//===- SymbolTable.cpp ----------------------------------------------------===// // // The LLVM Linker // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // Symbol table is a bag of all known symbols. We put all symbols of // all input files to the symbol table. The symbol table is basically // a hash table with the logic to resolve symbol name conflicts using // the symbol types. // //===----------------------------------------------------------------------===// #include "SymbolTable.h" #include "Config.h" #include "Error.h" #include "Symbols.h" #include "llvm/Bitcode/ReaderWriter.h" #include "llvm/IR/LegacyPassManager.h" #include "llvm/Linker/Linker.h" #include "llvm/Support/StringSaver.h" #include "llvm/Support/TargetRegistry.h" #include "llvm/Target/TargetMachine.h" using namespace llvm; using namespace llvm::object; using namespace llvm::ELF; using namespace lld; using namespace lld::elf2; // All input object files must be for the same architecture // (e.g. it does not make sense to link x86 object files with // MIPS object files.) This function checks for that error. template static bool isCompatible(InputFile *FileP) { auto *F = dyn_cast>(FileP); if (!F) return true; if (F->getELFKind() == Config->EKind && F->getEMachine() == Config->EMachine) return true; StringRef A = F->getName(); StringRef B = Config->Emulation; if (B.empty()) B = Config->FirstElf->getName(); error(A + " is incompatible with " + B); return false; } // Add symbols in File to the symbol table. template void SymbolTable::addFile(std::unique_ptr File) { InputFile *FileP = File.get(); if (!isCompatible(FileP)) return; // .a file if (auto *F = dyn_cast(FileP)) { ArchiveFiles.emplace_back(cast(File.release())); F->parse(); for (Lazy &Sym : F->getLazySymbols()) addLazy(&Sym); return; } // .so file if (auto *F = dyn_cast>(FileP)) { // DSOs are uniquified not by filename but by soname. F->parseSoName(); if (!SoNames.insert(F->getSoName()).second) return; SharedFiles.emplace_back(cast>(File.release())); F->parseRest(); for (SharedSymbol &B : F->getSharedSymbols()) resolve(&B); return; } // LLVM bitcode file. if (auto *F = dyn_cast(FileP)) { BitcodeFiles.emplace_back(cast(File.release())); F->parse(); for (SymbolBody *B : F->getSymbols()) resolve(B); return; } // .o file auto *F = cast>(FileP); ObjectFiles.emplace_back(cast>(File.release())); F->parse(ComdatGroups); for (SymbolBody *B : F->getSymbols()) resolve(B); } // Codegen the module M and returns the resulting InputFile. template std::unique_ptr SymbolTable::codegen(Module &M) { StringRef TripleStr = M.getTargetTriple(); Triple TheTriple(TripleStr); // FIXME: Should we have a default triple? The gold plugin uses // sys::getDefaultTargetTriple(), but that is probably wrong given that this // might be a cross linker. std::string ErrMsg; const Target *TheTarget = TargetRegistry::lookupTarget(TripleStr, ErrMsg); if (!TheTarget) fatal("Target not found: " + ErrMsg); TargetOptions Options; std::unique_ptr TM( TheTarget->createTargetMachine(TripleStr, "", "", Options)); raw_svector_ostream OS(OwningLTOData); legacy::PassManager CodeGenPasses; if (TM->addPassesToEmitFile(CodeGenPasses, OS, TargetMachine::CGFT_ObjectFile)) fatal("Failed to setup codegen"); CodeGenPasses.run(M); LtoBuffer = MemoryBuffer::getMemBuffer(OwningLTOData, "", false); return createObjectFile(*LtoBuffer); } // Merge all the bitcode files we have seen, codegen the result and return // the resulting ObjectFile. template ObjectFile *SymbolTable::createCombinedLtoObject() { LLVMContext Context; Module Combined("ld-temp.o", Context); Linker L(Combined); for (const std::unique_ptr &F : BitcodeFiles) { std::unique_ptr Buffer = MemoryBuffer::getMemBuffer(F->MB, false); ErrorOr> MOrErr = getLazyBitcodeModule(std::move(Buffer), Context, /*ShouldLazyLoadMetadata*/ true); fatal(MOrErr); std::unique_ptr &M = *MOrErr; L.linkInModule(std::move(M)); } std::unique_ptr F = codegen(Combined); ObjectFiles.emplace_back(cast>(F.release())); return &*ObjectFiles.back(); } template void SymbolTable::addCombinedLtoObject() { if (BitcodeFiles.empty()) return; ObjectFile *Obj = createCombinedLtoObject(); // FIXME: We probably have to ignore comdats here. Obj->parse(ComdatGroups); for (SymbolBody *Body : Obj->getSymbols()) { Symbol *Sym = insert(Body); assert(isa(Sym->Body)); Sym->Body = Body; } } // Add an undefined symbol. template SymbolBody *SymbolTable::addUndefined(StringRef Name) { auto *Sym = new (Alloc) Undefined(Name, false, STV_DEFAULT, false); resolve(Sym); return Sym; } // Add an undefined symbol. Unlike addUndefined, that symbol // doesn't have to be resolved, thus "opt" (optional). template SymbolBody *SymbolTable::addUndefinedOpt(StringRef Name) { auto *Sym = new (Alloc) Undefined(Name, false, STV_HIDDEN, true); resolve(Sym); return Sym; } template SymbolBody *SymbolTable::addAbsolute(StringRef Name, Elf_Sym &ESym) { // Pass nullptr because absolute symbols have no corresponding input sections. auto *Sym = new (Alloc) DefinedRegular(Name, ESym, nullptr); resolve(Sym); return Sym; } template SymbolBody *SymbolTable::addSynthetic(StringRef Name, OutputSectionBase &Section, uintX_t