XXX=Y z W" in which case we emit // "#define XXX Y z W". To get a #define with no value, use "XXX=". static void DefineBuiltinMacro(std::vector &Buf, const char *Macro, const char *Command = "#define ") { Buf.insert(Buf.end(), Command, Command+strlen(Command)); if (const char *Equal = strchr(Macro, '=')) { // Turn the = into ' '. Buf.insert(Buf.end(), Macro, Equal); Buf.push_back(' '); Buf.insert(Buf.end(), Equal+1, Equal+strlen(Equal)); } else { // Push "macroname 1". Buf.insert(Buf.end(), Macro, Macro+strlen(Macro)); Buf.push_back(' '); Buf.push_back('1'); } Buf.push_back('\n'); } static void InitializePredefinedMacros(Preprocessor &PP, std::vector &Buf) { // FIXME: Implement magic like cpp_init_builtins for things like __STDC__ // and __DATE__ etc. #if 0 /* __STDC__ has the value 1 under normal circumstances. However, if (a) we are in a system header, (b) the option stdc_0_in_system_headers is true (set by target config), and (c) we are not in strictly conforming mode, then it has the value 0. (b) and (c) are already checked in cpp_init_builtins. */ //case BT_STDC: if (cpp_in_system_header (pfile)) number = 0; else number = 1; break; #endif // These should all be defined in the preprocessor according to the // current language configuration. DefineBuiltinMacro(Buf, "__STDC__=1"); //DefineBuiltinMacro(Buf, "__ASSEMBLER__=1"); if (PP.getLangOptions().C99 && !PP.getLangOptions().CPlusPlus) DefineBuiltinMacro(Buf, "__STDC_VERSION__=199901L"); else if (0) // STDC94 ? DefineBuiltinMacro(Buf, "__STDC_VERSION__=199409L"); DefineBuiltinMacro(Buf, "__STDC_HOSTED__=1"); if (PP.getLangOptions().ObjC1) DefineBuiltinMacro(Buf, "__OBJC__=1"); if (PP.getLangOptions().ObjC2) DefineBuiltinMacro(Buf, "__OBJC2__=1"); // Add __builtin_va_list typedef. { const char *VAList = PP.getTargetInfo().getVAListDeclaration(); Buf.insert(Buf.end(), VAList, VAList+strlen(VAList)); Buf.push_back('\n'); } // Get the target #defines. PP.getTargetInfo().getTargetDefines(Buf); // Compiler set macros. DefineBuiltinMacro(Buf, "__APPLE_CC__=5250"); DefineBuiltinMacro(Buf, "__ENVIRONMENT_MAC_OS_X_VERSION_MIN_REQUIRED__=1050"); DefineBuiltinMacro(Buf, "__GNUC_MINOR__=0"); DefineBuiltinMacro(Buf, "__GNUC_PATCHLEVEL__=1"); DefineBuiltinMacro(Buf, "__GNUC__=4"); DefineBuiltinMacro(Buf, "__GXX_ABI_VERSION=1002"); DefineBuiltinMacro(Buf, "__VERSION__=\"4.0.1 (Apple Computer, Inc. " "build 5250)\""); // Build configuration options. DefineBuiltinMacro(Buf, "__DYNAMIC__=1"); DefineBuiltinMacro(Buf, "__FINITE_MATH_ONLY__=0"); DefineBuiltinMacro(Buf, "__NO_INLINE__=1"); DefineBuiltinMacro(Buf, "__PIC__=1"); if (PP.getLangOptions().CPlusPlus) { DefineBuiltinMacro(Buf, "__DEPRECATED=1"); DefineBuiltinMacro(Buf, "__EXCEPTIONS=1"); DefineBuiltinMacro(Buf, "__GNUG__=4"); DefineBuiltinMacro(Buf, "__GXX_WEAK__=1"); DefineBuiltinMacro(Buf, "__cplusplus=1"); DefineBuiltinMacro(Buf, "__private_extern__=extern"); } // FIXME: Should emit a #line directive here. } /// EnterMainSourceFile - Enter the specified FileID as the main source file, /// which implicitly adds the builting defines etc. void Preprocessor::EnterMainSourceFile() { unsigned MainFileID = SourceMgr.getMainFileID(); // Enter the main file source buffer. EnterSourceFile(MainFileID, 0); // Tell the header info that the main file was entered. If the file is later // #imported, it won't be re-entered. if (const FileEntry *FE = SourceMgr.getFileEntryForLoc(SourceLocation::getFileLoc(MainFileID, 0))) HeaderInfo.IncrementIncludeCount(FE); std::vector PrologFile; PrologFile.reserve(4080); // Install things like __POWERPC__, __GNUC__, etc into the macro table. InitializePredefinedMacros(*this, PrologFile); // Add on the predefines from the driver. PrologFile.insert(PrologFile.end(), Predefines,Predefines+strlen(Predefines)); // Memory buffer must end with a null byte! PrologFile.push_back(0); // Now that we have emitted the predefined macros, #includes, etc into // PrologFile, preprocess it to populate the initial preprocessor state. llvm::MemoryBuffer *SB = llvm::MemoryBuffer::getMemBufferCopy(&PrologFile.front(),&PrologFile.back(), ""); assert(SB && "Cannot fail to create predefined source buffer"); unsigned FileID = SourceMgr.createFileIDForMemBuffer(SB); assert(FileID && "Could not create FileID for predefines?"); // Start parsing the predefines. EnterSourceFile(FileID, 0); } //===----------------------------------------------------------------------===// // Source File Location Methods. //===----------------------------------------------------------------------===// /// LookupFile - Given a "foo" or reference, look up the indicated file, /// return null on failure. isAngled indicates whether the file reference is /// for system #include's or not (i.e. using <> instead of ""). const FileEntry *Preprocessor::LookupFile(const char *FilenameStart, const char *FilenameEnd, bool isAngled, const DirectoryLookup *FromDir, const DirectoryLookup *&CurDir) { // If the header lookup mechanism may be relative to the current file, pass in // info about where the current file is. const FileEntry *CurFileEnt = 0; if (!FromDir) { SourceLocation FileLoc = getCurrentFileLexer()->getFileLoc(); CurFileEnt = SourceMgr.getFileEntryForLoc(FileLoc); } // Do a standard file entry lookup. CurDir = CurDirLookup; const FileEntry *FE = HeaderInfo.LookupFile(FilenameStart, FilenameEnd, isAngled, FromDir, CurDir, CurFileEnt); if (FE) return FE; // Otherwise, see if this is a subframework header. If so, this is relative // to one of the headers on the #include stack. Walk the list of the current // headers on the #include stack and pass them to HeaderInfo. if (CurLexer && !CurLexer->Is_PragmaLexer) { CurFileEnt = SourceMgr.getFileEntryForLoc(CurLexer->getFileLoc()); if ((FE = HeaderInfo.LookupSubframeworkHeader(FilenameStart, FilenameEnd, CurFileEnt))) return FE; } for (unsigned i = 0, e = IncludeMacroStack.size(); i != e; ++i) { IncludeStackInfo &ISEntry = IncludeMacroStack[e-i-1]; if (ISEntry.TheLexer && !ISEntry.TheLexer->Is_PragmaLexer) { CurFileEnt = SourceMgr.getFileEntryForLoc(ISEntry.TheLexer->getFileLoc()); if ((FE = HeaderInfo.LookupSubframeworkHeader(FilenameStart, FilenameEnd, CurFileEnt))) return FE; } } // Otherwise, we really couldn't find the file. return 0; } /// isInPrimaryFile - Return true if we're in the top-level file, not in a /// #include. bool Preprocessor::isInPrimaryFile() const { if (CurLexer && !CurLexer->Is_PragmaLexer) return IncludeMacroStack.empty(); // If there are any stacked lexers, we're in a #include. assert(IncludeMacroStack[0].TheLexer && !IncludeMacroStack[0].TheLexer->Is_PragmaLexer && "Top level include stack isn't our primary lexer?"); for (unsigned i = 1, e = IncludeMacroStack.size(); i != e; ++i) if (IncludeMacroStack[i].TheLexer && !IncludeMacroStack[i].TheLexer->Is_PragmaLexer) return false; return true; } /// getCurrentLexer - Return the current file lexer being lexed from. Note /// that this ignores any potentially active macro expansions and _Pragma /// expansions going on at the time. Lexer *Preprocessor::getCurrentFileLexer() const { if (CurLexer && !CurLexer->Is_PragmaLexer) return CurLexer; // Look for a stacked lexer. for (unsigned i = IncludeMacroStack.size(); i != 0; --i) { Lexer *L = IncludeMacroStack[i-1].TheLexer; if (L && !L->Is_PragmaLexer) // Ignore macro & _Pragma expansions. return L; } return 0; } /// EnterSourceFile - Add a source file to the top of the include stack and /// start lexing tokens from it instead of the current buffer. Return true /// on failure. void Preprocessor::EnterSourceFile(unsigned FileID, const DirectoryLookup *CurDir) { assert(CurMacroExpander == 0 && "Cannot #include a file inside a macro!"); ++NumEnteredSourceFiles; if (MaxIncludeStackDepth < IncludeMacroStack.size()) MaxIncludeStackDepth = IncludeMacroStack.size(); Lexer *TheLexer = new Lexer(SourceLocation::getFileLoc(FileID, 0), *this); EnterSourceFileWithLexer(TheLexer, CurDir); } /// EnterSourceFile - Add a source file to the top of the include stack and /// start lexing tokens from it instead of the current buffer. void Preprocessor::EnterSourceFileWithLexer(Lexer *TheLexer, const DirectoryLookup *CurDir) { // Add the current lexer to the include stack. if (CurLexer || CurMacroExpander) IncludeMacroStack.push_back(IncludeStackInfo(CurLexer, CurDirLookup, CurMacroExpander)); CurLexer = TheLexer; CurDirLookup = CurDir; CurMacroExpander = 0; // Notify the client, if desired, that we are in a new source file. if (Callbacks && !CurLexer->Is_PragmaLexer) { DirectoryLookup::DirType FileType = DirectoryLookup::NormalHeaderDir; // Get the file entry for the current file. if (const FileEntry *FE = SourceMgr.getFileEntryForLoc(CurLexer->getFileLoc())) FileType = HeaderInfo.getFileDirFlavor(FE); Callbacks->FileChanged(CurLexer->getFileLoc(), PPCallbacks::EnterFile, FileType); } } /// EnterMacro - Add a Macro to the top of the include stack and start lexing /// tokens from it instead of the current buffer. void Preprocessor::EnterMacro(Token &Tok, MacroArgs *Args) { IncludeMacroStack.push_back(IncludeStackInfo(CurLexer, CurDirLookup, CurMacroExpander)); CurLexer = 0; CurDirLookup = 0; if (NumCachedMacroExpanders == 0) { CurMacroExpander = new MacroExpander(Tok, Args, *this); } else { CurMacroExpander = MacroExpanderCache[--NumCachedMacroExpanders]; CurMacroExpander->Init(Tok, Args); } } /// EnterTokenStream - Add a "macro" context to the top of the include stack, /// which will cause the lexer to start returning the specified tokens. Note /// that these tokens will be re-macro-expanded when/if expansion is enabled. /// This method assumes that the specified stream of tokens has a permanent /// owner somewhere, so they do not need to be copied. void Preprocessor::EnterTokenStream(const Token *Toks, unsigned NumToks) { // Save our current state. IncludeMacroStack.push_back(IncludeStackInfo(CurLexer, CurDirLookup, CurMacroExpander)); CurLexer = 0; CurDirLookup = 0; // Create a macro expander to expand from the specified token stream. if (NumCachedMacroExpanders == 0) { CurMacroExpander = new MacroExpander(Toks, NumToks, *this); } else { CurMacroExpander = MacroExpanderCache[--NumCachedMacroExpanders]; CurMacroExpander->Init(Toks, NumToks); } } /// RemoveTopOfLexerStack - Pop the current lexer/macro exp off the top of the /// lexer stack. This should only be used in situations where the current /// state of the top-of-stack lexer is known. void Preprocessor::RemoveTopOfLexerStack() { assert(!IncludeMacroStack.empty() && "Ran out of stack entries to load"); if (CurMacroExpander) { // Delete or cache the now-dead macro expander. if (NumCachedMacroExpanders == MacroExpanderCacheSize) delete CurMacroExpander; else MacroExpanderCache[NumCachedMacroExpanders++] = CurMacroExpander; } else { delete CurLexer; } CurLexer = IncludeMacroStack.back().TheLexer; CurDirLookup = IncludeMacroStack.back().TheDirLookup; CurMacroExpander = IncludeMacroStack.back().TheMacroExpander; IncludeMacroStack.pop_back(); } //===----------------------------------------------------------------------===// // Macro Expansion Handling. //===----------------------------------------------------------------------===// /// setMacroInfo - Specify a macro for this identifier. /// void Preprocessor::setMacroInfo(IdentifierInfo *II, MacroInfo *MI) { if (MI == 0) { if (II->hasMacroDefinition()) { Macros.erase(II); II->setHasMacroDefinition(false); } } else { Macros[II] = MI; II->setHasMacroDefinition(true); } } /// RegisterBuiltinMacro - Register the specified identifier in the identifier /// table and mark it as a builtin macro to be expanded. IdentifierInfo *Preprocessor::RegisterBuiltinMacro(const char *Name) { // Get the identifier. IdentifierInfo *Id = getIdentifierInfo(Name); // Mark it as being a macro that is builtin. MacroInfo *MI = new MacroInfo(SourceLocation()); MI->setIsBuiltinMacro(); setMacroInfo(Id, MI); return Id; } /// RegisterBuiltinMacros - Register builtin macros, such as __LINE__ with the /// identifier table. void Preprocessor::RegisterBuiltinMacros() { Ident__LINE__ = RegisterBuiltinMacro("__LINE__"); Ident__FILE__ = RegisterBuiltinMacro("__FILE__"); Ident__DATE__ = RegisterBuiltinMacro("__DATE__"); Ident__TIME__ = RegisterBuiltinMacro("__TIME__"); Ident_Pragma = RegisterBuiltinMacro("_Pragma"); // GCC Extensions. Ident__BASE_FILE__ = RegisterBuiltinMacro("__BASE_FILE__"); Ident__INCLUDE_LEVEL__ = RegisterBuiltinMacro("__INCLUDE_LEVEL__"); Ident__TIMESTAMP__ = RegisterBuiltinMacro("__TIMESTAMP__"); } /// isTrivialSingleTokenExpansion - Return true if MI, which has a single token /// in its expansion, currently expands to that token literally. static bool isTrivialSingleTokenExpansion(const MacroInfo *MI, const IdentifierInfo *MacroIdent, Preprocessor &PP) { IdentifierInfo *II = MI->getReplacementToken(0).getIdentifierInfo(); // If the token isn't an identifier, it's always literally expanded. if (II == 0) return true; // If the identifier is a macro, and if that macro is enabled, it may be // expanded so it's not a trivial expansion. if (II->hasMacroDefinition() && PP.getMacroInfo(II)->isEnabled() && // Fast expanding "#define X X" is ok, because X would be disabled. II != MacroIdent) return false; // If this is an object-like macro invocation, it is safe to trivially expand // it. if (MI->isObjectLike()) return true; // If this is a function-like macro invocation, it's safe to trivially expand // as long as the identifier is not a macro argument. for (MacroInfo::arg_iterator I = MI->arg_begin(), E = MI->arg_end(); I != E; ++I) if (*I == II) return false; // Identifier is a macro argument. return true; } /// isNextPPTokenLParen - Determine whether the next preprocessor token to be /// lexed is a '('. If so, consume the token and return true, if not, this /// method should have no observable side-effect on the lexed tokens. bool Preprocessor::isNextPPTokenLParen() { // Do some quick tests for rejection cases. unsigned Val; if (CurLexer) Val = CurLexer->isNextPPTokenLParen(); else Val = CurMacroExpander->isNextTokenLParen(); if (Val == 2) { // We have run off the end. If it's a source file we don't // examine enclosing ones (C99 5.1.1.2p4). Otherwise walk up the // macro stack. if (CurLexer) return false; for (unsigned i = IncludeMacroStack.size(); i != 0; --i) { IncludeStackInfo &Entry = IncludeMacroStack[i-1]; if (Entry.TheLexer) Val = Entry.TheLexer->isNextPPTokenLParen(); else Val = Entry.TheMacroExpander->isNextTokenLParen(); if (Val != 2) break; // Ran off the end of a source file? if (Entry.TheLexer) return false; } } // Okay, if we know that the token is a '(', lex it and return. Otherwise we // have found something that isn't a '(' or we found the end of the // translation unit. In either case, return false. if (Val != 1) return false; Token Tok; LexUnexpandedToken(Tok); assert(Tok.is(tok::l_paren) && "Error computing l-paren-ness?"); return true; } /// HandleMacroExpandedIdentifier - If an identifier token is read that is to be /// expanded as a macro, handle it and return the next token as 'Identifier'. bool Preprocessor::HandleMacroExpandedIdentifier(Token &Identifier, MacroInfo *MI) { // If this is a builtin macro, like __LINE__ or _Pragma, handle it specially. if (MI->isBuiltinMacro()) { ExpandBuiltinMacro(Identifier); return false; } // If this is the first use of a target-specific macro, warn about it. if (MI->isTargetSpecific()) { MI->setIsTargetSpecific(false); // Don't warn on second use. getTargetInfo().DiagnoseNonPortability(getFullLoc(Identifier.getLocation()), diag::port_target_macro_use); } /// Args - If this is a function-like macro expansion, this contains, /// for each macro argument, the list of tokens that were provided to the /// invocation. MacroArgs *Args = 0; // If this is a function-like macro, read the arguments. if (MI->isFunctionLike()) { // C99 6.10.3p10: If the preprocessing token immediately after the the macro // name isn't a '(', this macro should not be expanded. Otherwise, consume // it. if (!isNextPPTokenLParen()) return true; // Remember that we are now parsing the arguments to a macro invocation. // Preprocessor directives used inside macro arguments are not portable, and // this enables the warning. InMacroArgs = true; Args = ReadFunctionLikeMacroArgs(Identifier, MI); // Finished parsing args. InMacroArgs = false; // If there was an error parsing the arguments, bail out. if (Args == 0) return false; ++NumFnMacroExpanded; } else { ++NumMacroExpanded; } // Notice that this macro has been used. MI->setIsUsed(true); // If we started lexing a macro, enter the macro expansion body. // If this macro expands to no tokens, don't bother to push it onto the // expansion stack, only to take it right back off. if (MI->getNumTokens() == 0) { // No need for arg info. if (Args) Args->destroy(); // Ignore this macro use, just return the next token in the current // buffer. bool HadLeadingSpace = Identifier.hasLeadingSpace(); bool IsAtStartOfLine = Identifier.isAtStartOfLine(); Lex(Identifier); // If the identifier isn't on some OTHER line, inherit the leading // whitespace/first-on-a-line property of this token. This handles // stuff like "! XX," -> "! ," and " XX," -> " ,", when XX is // empty. if (!Identifier.isAtStartOfLine()) { if (IsAtStartOfLine) Identifier.setFlag(Token::StartOfLine); if (HadLeadingSpace) Identifier.setFlag(Token::LeadingSpace); } ++NumFastMacroExpanded; return false; } else if (MI->getNumTokens() == 1 && isTrivialSingleTokenExpansion(MI, Identifier.getIdentifierInfo(), *this)){ // Otherwise, if this macro expands into a single trivially-expanded // token: expand it now. This handles common cases like // "#define VAL 42". // Propagate the isAtStartOfLine/hasLeadingSpace