//===-- ParserInternals.h - Definitions internal to the parser --*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file was developed by the LLVM research group and is distributed under // the University of Illinois Open Source License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This header file defines the various variables that are shared among the // different components of the parser... // //===----------------------------------------------------------------------===// #ifndef PARSER_INTERNALS_H #define PARSER_INTERNALS_H #include "llvm/Constants.h" #include "llvm/DerivedTypes.h" #include "llvm/Function.h" #include "llvm/Instructions.h" #include "llvm/ADT/StringExtras.h" #include // Global variables exported from the lexer. extern int yydebug; extern void error(const std::string& msg, int line = -1); extern char* Upgradetext; extern int Upgradeleng; extern int Upgradelineno; namespace llvm { class Module; Module* UpgradeAssembly(const std::string &infile, std::istream& in, bool debug, bool addAttrs); class SignedType : public IntegerType { const IntegerType *base_type; static SignedType *SByteTy; static SignedType *SShortTy; static SignedType *SIntTy; static SignedType *SLongTy; SignedType(const IntegerType* ITy); public: static const SignedType *get(const IntegerType* ITy); bool isSigned() const { return true; } const IntegerType* getBaseType() const { return base_type; } const IntegerType* resolve() const { ForwardType = base_type; return base_type; } // Methods for support type inquiry through isa, cast, and dyn_cast: static inline bool classof(const SignedType *T) { return true; } static inline bool classof(const Type *T); }; extern std::istream* LexInput; // UnEscapeLexed - Run through the specified buffer and change \xx codes to the // appropriate character. If AllowNull is set to false, a \00 value will cause // an error. // // If AllowNull is set to true, the return value of the function points to the // last character of the string in memory. // char *UnEscapeLexed(char *Buffer, bool AllowNull = false); /// InlineAsmDescriptor - This is a simple class that holds info about inline /// asm blocks, for use by ValID. struct InlineAsmDescriptor { std::string AsmString, Constraints; bool HasSideEffects; InlineAsmDescriptor(const std::string &as, const std::string &c, bool HSE) : AsmString(as), Constraints(c), HasSideEffects(HSE) {} }; // ValID - Represents a reference of a definition of some sort. This may either // be a numeric reference or a symbolic (%var) reference. This is just a // discriminated union. // // Note that I can't implement this class in a straight forward manner with // constructors and stuff because it goes in a union. // struct ValID { enum { NumberVal, NameVal, ConstSIntVal, ConstUIntVal, ConstFPVal, ConstNullVal, ConstUndefVal, ConstZeroVal, ConstantVal, InlineAsmVal } Type; union { int Num; // If it's a numeric reference char *Name; // If it's a named reference. Memory must be free'd. int64_t ConstPool64; // Constant pool reference. This is the value uint64_t UConstPool64;// Unsigned constant pool reference. double ConstPoolFP; // Floating point constant pool reference Constant *ConstantValue; // Fully resolved constant for ConstantVal case. InlineAsmDescriptor *IAD; }; static ValID create(int Num) { ValID D; D.Type = NumberVal; D.Num = Num; return D; } static ValID create(char *Name) { ValID D; D.Type = NameVal; D.Name = Name; return D; } static ValID create(int64_t Val) { ValID D; D.Type = ConstSIntVal; D.ConstPool64 = Val; return D; } static ValID create(uint64_t Val) { ValID D; D.Type = ConstUIntVal; D.UConstPool64 = Val; return D; } static ValID create(double Val) { ValID D; D.Type = ConstFPVal; D.ConstPoolFP = Val; return D; } static ValID createNull() { ValID D; D.Type = ConstNullVal; return D; } static ValID createUndef() { ValID D; D.Type = ConstUndefVal; return D; } static ValID createZeroInit() { ValID D; D.Type = ConstZeroVal; return D; } static ValID create(Constant *Val) { ValID D; D.Type = ConstantVal; D.ConstantValue = Val; return D; } static ValID createInlineAsm(const std::string &AsmString, const std::string &Constraints, bool HasSideEffects) { ValID D; D.Type = InlineAsmVal; D.IAD = new InlineAsmDescriptor(AsmString, Constraints, HasSideEffects); return D; } inline void destroy() const { if (Type == NameVal) free(Name); // Free this strdup'd memory. else if (Type == InlineAsmVal) delete IAD; } inline ValID copy() const { if (Type != NameVal) return *this; ValID Result = *this; Result.Name = strdup(Name); return Result; } inline std::string getName() const { switch (Type) { case NumberVal : return std::string("#") + itostr(Num); case NameVal : return Name; case ConstFPVal : return ftostr(ConstPoolFP); case ConstNullVal : return "null"; case ConstUndefVal : return "undef"; case ConstZeroVal : return "zeroinitializer"; case ConstUIntVal : case ConstSIntVal : return std::string("%") + itostr(ConstPool64); case ConstantVal: if (ConstantValue == ConstantInt::get(Type::Int1Ty, true)) return "true"; if (ConstantValue == ConstantInt::get(Type::Int1Ty, false)) return "false"; return ""; default: assert(0 && "Unknown value!"); abort(); return ""; } } bool operator<(const ValID &V) const { if (Type != V.Type) return Type < V.Type; switch (Type) { case NumberVal: return Num < V.Num; case NameVal: return strcmp(Name, V.Name) < 0; case ConstSIntVal: return ConstPool64 < V.ConstPool64; case ConstUIntVal: return UConstPool64 < V.UConstPool64; case ConstFPVal: return ConstPoolFP < V.ConstPoolFP; case ConstNullVal: return false; case ConstUndefVal: return false; case ConstZeroVal: return false; case ConstantVal: return ConstantValue < V.ConstantValue; default: assert(0 && "Unknown value type!"); return false; } } }; // This structure is used to keep track of obsolete opcodes. The lexer will // retain the ability to parse obsolete opcode mnemonics. In this case it will // set "obsolete" to true and the opcode will be the replacement opcode. For // example if "rem" is encountered then opcode will be set to "urem" and the // "obsolete" flag will be true. If the opcode is not obsolete then "obsolete" // will be false. enum TermOps { RetOp, BrOp, SwitchOp, InvokeOp, UnwindOp, UnreachableOp }; enum BinaryOps { AddOp, SubOp, MulOp, DivOp, UDivOp, SDivOp, FDivOp, RemOp, URemOp, SRemOp, FRemOp, AndOp, OrOp, XorOp, SetEQ, SetNE, SetLE, SetGE, SetLT, SetGT }; enum MemoryOps { MallocOp, FreeOp, AllocaOp, LoadOp, StoreOp, GetElementPtrOp }; enum OtherOps { PHIOp, CallOp, ShlOp, ShrOp, SelectOp, UserOp1, UserOp2, VAArg, ExtractElementOp, InsertElementOp, ShuffleVectorOp, ICmpOp, FCmpOp, LShrOp, AShrOp }; enum CastOps { CastOp, TruncOp, ZExtOp, SExtOp, FPTruncOp, FPExtOp, FPToUIOp, FPToSIOp, UIToFPOp, SIToFPOp, PtrToIntOp, IntToPtrOp, BitCastOp }; enum Signedness { Signless, Unsigned, Signed }; struct TypeInfo { const llvm::Type *T; Signedness S; }; struct PATypeInfo { llvm::PATypeHolder* T; Signedness S; }; struct ConstInfo { llvm::Constant* C; Signedness S; }; struct ValueInfo { llvm::Value* V; Signedness S; }; struct InstrInfo { llvm::Instruction *I; Signedness S; }; struct PHIListInfo { std::list > *P; Signedness S; }; } // End llvm namespace #endif