Value) { auto *Sym = new (Alloc) DefinedSynthetic(Name, Value, Section); resolve(Sym); return Sym; } // Add Name as an "ignored" symbol. An ignored symbol is a regular // linker-synthesized defined symbol, but it is not recorded to the output // file's symbol table. Such symbols are useful for some linker-defined symbols. template SymbolBody *SymbolTable::addIgnored(StringRef Name) { return addAbsolute(Name, ElfSym::Ignored); } // Rename SYM as __wrap_SYM. The original symbol is preserved as __real_SYM. // Used to implement --wrap. template void SymbolTable::wrap(StringRef Name) { if (Symtab.count(Name) == 0) return; StringSaver Saver(Alloc); Symbol *Sym = addUndefined(Name)->getSymbol(); Symbol *Real = addUndefined(Saver.save("__real_" + Name))->getSymbol(); Symbol *Wrap = addUndefined(Saver.save("__wrap_" + Name))->getSymbol(); Real->Body = Sym->Body; Sym->Body = Wrap->Body; } // Returns a file from which symbol B was created. // If B does not belong to any file, returns a nullptr. template ELFFileBase *SymbolTable::findFile(SymbolBody *B) { for (const std::unique_ptr> &F : ObjectFiles) { ArrayRef Syms = F->getSymbols(); if (std::find(Syms.begin(), Syms.end(), B) != Syms.end()) return F.get(); } return nullptr; } // Returns "(internal)", "foo.a(bar.o)" or "baz.o". template static std::string getFilename(ELFFileBase *F) { if (!F) return "(internal)"; if (!F->ArchiveName.empty()) return (F->ArchiveName + "(" + F->getName() + ")").str(); return F->getName(); } // Construct a string in the form of "Sym in File1 and File2". // Used to construct an error message. template std::string SymbolTable::conflictMsg(SymbolBody *Old, SymbolBody *New) { ELFFileBase *F1 = findFile(Old); ELFFileBase *F2 = findFile(New); StringRef Sym = Old->getName(); return demangle(Sym) + " in " + getFilename(F1) + " and " + getFilename(F2); } // This function resolves conflicts if there's an existing symbol with // the same name. Decisions are made based on symbol type. template void SymbolTable::resolve(SymbolBody *New) { Symbol *Sym = insert(New); if (Sym->Body == New) return; SymbolBody *Existing = Sym->Body; if (Lazy *L = dyn_cast(Existing)) { if (auto *Undef = dyn_cast(New)) { addMemberFile(Undef, L); return; } // Found a definition for something also in an archive. // Ignore the archive definition. Sym->Body = New; return; } if (New->IsTls != Existing->IsTls) { error("TLS attribute mismatch for symbol: " + conflictMsg(Existing, New)); return; } // compare() returns -1, 0, or 1 if the lhs symbol is less preferable, // equivalent (conflicting), or more preferable, respectively. int Comp = Existing->compare(New); if (Comp == 0) { std::string S = "duplicate symbol: " + conflictMsg(Existing, New); if (Config->AllowMultipleDefinition) warning(S); else error(S); return; } if (Comp < 0) Sym->Body = New; } // Find an existing symbol or create and insert a new one. template Symbol *SymbolTable::insert(SymbolBody *New) { StringRef Name = New->getName(); Symbol *&Sym = Symtab[Name]; if (!Sym) Sym = new (Alloc) Symbol{New}; New->setBackref(Sym); return Sym; } template SymbolBody *SymbolTable::find(StringRef Name) { auto It = Symtab.find(Name); if (It == Symtab.end()) return nullptr; return It->second->Body; } template void SymbolTable::addLazy(Lazy *L) { Symbol *Sym = insert(L); if (Sym->Body == L) return; if (auto *Undef = dyn_cast(Sym->Body)) { Sym->Body = L; addMemberFile(Undef, L); } } template void SymbolTable::addMemberFile(Undefined *Undef, Lazy *L) { // Weak undefined symbols should not fetch members from archives. // If we were to keep old symbol we would not know that an archive member was // available if a strong undefined symbol shows up afterwards in the link. // If a strong undefined symbol never shows up, this lazy symbol will // get to the end of the link and must be treated as the weak undefined one. // We set UsedInRegularObj in a similar way to what is done with shared // symbols and copy information to reduce how many special cases are needed. if (Undef->isWeak()) { L->setUsedInRegularObj(); L->setWeak(); // FIXME: Do we need to copy more? L->IsTls = Undef->IsTls; return; } // Fetch a member file that has the definition for L. // getMember returns nullptr if the member was already read from the library. if (std::unique_ptr File = L->getMember()) addFile(std::move(File)); } // This function takes care of the case in which shared libraries depend on // the user program (not the other way, which is usual). Shared libraries // may have undefined symbols, expecting that the user program provides // the definitions for them. An example is BSD's __progname symbol. // We need to put such symbols to the main program's .dynsym so that // shared libraries can find them. // Except this, we ignore undefined symbols in DSOs. template void SymbolTable::scanShlibUndefined() { for (std::unique_ptr> &File : SharedFiles) for (StringRef U : File->getUndefinedSymbols()) if (SymbolBody *Sym = find(U)) if (Sym->isDefined()) Sym->MustBeInDynSym = true; } template class elf2::SymbolTable; template class elf2::SymbolTable; template class elf2::SymbolTable; template class elf2::SymbolTable;