markers of the macro // identifier to the expanded token. bool isAtStartOfLine = Identifier.isAtStartOfLine(); bool hasLeadingSpace = Identifier.hasLeadingSpace(); // Remember where the token is instantiated. SourceLocation InstantiateLoc = Identifier.getLocation(); // Replace the result token. Identifier = MI->getReplacementToken(0); // Restore the StartOfLine/LeadingSpace markers. Identifier.setFlagValue(Token::StartOfLine , isAtStartOfLine); Identifier.setFlagValue(Token::LeadingSpace, hasLeadingSpace); // Update the tokens location to include both its logical and physical // locations. SourceLocation Loc = SourceMgr.getInstantiationLoc(Identifier.getLocation(), InstantiateLoc); Identifier.setLocation(Loc); // If this is #define X X, we must mark the result as unexpandible. if (IdentifierInfo *NewII = Identifier.getIdentifierInfo()) if (getMacroInfo(NewII) == MI) Identifier.setFlag(Token::DisableExpand); // Since this is not an identifier token, it can't be macro expanded, so // we're done. ++NumFastMacroExpanded; return false; } // Start expanding the macro. EnterMacro(Identifier, Args); // Now that the macro is at the top of the include stack, ask the // preprocessor to read the next token from it. Lex(Identifier); return false; } /// ReadFunctionLikeMacroArgs - After reading "MACRO(", this method is /// invoked to read all of the actual arguments specified for the macro /// invocation. This returns null on error. MacroArgs *Preprocessor::ReadFunctionLikeMacroArgs(Token &MacroName, MacroInfo *MI) { // The number of fixed arguments to parse. unsigned NumFixedArgsLeft = MI->getNumArgs(); bool isVariadic = MI->isVariadic(); // Outer loop, while there are more arguments, keep reading them. Token Tok; Tok.setKind(tok::comma); --NumFixedArgsLeft; // Start reading the first arg. // ArgTokens - Build up a list of tokens that make up each argument. Each // argument is separated by an EOF token. Use a SmallVector so we can avoid // heap allocations in the common case. llvm::SmallVector ArgTokens; unsigned NumActuals = 0; while (Tok.is(tok::comma)) { // C99 6.10.3p11: Keep track of the number of l_parens we have seen. Note // that we already consumed the first one. unsigned NumParens = 0; while (1) { // Read arguments as unexpanded tokens. This avoids issues, e.g., where // an argument value in a macro could expand to ',' or '(' or ')'. LexUnexpandedToken(Tok); if (Tok.is(tok::eof)) { Diag(MacroName, diag::err_unterm_macro_invoc); // Do not lose the EOF. Return it to the client. MacroName = Tok; return 0; } else if (Tok.is(tok::r_paren)) { // If we found the ) token, the macro arg list is done. if (NumParens-- == 0) break; } else if (Tok.is(tok::l_paren)) { ++NumParens; } else if (Tok.is(tok::comma) && NumParens == 0) { // Comma ends this argument if there are more fixed arguments expected. if (NumFixedArgsLeft) break; // If this is not a variadic macro, too many args were specified. if (!isVariadic) { // Emit the diagnostic at the macro name in case there is a missing ). // Emitting it at the , could be far away from the macro name. Diag(MacroName, diag::err_too_many_args_in_macro_invoc); return 0; } // Otherwise, continue to add the tokens to this variable argument. } else if (Tok.is(tok::comment) && !KeepMacroComments) { // If this is a comment token in the argument list and we're just in // -C mode (not -CC mode), discard the comment. continue; } else if (Tok.is(tok::identifier)) { // Reading macro arguments can cause macros that we are currently // expanding from to be popped off the expansion stack. Doing so causes // them to be reenabled for expansion. Here we record whether any // identifiers we lex as macro arguments correspond to disabled macros. // If so, we mark the token as noexpand. This is a subtle aspect of // C99 6.10.3.4p2. if (MacroInfo *MI = getMacroInfo(Tok.getIdentifierInfo())) if (!MI->isEnabled()) Tok.setFlag(Token::DisableExpand); } ArgTokens.push_back(Tok); } // Empty arguments are standard in C99 and supported as an extension in // other modes. if (ArgTokens.empty() && !Features.C99) Diag(Tok, diag::ext_empty_fnmacro_arg); // Add a marker EOF token to the end of the token list for this argument. Token EOFTok; EOFTok.startToken(); EOFTok.setKind(tok::eof); EOFTok.setLocation(Tok.getLocation()); EOFTok.setLength(0); ArgTokens.push_back(EOFTok); ++NumActuals; --NumFixedArgsLeft; }; // Okay, we either found the r_paren. Check to see if we parsed too few // arguments. unsigned MinArgsExpected = MI->getNumArgs(); // See MacroArgs instance var for description of this. bool isVarargsElided = false; if (NumActuals < MinArgsExpected) { // There are several cases where too few arguments is ok, handle them now. if (NumActuals+1 == MinArgsExpected && MI->isVariadic()) { // Varargs where the named vararg parameter is missing: ok as extension. // #define A(x, ...) // A("blah") Diag(Tok, diag::ext_missing_varargs_arg); // Remember this occurred if this is a C99 macro invocation with at least // one actual argument. isVarargsElided = MI->isC99Varargs() && MI->getNumArgs() > 1; } else if (MI->getNumArgs() == 1) { // #define A(x) // A() // is ok because it is an empty argument. // Empty arguments are standard in C99 and supported as an extension in // other modes. if (ArgTokens.empty() && !Features.C99) Diag(Tok, diag::ext_empty_fnmacro_arg); } else { // Otherwise, emit the error. Diag(Tok, diag::err_too_few_args_in_macro_invoc); return 0; } // Add a marker EOF token to the end of the token list for this argument. SourceLocation EndLoc = Tok.getLocation(); Tok.startToken(); Tok.setKind(tok::eof); Tok.setLocation(EndLoc); Tok.setLength(0); ArgTokens.push_back(Tok); } return MacroArgs::create(MI, &ArgTokens[0], ArgTokens.size(),isVarargsElided); } /// ComputeDATE_TIME - Compute the current time, enter it into the specified /// scratch buffer, then return DATELoc/TIMELoc locations with the position of /// the identifier tokens inserted. static void ComputeDATE_TIME(SourceLocation &DATELoc, SourceLocation &TIMELoc, Preprocessor &PP) { time_t TT = time(0); struct tm *TM = localtime(&TT); static const char * const Months[] = { "Jan","Feb","Mar","Apr","May","Jun","Jul","Aug","Sep","Oct","Nov","Dec" }; char TmpBuffer[100]; sprintf(TmpBuffer, "\"%s %2d %4d\"", Months[TM->tm_mon], TM->tm_mday, TM->tm_year+1900); DATELoc = PP.CreateString(TmpBuffer, strlen(TmpBuffer)); sprintf(TmpBuffer, "\"%02d:%02d:%02d\"", TM->tm_hour, TM->tm_min, TM->tm_sec); TIMELoc = PP.CreateString(TmpBuffer, strlen(TmpBuffer)); } /// ExpandBuiltinMacro - If an identifier token is read that is to be expanded /// as a builtin macro, handle it and return the next token as 'Tok'. void Preprocessor::ExpandBuiltinMacro(Token &Tok) { // Figure out which token this is. IdentifierInfo *II = Tok.getIdentifierInfo(); assert(II && "Can't be a macro without id info!"); // If this is an _Pragma directive, expand it, invoke the pragma handler, then // lex the token after it. if (II == Ident_Pragma) return Handle_Pragma(Tok); ++NumBuiltinMacroExpanded; char TmpBuffer[100]; // Set up the return result. Tok.setIdentifierInfo(0); Tok.clearFlag(Token::NeedsCleaning); if (II == Ident__LINE__) { // __LINE__ expands to a simple numeric value. sprintf(TmpBuffer, "%u", SourceMgr.getLogicalLineNumber(Tok.getLocation())); unsigned Length = strlen(TmpBuffer); Tok.setKind(tok::numeric_constant); Tok.setLength(Length); Tok.setLocation(CreateString(TmpBuffer, Length, Tok.getLocation())); } else if (II == Ident__FILE__ || II == Ident__BASE_FILE__) { SourceLocation Loc = Tok.getLocation(); if (II == Ident__BASE_FILE__) { Diag(Tok, diag::ext_pp_base_file); SourceLocation NextLoc = SourceMgr.getIncludeLoc(Loc); while (NextLoc.isValid()) { Loc = NextLoc; NextLoc = SourceMgr.getIncludeLoc(Loc); } } // Escape this filename. Turn '\' -> '\\' '"' -> '\"' std::string FN = SourceMgr.getSourceName(SourceMgr.getLogicalLoc(Loc)); FN = '"' + Lexer::Stringify(FN) + '"'; Tok.setKind(tok::string_literal); Tok.setLength(FN.size()); Tok.setLocation(CreateString(&FN[0], FN.size(), Tok.getLocation())); } else if (II == Ident__DATE__) { if (!DATELoc.isValid()) ComputeDATE_TIME(DATELoc, TIMELoc, *this); Tok.setKind(tok::string_literal); Tok.setLength(strlen("\"Mmm dd yyyy\"")); Tok.setLocation(SourceMgr.getInstantiationLoc(DATELoc, Tok.getLocation())); } else if (II == Ident__TIME__) { if (!TIMELoc.isValid()) ComputeDATE_TIME(DATELoc, TIMELoc, *this); Tok.setKind(tok::string_literal); Tok.setLength(strlen("\"hh:mm:ss\"")); Tok.setLocation(SourceMgr.getInstantiationLoc(TIMELoc, Tok.getLocation())); } else if (II == Ident__INCLUDE_LEVEL__) { Diag(Tok, diag::ext_pp_include_level); // Compute the include depth of this token. unsigned Depth = 0; SourceLocation Loc = SourceMgr.getIncludeLoc(Tok.getLocation()); for (; Loc.isValid(); ++Depth) Loc = SourceMgr.getIncludeLoc(Loc); // __INCLUDE_LEVEL__ expands to a simple numeric value. sprintf(TmpBuffer, "%u", Depth); unsigned Length = strlen(TmpBuffer); Tok.setKind(tok::numeric_constant); Tok.setLength(Length); Tok.setLocation(CreateString(TmpBuffer, Length, Tok.getLocation())); } else if (II == Ident__TIMESTAMP__) { // MSVC, ICC, GCC, VisualAge C++ extension. The generated string should be // of the form "Ddd Mmm dd hh::mm::ss yyyy", which is returned by asctime. Diag(Tok, diag::ext_pp_timestamp); // Get the file that we are lexing out of. If we're currently lexing from // a macro, dig into the include stack. const FileEntry *CurFile = 0; Lexer *TheLexer = getCurrentFileLexer(); if (TheLexer) CurFile = SourceMgr.getFileEntryForLoc(TheLexer->getFileLoc()); // If this file is older than the file it depends on, emit a diagnostic. const char *Result; if (CurFile) { time_t TT = CurFile->getModificationTime(); struct tm *TM = localtime(&TT); Result = asctime(TM); } else { Result = "??? ??? ?? ??:??:?? ????\n"; } TmpBuffer[0] = '"'; strcpy(TmpBuffer+1, Result); unsigned Len = strlen(TmpBuffer); TmpBuffer[Len-1] = '"'; // Replace the newline with a quote. Tok.setKind(tok::string_literal); Tok.setLength(Len); Tok.setLocation(CreateString(TmpBuffer, Len, Tok.getLocation())); } else { assert(0 && "Unknown identifier!"); } } //===----------------------------------------------------------------------===// // Lexer Event Handling. //===----------------------------------------------------------------------===// /// LookUpIdentifierInfo - Given a tok::identifier token, look up the /// identifier information for the token and install it into the token. IdentifierInfo *Preprocessor::LookUpIdentifierInfo(Token &Identifier, const char *BufPtr) { assert(Identifier.is(tok::identifier) && "Not an identifier!"); assert(Identifier.getIdentifierInfo() == 0 && "Identinfo already exists!"); // Look up this token, see if it is a macro, or if it is a language keyword. IdentifierInfo *II; if (BufPtr && !Identifier.needsCleaning()) { // No cleaning needed, just use the characters from the lexed buffer. II = getIdentifierInfo(BufPtr, BufPtr+Identifier.getLength()); } else { // Cleaning needed, alloca a buffer, clean into it, then use the buffer. llvm::SmallVector IdentifierBuffer; IdentifierBuffer.resize(Identifier.getLength()); const char *TmpBuf = &IdentifierBuffer[0]; unsigned Size = getSpelling(Identifier, TmpBuf); II = getIdentifierInfo(TmpBuf, TmpBuf+Size); } Identifier.setIdentifierInfo(II); return II; } /// HandleIdentifier - This callback is invoked when the lexer reads an /// identifier. This callback looks up the identifier in the map and/or /// potentially macro expands it or turns it into a named token (like 'for'). void Preprocessor::HandleIdentifier(Token &Identifier) { assert(Identifier.getIdentifierInfo() && "Can't handle identifiers without identifier info!"); IdentifierInfo &II = *Identifier.getIdentifierInfo(); // If this identifier was poisoned, and if it was not produced from a macro // expansion, emit an error. if (II.isPoisoned() && CurLexer) { if (&II != Ident__VA_ARGS__) // We warn about __VA_ARGS__ with poisoning. Diag(Identifier, diag::err_pp_used_poisoned_id); else Diag(Identifier, diag::ext_pp_bad_vaargs_use); } // If this is a macro to be expanded, do it. if (MacroInfo *MI = getMacroInfo(&II)) { if (!DisableMacroExpansion && !Identifier.isExpandDisabled()) { if (MI->isEnabled()) { if (!HandleMacroExpandedIdentifier(Identifier, MI)) return; } else { // C99 6.10.3.4p2 says that a disabled macro may never again be // expanded, even if it's in a context where it could be expanded in the // future. Identifier.setFlag(Token::DisableExpand); } } } else if (II.isOtherTargetMacro() && !DisableMacroExpansion) { // If this identifier is a macro on some other target, emit a diagnostic. // This diagnosic is only emitted when macro expansion is enabled, because // the macro would not have been expanded for the other target either. II.setIsOtherTargetMacro(false); // Don't warn on second use. getTargetInfo().DiagnoseNonPortability(getFullLoc(Identifier.getLocation()), diag::port_target_macro_use); } // C++ 2.11p2: If this is an alternative representation of a C++ operator, // then we act as if it is the actual operator and not the textual // representation of it. if (II.isCPlusPlusOperatorKeyword()) Identifier.setIdentifierInfo(0); // Change the kind of this identifier to the appropriate token kind, e.g. // turning "for" into a keyword. Identifier.setKind(II.getTokenID()); // If this is an extension token, diagnose its use. // FIXME: tried (unsuccesfully) to shut this up when compiling with gnu99 // For now, I'm just commenting it out (while I work on attributes). if (II.isExtensionToken() && Features.C99) Diag(Identifier, diag::ext_token_used); } /// HandleEndOfFile - This callback is invoked when the lexer hits the end of /// the current file. This either returns the EOF token or pops a level off /// the include stack and keeps going. bool Preprocessor::HandleEndOfFile(Token &Result, bool isEndOfMacro) { assert(!CurMacroExpander && "Ending a file when currently in a macro!"); // See if this file had a controlling macro. if (CurLexer) { // Not ending a macro, ignore it. if (const IdentifierInfo *ControllingMacro = CurLexer->MIOpt.GetControllingMacroAtEndOfFile()) { // Okay, this has a controlling macro, remember in PerFileInfo. if (const FileEntry *FE = SourceMgr.getFileEntryForLoc(CurLexer->getFileLoc())) HeaderInfo.SetFileControllingMacro(FE, ControllingMacro); } } // If this is a #include'd file, pop it off the include stack and continue // lexing the #includer file. if (!IncludeMacroStack.empty()) { // We're done with the #included file. RemoveTopOfLexerStack(); // Notify the client, if desired, that we are in a new source file. if (Callbacks && !isEndOfMacro && CurLexer) { DirectoryLookup::DirType FileType = DirectoryLookup::NormalHeaderDir; // Get the file entry for the current file. if (const FileEntry *FE = SourceMgr.getFileEntryForLoc(CurLexer->getFileLoc())) FileType = HeaderInfo.getFileDirFlavor(FE); Callbacks->FileChanged(CurLexer->getSourceLocation(CurLexer->BufferPtr), PPCallbacks::ExitFile, FileType); } // Client should lex another token. return false; } Result.startToken(); CurLexer->BufferPtr = CurLexer->BufferEnd; CurLexer->FormTokenWithChars(Result, CurLexer->BufferEnd); Result.setKind(tok::eof); // We're done with the #included file. delete CurLexer; CurLexer = 0; // This is the end of the top-level file. If the diag::pp_macro_not_used // diagnostic is enabled, look for macros that have not been used. if (Diags.getDiagnosticLevel(diag::pp_macro_not_used) != Diagnostic::Ignored){ for (llvm::DenseMap::iterator I = Macros.begin(), E = Macros.end(); I != E; ++I) { if (!I->second->isUsed()) Diag(I->second->getDefinitionLoc(), diag::pp_macro_not_used); } } return true; } /// HandleEndOfMacro - This callback is invoked when the lexer hits the end of /// the current macro expansion or token stream expansion. bool Preprocessor::HandleEndOfMacro(Token &Result) { assert(CurMacroExpander && !CurLexer && "Ending a macro when currently in a #include file!"); // Delete or cache the now-dead macro expander. if (NumCachedMacroExpanders == MacroExpanderCacheSize) delete CurMacroExpander; else MacroExpanderCache[NumCachedMacroExpanders++] = CurMacroExpander; // Handle this like a #include file being popped off the stack. CurMacroExpander = 0; return HandleEndOfFile(Result, true); } //===----------------------------------------------------------------------===// // Utility Methods for Preprocessor Directive Handling. //===----------------------------------------------------------------------===// /// DiscardUntilEndOfDirective - Read and discard all tokens remaining on the /// current line until the tok::eom token is found. void Preprocessor::DiscardUntilEndOfDirective() { Token Tmp; do { LexUnexpandedToken(Tmp); } while (Tmp.isNot(tok::eom)); } /// isCXXNamedOperator - Returns "true" if the token is a named operator in C++. static bool isCXXNamedOperator(const std::string &Spelling) { return Spelling == "and" || Spelling == "bitand" || Spelling == "bitor" || Spelling == "compl" || Spelling == "not" || Spelling == "not_eq" || Spelling == "or" || Spelling == "xor"; } /// ReadMacroName - Lex and validate a macro name, which occurs after a /// #define or #undef. This sets the token kind to eom and discards the rest /// of the macro line if the macro name is invalid. isDefineUndef is 1 if /// this is due to a a #define, 2 if #undef directive, 0 if it is something /// else (e.g. #ifdef). void Preprocessor::ReadMacroName(Token &MacroNameTok, char isDefineUndef) { // Read the token, don't allow macro expansion on it. LexUnexpandedToken(MacroNameTok); // Missing macro name? if (MacroNameTok.is(tok::eom)) return Diag(MacroNameTok, diag::err_pp_missing_macro_name); IdentifierInfo *II = MacroNameTok.getIdentifierInfo(); if (II == 0) { std::string Spelling = getSpelling(MacroNameTok); if (isCXXNamedOperator(Spelling)) // C++ 2.5p2: Alternative tokens behave the same as its primary token // except for their spellings. Diag(MacroNameTok, diag::err_pp_operator_used_as_macro_name, Spelling); else Diag(MacroNameTok, diag::err_pp_macro_not_identifier); // Fall through on error. } else if (isDefineUndef && II->getPPKeywordID() == tok::pp_defined) { // Error if defining "defined": C99 6.10.8.4. Diag(MacroNameTok, diag::err_defined_macro_name); } else if (isDefineUndef && II->hasMacroDefinition() && getMacroInfo(II)->isBuiltinMacro()) { // Error if defining "__LINE__" and other builtins: C99 6.10.8.4. if (isDefineUndef == 1) Diag(MacroNameTok, diag::pp_redef_builtin_macro); else Diag(MacroNameTok, diag::pp_undef_builtin_macro); } else { // Okay, we got a good identifier node. Return it. return; } // Invalid macro name, read and discard the rest of the line. Then set the // token kind to tok::eom. MacroNameTok.setKind(tok::eom); return DiscardUntilEndOfDirective(); } /// CheckEndOfDirective - Ensure that the next token is a tok::eom token. If /// not, emit a diagnostic and consume up until the eom. void Preprocessor::CheckEndOfDirective(const char *DirType) { Token Tmp; Lex(Tmp); // There should be no tokens after the directive, but we allow them as an // extension. while (Tmp.is(tok::comment)) // Skip comments in -C mode. Lex(Tmp); if (Tmp.isNot(tok::eom)) { Diag(Tmp, diag::ext_pp_extra_tokens_at_eol, DirType); DiscardUntilEndOfDirective(); } } /// SkipExcludedConditionalBlock - We just read a #if or related directive and /// decided that the subsequent tokens are in the #if'd out portion of the /// file. Lex the rest of the file, until we see an #endif. If /// FoundNonSkipPortion is true, then we have already emitted code for part of /// this #if directive, so #else/#elif blocks should never be entered. If ElseOk /// is true, then #else directives are ok, if not, then we have already seen one /// so a #else directive is a duplicate. When this returns, the caller can lex /// the first valid token. void Preprocessor::SkipExcludedConditionalBlock(SourceLocation IfTokenLoc, bool FoundNonSkipPortion, bool FoundElse) { ++NumSkipped; assert(CurMacroExpander == 0 && CurLexer && "Lexing a macro, not a file?"); CurLexer->pushConditionalLevel(IfTokenLoc, /*isSkipping*/false, FoundNonSkipPortion, FoundElse); // Enter raw mode to disable identifier lookup (and thus macro expansion), // disabling warnings, etc. CurLexer->LexingRawMode = true; Token Tok; while (1) { CurLexer->Lex(Tok); // If this is the end of the buffer, we have an error. if (Tok.is(tok::eof)) { // Emit errors for each unterminated conditional on the stack, including // the current one. while (!CurLexer->ConditionalStack.empty()) { Diag(CurLexer->ConditionalStack.back().IfLoc, diag::err_pp_unterminated_conditional); CurLexer->ConditionalStack.pop_back(); } // Just return and let the caller lex after this #include. break; } // If this token is not a preprocessor directive, just skip it. if (Tok.isNot(tok::hash) || !Tok.isAtStartOfLine()) continue; // We just parsed a # character at the start of a line, so we're in // directive mode. Tell the lexer this so any newlines we see will be // converted into an EOM token (this terminates the macro). CurLexer->ParsingPreprocessorDirective = true; CurLexer->KeepCommentMode = false; // Read the next token, the directive flavor. LexUnexpandedToken(Tok); // If this isn't an identifier directive (e.g. is "# 1\n" or "#\n", or // something bogus), skip it. if (Tok.isNot(tok::identifier)) { CurLexer->ParsingPreprocessorDirective = false; // Restore comment saving mode. CurLexer->KeepCommentMode = KeepComments; continue; } // If the first letter isn't i or e, it isn't intesting to us. We know that // this is safe in the face of spelling differences, because there is no way // to spell an i/e in a strange way that is another letter. Skipping this // allows us to avoid looking up the identifier info for #define/#undef and // other common directives. const char *RawCharData = SourceMgr.getCharacterData(Tok.getLocation()); char FirstChar = RawCharData[0]; if (FirstChar >= 'a' && FirstChar <= 'z' && FirstChar != 'i' && FirstChar != 'e') { CurLexer->ParsingPreprocessorDirective = false; // Restore comment saving mode. CurLexer->KeepCommentMode = KeepComments; continue; } // Get the identifier name without trigraphs or embedded newlines. Note // that we can't use Tok.getIdentifierInfo() because its lookup is disabled // when skipping. // TODO: could do this with zero copies in the no-clean case by using // strncmp below. char Directive[20]; unsigned IdLen; if (!Tok.needsCleaning() && Tok.getLength() < 20) { IdLen = Tok.getLength(); memcpy(Directive, RawCharData, IdLen); Directive[IdLen] = 0; } else { std::string DirectiveStr = getSpelling(Tok); IdLen = DirectiveStr.size(); if (IdLen >= 20) { CurLexer->ParsingPreprocessorDirective = false; // Restore comment saving mode. CurLexer->KeepCommentMode = KeepComments; continue; } memcpy(Directive, &DirectiveStr[0], IdLen); Directive[IdLen] = 0; } if (FirstChar == 'i' && Directive[1] == 'f') { if ((IdLen == 2) || // "if" (IdLen == 5 && !strcmp(Directive+2, "def")) || // "ifdef" (IdLen == 6 && !strcmp(Directive+2, "ndef"))) { // "ifndef" // We know the entire #if/#ifdef/#ifndef block will be skipped, don't // bother parsing the condition. DiscardUntilEndOfDirective(); CurLexer->pushConditionalLevel(Tok.getLocation(), /*wasskipping*/true, /*foundnonskip*/false, /*fnddelse*/false); } } else if (FirstChar == 'e') { if (IdLen == 5 && !strcmp(Directive+1, "ndif")) { // "endif" CheckEndOfDirective("#endif"); PPConditionalInfo CondInfo; CondInfo.WasSkipping = true; // Silence bogus warning. bool InCond = CurLexer->popConditionalLevel(CondInfo); InCond = InCond; // Silence warning in no-asserts mode. assert(!InCond && "Can't be skipping if not in a conditional!"); // If we popped the outermost skipping block, we're done skipping! if (!CondInfo.WasSkipping) break; } else if (IdLen == 4 && !strcmp(Directive+1, "lse")) { // "else". // #else directive in a skipping conditional. If not in some other // skipping conditional, and if #else hasn't already been seen, enter it // as a non-skipping conditional. CheckEndOfDirective("#else"); PPConditionalInfo &CondInfo = CurLexer->peekConditionalLevel(); // If this is a #else with a #else before it, report the error. if (CondInfo.FoundElse) Diag(Tok, diag::pp_err_else_after_else); // Note that we've seen a #else in this conditional. CondInfo.FoundElse = true; // If the conditional is at the top level, and the #if block wasn't // entered, enter the #else block now. if (!CondInfo.WasSkipping && !CondInfo.FoundNonSkip) { CondInfo.FoundNonSkip = true; break; } } else if (IdLen == 4 && !strcmp(Directive+1, "lif")) { // "elif". PPConditionalInfo &CondInfo = CurLexer->peekConditionalLevel(); bool ShouldEnter; // If this is in a skipping block or if we're already handled this #if // block, don't bother parsing the condition. if (CondInfo.WasSkipping || CondInfo.FoundNonSkip) { DiscardUntilEndOfDirective(); ShouldEnter = false; } else { // Restore the value of LexingRawMode so that identifiers are // looked up, etc, inside the #elif expression. assert(CurLexer->LexingRawMode && "We have to be skipping here!"); CurLexer->LexingRawMode = false; IdentifierInfo *IfNDefMacro = 0; ShouldEnter = EvaluateDirectiveExpression(IfNDefMacro); CurLexer->LexingRawMode = true; } // If this is a #elif with a #else before it, report the error. if (CondInfo.FoundElse) Diag(Tok, diag::pp_err_elif_after_else); // If this condition is true, enter it! if (ShouldEnter) { CondInfo.FoundNonSkip = true; break; } } } CurLexer->ParsingPreprocessorDirective = false; // Restore comment saving mode. CurLexer->KeepCommentMode = KeepComments; } // Finally, if we are out of the conditional (saw an #endif or ran off the end // of the file, just stop skipping and return to lexing whatever came after // the #if block. CurLexer->LexingRawMode = false; } //===----------------------------------------------------------------------===// // Preprocessor Directive Handling. //===----------------------------------------------------------------------===// /// HandleDirective - This callback is invoked when the lexer sees a # token /// at the start of a line. This consumes the directive, modifies the /// lexer/preprocessor state, and advances the lexer(s) so that the next token /// read is the correct one. void Preprocessor::HandleDirective(Token &Result) { // FIXME: Traditional: # with whitespace before it not recognized by K&R? // We just parsed a # character at the start of a line, so we're in directive // mode. Tell the lexer this so any newlines we see will be converted into an // EOM token (which terminates the directive). CurLexer->ParsingPreprocessorDirective = true; ++NumDirectives; // We are about to read a token. For the multiple-include optimization FA to // work, we have to remember if we had read any tokens *before* this // pp-directive. bool ReadAnyTokensBeforeDirective = CurLexer->MIOpt.getHasReadAnyTokensVal(); // Read the next token, the directive flavor. This isn't expanded due to // C99 6.10.3p8. LexUnexpandedToken(Result); // C99 6.10.3p11: Is this preprocessor directive in macro invocation? e.g.: // #define A(x) #x // A(abc // #warning blah // def) // If so, the user is relying on non-portable behavior, emit a diagnostic. if (InMacroArgs) Diag(Result, diag::ext_embedded_directive); TryAgain: switch (Result.getKind()) { case tok::eom: return; // null directive. case tok::comment: // Handle stuff like "# /*foo*/ define X" in -E -C mode. LexUnexpandedToken(Result); goto TryAgain; case tok::numeric_constant: // FIXME: implement # 7 line numbers! DiscardUntilEndOfDirective(); return; default: IdentifierInfo *II = Result.getIdentifierInfo(); if (II == 0) break; // Not an identifier. // Ask what the preprocessor keyword ID is. switch (II->getPPKeywordID()) { default: break; // C99 6.10.1 - Conditional Inclusion. case tok::pp_if: return HandleIfDirective(Result, ReadAnyTokensBeforeDirective); case tok::pp_ifdef: return HandleIfdefDirective(Result, false, true/*not valid for miopt*/); case tok::pp_ifndef: return HandleIfdefDirective(Result, true, ReadAnyTokensBeforeDirective); case tok::pp_elif: return HandleElifDirective(Result); case tok::pp_else: return HandleElseDirective(Result); case tok::pp_endif: return HandleEndifDirective(Result); // C99 6.10.2 - Source File Inclusion. case tok::pp_include: return HandleIncludeDirective(Result); // Handle #include. // C99 6.10.3 - Macro Replacement. case tok::pp_define: return HandleDefineDirective(Result, false); case tok::pp_undef: return HandleUndefDirective(Result); // C99 6.10.4 - Line Control. case tok::pp_line: // FIXME: implement #line DiscardUntilEndOfDirective(); return; // C99 6.10.5 - Error Directive. case tok::pp_error: return HandleUserDiagnosticDirective(Result, false); // C99 6.10.6 - Pragma Directive. case tok::pp_pragma: return HandlePragmaDirective(); // GNU Extensions. case tok::pp_import: return HandleImportDirective(Result); case tok::pp_include_next: return HandleIncludeNextDirective(Result); case tok::pp_warning: Diag(Result, diag::ext_pp_warning_directive); return HandleUserDiagnosticDirective(Result, true); case tok::pp_ident: return HandleIdentSCCSDirective(Result); case tok::pp_sccs: return HandleIdentSCCSDirective(Result); case tok::pp_assert: //isExtension = true; // FIXME: implement #assert break; case tok::pp_unassert: //isExtension = true; // FIXME: implement #unassert break; // clang extensions. case tok::pp_define_target: return HandleDefineDirective(Result, true); case tok::pp_define_other_target: return HandleDefineOtherTargetDirective(Result); } break; } // If we reached here, the preprocessing token is not valid! Diag(Result, diag::err_pp_invalid_directive); // Read the rest of the PP line. DiscardUntilEndOfDirective(); // Okay, we're done parsing the directive. } void Preprocessor::HandleUserDiagnosticDirective(Token &Tok, bool isWarning) { // Read the rest of the line raw. We do this because we don't want macros // to be expanded and we don't require that the tokens be valid preprocessing // tokens. For example, this is allowed: "#warning ` 'foo". GCC does // collapse multiple consequtive white space between tokens, but this isn't // specified by the standard. std::string Message = CurLexer->ReadToEndOfLine(); unsigned DiagID = isWarning ? diag::pp_hash_warning : diag::err_pp_hash_error; return Diag(Tok, DiagID, Message); } /// HandleIdentSCCSDirective - Handle a #ident/#sccs directive. /// void Preprocessor::HandleIdentSCCSDirective(Token &Tok) { // Yes, this directive is an extension. Diag(Tok, diag::ext_pp_ident_directive); // Read the string argument. Token StrTok; Lex(StrTok); // If the token kind isn't a string, it's a malformed directive. if (StrTok.isNot(tok::string_literal) && StrTok.isNot(tok::wide_string_literal)) return Diag(StrTok, diag::err_pp_malformed_ident); // Verify that there is nothing after the string, other than EOM. CheckEndOfDirective("#ident"); if (Callbacks) Callbacks->Ident(Tok.getLocation(), getSpelling(StrTok)); } //===----------------------------------------------------------------------===// // Preprocessor Include Directive Handling. //===----------------------------------------------------------------------===// /// GetIncludeFilenameSpelling - Turn the specified lexer token into a fully /// checked and spelled filename, e.g. as an operand of #include. This returns /// true if the input filename was in <>'s or false if it were in ""'s. The /// caller is expected to provide a buffer that is large enough to hold the /// spelling of the filename, but is also expected to handle the case when /// this method decides to use a different buffer. bool Preprocessor::GetIncludeFilenameSpelling(SourceLocation Loc, const char *&BufStart, const char *&BufEnd) { // Get the text form of the filename. assert(BufStart != BufEnd && "Can't have tokens with empty spellings!"); // Make sure the filename is or "x". bool isAngled; if (BufStart[0] == '<') { if (BufEnd[-1] != '>') { Diag(Loc, diag::err_pp_expects_filename); BufStart = 0; return true; } isAngled = true; } else if (BufStart[0] == '"') { if (BufEnd[-1] != '"') { Diag(Loc, diag::err_pp_expects_filename); BufStart = 0; return true; } isAngled = false; } else { Diag(Loc, diag::err_pp_expects_filename); BufStart = 0; return true; } // Diagnose #include "" as invalid. if (BufEnd-BufStart <= 2) { Diag(Loc, diag::err_pp_empty_filename); BufStart = 0; return ""; } // Skip the brackets. ++BufStart; --BufEnd; return isAngled; } /// ConcatenateIncludeName - Handle cases where the #include name is expanded /// from a macro as multiple tokens, which need to be glued together. This /// occurs for code like: /// #define FOO /// #include FOO /// because in this case, "" is returned as 7 tokens, not one. /// /// This code concatenates and consumes tokens up to the '>' token. It returns /// false if the > was found, otherwise it returns true if it finds and consumes /// the EOM marker. static bool ConcatenateIncludeName(llvm::SmallVector &FilenameBuffer, Preprocessor &PP) { Token CurTok; PP.Lex(CurTok); while (CurTok.isNot(tok::eom)) { // Append the spelling of this token to the buffer. If there was a space // before it, add it now. if (CurTok.hasLeadingSpace()) FilenameBuffer.push_back(' '); // Get the spelling of the token, directly into FilenameBuffer if possible. unsigned PreAppendSize = FilenameBuffer.size(); FilenameBuffer.resize(PreAppendSize+CurTok.getLength()); const char *BufPtr = &FilenameBuffer[PreAppendSize]; unsigned ActualLen = PP.getSpelling(CurTok, BufPtr); // If the token was spelled somewhere else, copy it into FilenameBuffer. if (BufPtr != &FilenameBuffer[PreAppendSize]) memcpy(&FilenameBuffer[PreAppendSize], BufPtr, ActualLen); // Resize FilenameBuffer to the correct size. if (CurTok.getLength() != ActualLen) FilenameBuffer.resize(PreAppendSize+ActualLen); // If we found the '>' marker, return success. if (CurTok.is(tok::greater)) return false; PP.Lex(CurTok); } // If we hit the eom marker, emit an error and return true so that the caller // knows the EOM has been read. PP.Diag(CurTok.getLocation(), diag::err_pp_expects_filename); return true; } /// HandleIncludeDirective - The "#include" tokens have just been read, read the /// file to be included from the lexer, then include it! This is a common /// routine with functionality shared between #include, #include_next and /// #import. void Preprocessor::HandleIncludeDirective(Token &IncludeTok, const DirectoryLookup *LookupFrom, bool isImport) { Token FilenameTok; CurLexer->LexIncludeFilename(FilenameTok); // Reserve a buffer to get the spelling. llvm::SmallVector FilenameBuffer; const char *FilenameStart, *FilenameEnd; switch (FilenameTok.getKind()) { case tok::eom: // If the token kind is EOM, the error has already been diagnosed. return; case tok::angle_string_literal: case tok::string_literal: { FilenameBuffer.resize(FilenameTok.getLength()); FilenameStart = &FilenameBuffer[0]; unsigned Len = getSpelling(FilenameTok, FilenameStart); FilenameEnd = FilenameStart+Len; break; } case tok::less: // This could be a file coming from a macro expansion. In this // case, glue the tokens together into FilenameBuffer and interpret those. FilenameBuffer.push_back('<'); if (ConcatenateIncludeName(FilenameBuffer, *this)) return; // Found but no ">"? Diagnostic already emitted. FilenameStart = &FilenameBuffer[0]; FilenameEnd = &FilenameBuffer[FilenameBuffer.size()]; break; default: Diag(FilenameTok.getLocation(), diag::err_pp_expects_filename); DiscardUntilEndOfDirective(); return; } bool isAngled = GetIncludeFilenameSpelling(FilenameTok.getLocation(), FilenameStart, FilenameEnd); // If GetIncludeFilenameSpelling set the start ptr to null, there was an // error. if (FilenameStart == 0) { DiscardUntilEndOfDirective(); return; } // Verify that there is nothing after the filename, other than EOM. Use the // preprocessor to lex this in case lexing the filename entered a macro. CheckEndOfDirective("#include"); // Check that we don't have infinite #include recursion. if (IncludeMacroStack.size() == MaxAllowedIncludeStackDepth-1) return Diag(FilenameTok, diag::err_pp_include_too_deep); // Search include directories. const DirectoryLookup *CurDir; const FileEntry *File = LookupFile(FilenameStart, FilenameEnd, isAngled, LookupFrom, CurDir); if (File == 0) return Diag(FilenameTok, diag::err_pp_file_not_found, std::string(FilenameStart, FilenameEnd)); // Ask HeaderInfo if we should enter this #include file. if (!HeaderInfo.ShouldEnterIncludeFile(File, isImport)) { // If it returns true, #including this file will have no effect. return; } // Look up the file, create a File ID for it. unsigned FileID = SourceMgr.createFileID(File, FilenameTok.getLocation()); if (FileID == 0) return Diag(FilenameTok, diag::err_pp_file_not_found, std::string(FilenameStart, FilenameEnd)); // Finally, if all is good, enter the new file! EnterSourceFile(FileID, CurDir); } /// HandleIncludeNextDirective - Implements #include_next. /// void Preprocessor::HandleIncludeNextDirective(Token &IncludeNextTok) { Diag(IncludeNextTok, diag::ext_pp_include_next_directive); // #include_next is like #include, except that we start searching after // the current found directory. If we can't do this, issue a // diagnostic. const DirectoryLookup *Lookup = CurDirLookup; if (isInPrimaryFile()) { Lookup = 0; Diag(IncludeNextTok, diag::pp_include_next_in_primary); } else if (Lookup == 0) { Diag(IncludeNextTok, diag::pp_include_next_absolute_path); } else { // Start looking up in the next directory. ++Lookup; } return HandleIncludeDirective(IncludeNextTok, Lookup); } /// HandleImportDirective - Implements #import. /// void Preprocessor::HandleImportDirective(Token &ImportTok) { Diag(ImportTok, diag::ext_pp_import_directive); return HandleIncludeDirective(ImportTok, 0, true); } //===----------------------------------------------------------------------===// // Preprocessor Macro Directive Handling. //===----------------------------------------------------------------------===// /// ReadMacroDefinitionArgList - The ( starting an argument list of a macro /// definition has just been read. Lex the rest of the arguments and the /// closing ), updating MI with what we learn. Return true if an error occurs /// parsing the arg list. bool Preprocessor::ReadMacroDefinitionArgList(MacroInfo *MI) { llvm::SmallVector Arguments; Token Tok; while (1) { LexUnexpandedToken(Tok); switch (Tok.getKind()) { case tok::r_paren: // Found the end of the argument list. if (Arguments.empty()) { // #define FOO() MI->setArgumentList(Arguments.begin(), Arguments.end()); return false; } // Otherwise we have #define FOO(A,) Diag(Tok, diag::err_pp_expected_ident_in_arg_list); return true; case tok::ellipsis: // #define X(... -> C99 varargs // Warn if use of C99 feature in non-C99 mode. if (!Features.C99) Diag(Tok, diag::ext_variadic_macro); // Lex the token after the identifier. LexUnexpandedToken(Tok); if (Tok.isNot(tok::r_paren)) { Diag(Tok, diag::err_pp_missing_rparen_in_macro_def); return true; } // Add the __VA_ARGS__ identifier as an argument. Arguments.push_back(Ident__VA_ARGS__); MI->setIsC99Varargs(); MI->setArgumentList(Arguments.begin(), Arguments.end()); return false; case tok::eom: // #define X( Diag(Tok, diag::err_pp_missing_rparen_in_macro_def); return true; default: // Handle keywords and identifiers here to accept things like // #define Foo(for) for. IdentifierInfo *II = Tok.getIdentifierInfo(); if (II == 0) { // #define X(1 Diag(Tok, diag::err_pp_invalid_tok_in_arg_list); return true; } // If this is already used as an argument, it is used multiple times (e.g. // #define X(A,A. if (std::find(Arguments.begin(), Arguments.end(), II) != Arguments.end()) { // C99 6.10.3p6 Diag(Tok, diag::err_pp_duplicate_name_in_arg_list, II->getName()); return true; } // Add the argument to the macro info. Arguments.push_back(II); // Lex the token after the identifier. LexUnexpandedToken(Tok); switch (Tok.getKind()) { default: // #define X(A B Diag(Tok, diag::err_pp_expected_comma_in_arg_list); return true; case tok::r_paren: // #define X(A) MI->setArgumentList(Arguments.begin(), Arguments.end()); return false; case tok::comma: // #define X(A, break; case tok::ellipsis: // #define X(A... -> GCC extension // Diagnose extension. Diag(Tok, diag::ext_named_variadic_macro); // Lex the token after the identifier. LexUnexpandedToken(Tok); if (Tok.isNot(tok::r_paren)) { Diag(Tok, diag::err_pp_missing_rparen_in_macro_def); return true; } MI->setIsGNUVarargs(); MI->setArgumentList(Arguments.begin(), Arguments.end()); return false; } } } } /// HandleDefineDirective - Implements #define. This consumes the entire macro /// line then lets the caller lex the next real token. If 'isTargetSpecific' is /// true, then this is a "#define_target", otherwise this is a "#define". /// void Preprocessor::HandleDefineDirective(Token &DefineTok, bool isTargetSpecific) { ++NumDefined; Token MacroNameTok; ReadMacroName(MacroNameTok, 1); // Error reading macro name? If so, diagnostic already issued. if (MacroNameTok.is(tok::eom)) return; // If we are supposed to keep comments in #defines, reenable comment saving // mode. CurLexer->KeepCommentMode = KeepMacroComments; // Create the new macro. MacroInfo *MI = new MacroInfo(MacroNameTok.getLocation()); if (isTargetSpecific) MI->setIsTargetSpecific(); // If the identifier is an 'other target' macro, clear this bit. MacroNameTok.getIdentifierInfo()->setIsOtherTargetMacro(false); Token Tok; LexUnexpandedToken(Tok); // If this is a function-like macro definition, parse the argument list, // marking each of the identifiers as being used as macro arguments. Also, // check other constraints on the first token of the macro body. if (Tok.is(tok::eom)) { // If there is no body to this macro, we have no special handling here. } else if (Tok.is(tok::l_paren) && !Tok.hasLeadingSpace()) { // This is a function-like macro definition. Read the argument list. MI->setIsFunctionLike(); if (ReadMacroDefinitionArgList(MI)) { // Forget about MI. delete MI; // Throw away the rest of the line. if (CurLexer->ParsingPreprocessorDirective) DiscardUntilEndOfDirective(); return; } // Read the first token after the arg list for down below. LexUnexpandedToken(Tok); } else if (!Tok.hasLeadingSpace()) { // C99 requires whitespace between the macro definition and the body. Emit // a diagnostic for something like "#define X+". if (Features.C99) { Diag(Tok, diag::ext_c99_whitespace_required_after_macro_name); } else { // FIXME: C90/C++ do not get this diagnostic, but it does get a similar // one in some cases! } } else { // This is a normal token with leading space. Clear the leading space // marker on the first token to get proper expansion. Tok.clearFlag(Token::LeadingSpace); } // If this is a definition of a variadic C99 function-like macro, not using // the GNU named varargs extension, enabled __VA_ARGS__. // "Poison" __VA_ARGS__, which can only appear in the expansion of a macro. // This gets unpoisoned where it is allowed. assert(Ident__VA_ARGS__->isPoisoned() && "__VA_ARGS__ should be poisoned!"); if (MI->isC99Varargs()) Ident__VA_ARGS__->setIsPoisoned(false); // Read the rest of the macro body. if (MI->isObjectLike()) { // Object-like macros are very simple, just read their body. while (Tok.isNot(tok::eom)) { MI->AddTokenToBody(Tok); // Get the next token of the macro. LexUnexpandedToken(Tok); } } else { // Otherwise, read the body of a function-like macro. This has to validate // the # (stringize) operator. while (Tok.isNot(tok::eom)) { MI->AddTokenToBody(Tok); // Check C99 6.10.3.2p1: ensure that # operators are followed by macro // parameters in function-like macro expansions. if (Tok.isNot(tok::hash)) { // Get the next token of the macro. LexUnexpandedToken(Tok); continue; } // Get the next token of the macro. LexUnexpandedToken(Tok); // Not a macro arg identifier? if (!Tok.getIdentifierInfo() || MI->getArgumentNum(Tok.getIdentifierInfo()) == -1) { Diag(Tok, diag::err_pp_stringize_not_parameter); delete MI; // Disable __VA_ARGS__ again. Ident__VA_ARGS__->setIsPoisoned(true); return; } // Things look ok, add the param name token to the macro. MI->AddTokenToBody(Tok); // Get the next token of the macro. LexUnexpandedToken(Tok); } } // Disable __VA_ARGS__ again. Ident__VA_ARGS__->setIsPoisoned(true); // Check that there is no paste (##) operator at the begining or end of the // replacement list. unsigned NumTokens = MI->getNumTokens(); if (NumTokens != 0) { if (MI->getReplacementToken(0).is(tok::hashhash)) { Diag(MI->getReplacementToken(0), diag::err_paste_at_start); delete MI; return; } if (MI->getReplacementToken(NumTokens-1).is(tok::hashhash)) { Diag(MI->getReplacementToken(NumTokens-1), diag::err_paste_at_end); delete MI; return; } } // If this is the primary source file, remember that this macro hasn't been // used yet. if (isInPrimaryFile()) MI->setIsUsed(false); // Finally, if this identifier already had a macro defined for it, verify that // the macro bodies are identical and free the old definition. if (MacroInfo *OtherMI = getMacroInfo(MacroNameTok.getIdentifierInfo())) { if (!OtherMI->isUsed()) Diag(OtherMI->getDefinitionLoc(), diag::pp_macro_not_used); // Macros must be identical. This means all tokes and whitespace separation // must be the same. C99 6.10.3.2. if (!MI->isIdenticalTo(*OtherMI, *this)) { Diag(MI->getDefinitionLoc(), diag::ext_pp_macro_redef, MacroNameTok.getIdentifierInfo()->getName()); Diag(OtherMI->getDefinitionLoc(), diag::ext_pp_macro_redef2); } delete OtherMI; } setMacroInfo(MacroNameTok.getIdentifierInfo(), MI); } /// HandleDefineOtherTargetDirective - Implements #define_other_target. void Preprocessor::HandleDefineOtherTargetDirective(Token &Tok) { Token MacroNameTok; ReadMacroName(MacroNameTok, 1); // Error reading macro name? If so, diagnostic already issued. if (MacroNameTok.is(tok::eom)) return; // Check to see if this is the last token on the #undef line. CheckEndOfDirective("#define_other_target"); // If there is already a macro defined by this name, turn it into a // target-specific define. if (MacroInfo *MI = getMacroInfo(MacroNameTok.getIdentifierInfo())) { MI->setIsTargetSpecific(true); return; } // Mark the identifier as being a macro on some other target. MacroNameTok.getIdentifierInfo()->setIsOtherTargetMacro(); } /// HandleUndefDirective - Implements #undef. /// void Preprocessor::HandleUndefDirective(Token &UndefTok) { ++NumUndefined; Token MacroNameTok; ReadMacroName(MacroNameTok, 2); // Error reading macro name? If so, diagnostic already issued. if (MacroNameTok.is(tok::eom)) return; // Check to see if this is the last token on the #undef line. CheckEndOfDirective("#undef"); // Okay, we finally have a valid identifier to undef. MacroInfo *MI = getMacroInfo(MacroNameTok.getIdentifierInfo()); // #undef untaints an identifier if it were marked by define_other_target. MacroNameTok.getIdentifierInfo()->setIsOtherTargetMacro(false); // If the macro is not defined, this is a noop undef, just return. if (MI == 0) return; if (!MI->isUsed()) Diag(MI->getDefinitionLoc(), diag::pp_macro_not_used); // Free macro definition. delete MI; setMacroInfo(MacroNameTok.getIdentifierInfo(), 0); } //===----------------------------------------------------------------------===// // Preprocessor Conditional Directive Handling. //===----------------------------------------------------------------------===// /// HandleIfdefDirective - Implements the #ifdef/#ifndef directive. isIfndef is /// true when this is a #ifndef directive. ReadAnyTokensBeforeDirective is true /// if any tokens have been returned or pp-directives activated before this /// #ifndef has been lexed. /// void Preprocessor::HandleIfdefDirective(Token &Result, bool isIfndef, bool ReadAnyTokensBeforeDirective) { ++NumIf; Token DirectiveTok = Result; Token MacroNameTok; ReadMacroName(MacroNameTok); // Error reading macro name? If so, diagnostic already issued. if (MacroNameTok.is(tok::eom)) { // Skip code until we get to #endif. This helps with recovery by not // emitting an error when the #endif is reached. SkipExcludedConditionalBlock(DirectiveTok.getLocation(), /*Foundnonskip*/false, /*FoundElse*/false); return; } // Check to see if this is the last token on the #if[n]def line. CheckEndOfDirective(isIfndef ? "#ifndef" : "#ifdef"); // If the start of a top-level #ifdef, inform MIOpt. if (!ReadAnyTokensBeforeDirective && CurLexer->getConditionalStackDepth() == 0) { assert(isIfndef && "#ifdef shouldn't reach here"); CurLexer->MIOpt.EnterTopLevelIFNDEF(MacroNameTok.getIdentifierInfo()); } IdentifierInfo *MII = MacroNameTok.getIdentifierInfo(); MacroInfo *MI = getMacroInfo(MII); // If there is a macro, process it. if (MI) { // Mark it used. MI->setIsUsed(true); // If this is the first use of a target-specific macro, warn about it. if (MI->isTargetSpecific()) { MI->setIsTargetSpecific(false); // Don't warn on second use. getTargetInfo().DiagnoseNonPortability( getFullLoc(MacroNameTok.getLocation()), diag::port_target_macro_use); } } else { // Use of a target-specific macro for some other target? If so, warn. if (MII->isOtherTargetMacro()) { MII->setIsOtherTargetMacro(false); // Don't warn on second use. getTargetInfo().DiagnoseNonPortability( getFullLoc(MacroNameTok.getLocation()), diag::port_target_macro_use); } } // Should we include the stuff contained by this directive? if (!MI == isIfndef) { // Yes, remember that we are inside a conditional, then lex the next token. CurLexer->pushConditionalLevel(DirectiveTok.getLocation(), /*wasskip*/false, /*foundnonskip*/true, /*foundelse*/false); } else { // No, skip the contents of this block and return the first token after it. SkipExcludedConditionalBlock(DirectiveTok.getLocation(), /*Foundnonskip*/false, /*FoundElse*/false); } } /// HandleIfDirective - Implements the #if directive. /// void Preprocessor::HandleIfDirective(Token &IfToken, bool ReadAnyTokensBeforeDirective) { ++NumIf; // Parse and evaluation the conditional expression. IdentifierInfo *IfNDefMacro = 0; bool ConditionalTrue = EvaluateDirectiveExpression(IfNDefMacro); // Should we include the stuff contained by this directive? if (ConditionalTrue) { // If this condition is equivalent to #ifndef X, and if this is the first // directive seen, handle it for the multiple-include optimization. if (!ReadAnyTokensBeforeDirective && CurLexer->getConditionalStackDepth() == 0 && IfNDefMacro) CurLexer->MIOpt.EnterTopLevelIFNDEF(IfNDefMacro); // Yes, remember that we are inside a conditional, then lex the next token. CurLexer->pushConditionalLevel(IfToken.getLocation(), /*wasskip*/false, /*foundnonskip*/true, /*foundelse*/false); } else { // No, skip the contents of this block and return the first token after it. SkipExcludedConditionalBlock(IfToken.getLocation(), /*Foundnonskip*/false, /*FoundElse*/false); } } /// HandleEndifDirective - Implements the #endif directive. /// void Preprocessor::HandleEndifDirective(Token &EndifToken) { ++NumEndif; // Check that this is the whole directive. CheckEndOfDirective("#endif"); PPConditionalInfo CondInfo; if (CurLexer->popConditionalLevel(CondInfo)) { // No conditionals on the stack: this is an #endif without an #if. return Diag(EndifToken, diag::err_pp_endif_without_if); } // If this the end of a top-level #endif, inform MIOpt. if (CurLexer->getConditionalStackDepth() == 0) CurLexer->MIOpt.ExitTopLevelConditional(); assert(!CondInfo.WasSkipping && !CurLexer->LexingRawMode && "This code should only be reachable in the non-skipping case!"); } void Preprocessor::HandleElseDirective(Token &Result) { ++NumElse; // #else directive in a non-skipping conditional... start skipping. CheckEndOfDirective("#else"); PPConditionalInfo CI; if (CurLexer->popConditionalLevel(CI)) return Diag(Result, diag::pp_err_else_without_if); // If this is a top-level #else, inform the MIOpt. if (CurLexer->getConditionalStackDepth() == 0) CurLexer->MIOpt.FoundTopLevelElse(); // If this is a #else with a #else before it, report the error. if (CI.FoundElse) Diag(Result, diag::pp_err_else_after_else); // Finally, skip the rest of the contents of this block and return the first // token after it. return SkipExcludedConditionalBlock(CI.IfLoc, /*Foundnonskip*/true, /*FoundElse*/true); } void Preprocessor::HandleElifDirective(Token &ElifToken) { ++NumElse; // #elif directive in a non-skipping conditional... start skipping. // We don't care what the condition is, because we will always skip it (since // the block immediately before it was included). DiscardUntilEndOfDirective(); PPConditionalInfo CI; if (CurLexer->popConditionalLevel(CI)) return Diag(ElifToken, diag::pp_err_elif_without_if); // If this is a top-level #elif, inform the MIOpt. if (CurLexer->getConditionalStackDepth() == 0) CurLexer->MIOpt.FoundTopLevelElse(); // If this is a #elif with a #else before it, report the error. if (CI.FoundElse) Diag(ElifToken, diag::pp_err_elif_after_else); // Finally, skip the rest of the contents of this block and return the first // token after it. return SkipExcludedConditionalBlock(CI.IfLoc, /*Foundnonskip*/true, /*FoundElse*/CI.FoundElse); }