//===-- DataExtractor.cpp ---------------------------------------*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// #include #include #include #include #include "llvm/Support/MathExtras.h" #include "lldb/Core/DataExtractor.h" #include "lldb/Core/DataBuffer.h" #include "lldb/Core/Log.h" #include "lldb/Core/Stream.h" #include "lldb/Core/StreamString.h" #include "lldb/Core/UUID.h" #include "lldb/Core/dwarf.h" #include "lldb/Host/Endian.h" using namespace lldb; using namespace lldb_private; static inline uint16_t ReadInt16(const unsigned char* ptr, unsigned offset) { return *(uint16_t *)(ptr + offset); } static inline uint32_t ReadInt32 (const unsigned char* ptr, unsigned offset) { return *(uint32_t *)(ptr + offset); } static inline uint64_t ReadInt64(const unsigned char* ptr, unsigned offset) { return *(uint64_t *)(ptr + offset); } static inline uint16_t ReadSwapInt16(const unsigned char* ptr, unsigned offset) { return llvm::ByteSwap_16(*(uint16_t *)(ptr + offset)); } static inline uint32_t ReadSwapInt32 (const unsigned char* ptr, unsigned offset) { return llvm::ByteSwap_32(*(uint32_t *)(ptr + offset)); } static inline uint64_t ReadSwapInt64(const unsigned char* ptr, unsigned offset) { return llvm::ByteSwap_64(*(uint64_t *)(ptr + offset)); } #define NON_PRINTABLE_CHAR '.' //---------------------------------------------------------------------- // Default constructor. //---------------------------------------------------------------------- DataExtractor::DataExtractor () : m_start (NULL), m_end (NULL), m_byte_order(lldb::endian::InlHostByteOrder()), m_addr_size (4), m_data_sp () { } //---------------------------------------------------------------------- // This constructor allows us to use data that is owned by someone else. // The data must stay around as long as this object is valid. //---------------------------------------------------------------------- DataExtractor::DataExtractor (const void* data, uint32_t length, ByteOrder endian, uint8_t addr_size) : m_start ((uint8_t*)data), m_end ((uint8_t*)data + length), m_byte_order(endian), m_addr_size (addr_size), m_data_sp () { } //---------------------------------------------------------------------- // Make a shared pointer reference to the shared data in "data_sp" and // set the endian swapping setting to "swap", and the address size to // "addr_size". The shared data reference will ensure the data lives // as long as any DataExtractor objects exist that have a reference to // this data. //---------------------------------------------------------------------- DataExtractor::DataExtractor (const DataBufferSP& data_sp, ByteOrder endian, uint8_t addr_size) : m_start (NULL), m_end (NULL), m_byte_order(endian), m_addr_size (addr_size), m_data_sp () { SetData (data_sp); } //---------------------------------------------------------------------- // Initialize this object with a subset of the data bytes in "data". // If "data" contains shared data, then a reference to this shared // data will added and the shared data will stay around as long // as any object contains a reference to that data. The endian // swap and address size settings are copied from "data". //---------------------------------------------------------------------- DataExtractor::DataExtractor (const DataExtractor& data, uint32_t offset, uint32_t length) : m_start(NULL), m_end(NULL), m_byte_order(data.m_byte_order), m_addr_size(data.m_addr_size), m_data_sp() { if (data.ValidOffset(offset)) { uint32_t bytes_available = data.GetByteSize() - offset; if (length > bytes_available) length = bytes_available; SetData(data, offset, length); } } //---------------------------------------------------------------------- // Assignment operator //---------------------------------------------------------------------- const DataExtractor& DataExtractor::operator= (const DataExtractor& rhs) { if (this != &rhs) { m_start = rhs.m_start; m_end = rhs.m_end; m_byte_order= rhs.m_byte_order; m_addr_size = rhs.m_addr_size; m_data_sp = rhs.m_data_sp; } return *this; } //---------------------------------------------------------------------- // Destructor //---------------------------------------------------------------------- DataExtractor::~DataExtractor () { } //------------------------------------------------------------------ // Clears the object contents back to a default invalid state, and // release any references to shared data that this object may // contain. //------------------------------------------------------------------ void DataExtractor::Clear () { m_start = NULL; m_end = NULL; m_byte_order = lldb::endian::InlHostByteOrder(); m_addr_size = 4; m_data_sp.reset(); } //------------------------------------------------------------------ // Returns the total number of bytes that this object refers to //------------------------------------------------------------------ size_t DataExtractor::GetByteSize () const { return m_end - m_start; } //------------------------------------------------------------------ // If this object contains shared data, this function returns the // offset into that shared data. Else zero is returned. //------------------------------------------------------------------ size_t DataExtractor::GetSharedDataOffset () const { if (m_start != NULL) { const DataBuffer * data = m_data_sp.get(); if (data != NULL) { const uint8_t * data_bytes = data->GetBytes(); if (data_bytes != NULL) { assert(m_start >= data_bytes); return m_start - data_bytes; } } } return 0; } //------------------------------------------------------------------ // Returns true if OFFSET is a valid offset into the data in this // object. //------------------------------------------------------------------ bool DataExtractor::ValidOffset (uint32_t offset) const { return offset < GetByteSize(); } //------------------------------------------------------------------ // Returns true if there are LENGTH bytes availabe starting OFFSET // into the data that is in this object. //------------------------------------------------------------------ bool DataExtractor::ValidOffsetForDataOfSize (uint32_t offset, uint32_t length) const { size_t size = GetByteSize(); if (offset >= size) return false; // offset isn't valid if (length == 0) return true; // No bytes requested at this offset, return true // If we flip the bits in offset we can figure out how // many bytes we have left before "offset + length" // could overflow when doing unsigned arithmetic. if (length > ~offset) return false; // unsigned overflow // Make sure "offset + length" is a valid offset as well. // length must be greater than zero for this to be a // valid expression, and we have already checked for this. return ((offset + length) <= size); } //------------------------------------------------------------------ // Returns a pointer to the first byte contained in this object's // data, or NULL of there is no data in this object. //------------------------------------------------------------------ const uint8_t * DataExtractor::GetDataStart () const { return m_start; } //------------------------------------------------------------------ // Returns a pointer to the byte past the last byte contained in // this object's data, or NULL of there is no data in this object. //------------------------------------------------------------------ const uint8_t * DataExtractor::GetDataEnd () const { return m_end; } //------------------------------------------------------------------ // Returns true if this object will endian swap values as it // extracts data. //------------------------------------------------------------------ ByteOrder DataExtractor::GetByteOrder () const { return m_byte_order; } //------------------------------------------------------------------ // Set whether this object will endian swap values as it extracts // data. //------------------------------------------------------------------ void DataExtractor::SetByteOrder (ByteOrder endian) { m_byte_order = endian; } //------------------------------------------------------------------ // Return the size in bytes of any address values this object will // extract //------------------------------------------------------------------ uint8_t DataExtractor::GetAddressByteSize () const { return m_addr_size; } //------------------------------------------------------------------ // Set the size in bytes that will be used when extracting any // address values from data contained in this object. //------------------------------------------------------------------ void DataExtractor::SetAddressByteSize (uint8_t addr_size) { m_addr_size = addr_size; } //---------------------------------------------------------------------- // Set the data with which this object will extract from to data // starting at BYTES and set the length of the data to LENGTH bytes // long. The data is externally owned must be around at least as // long as this object points to the data. No copy of the data is // made, this object just refers to this data and can extract from // it. If this object refers to any shared data upon entry, the // reference to that data will be released. Is SWAP is set to true, // any data extracted will be endian swapped. //---------------------------------------------------------------------- uint32_t DataExtractor::SetData (const void *bytes, uint32_t length, ByteOrder endian) { m_byte_order = endian; m_data_sp.reset(); if (bytes == NULL || length == 0) { m_start = NULL; m_end = NULL; } else { m_start = (uint8_t *)bytes; m_end = m_start + length; } return GetByteSize(); } //---------------------------------------------------------------------- // Assign the data for this object to be a subrange in "data" // starting "data_offset" bytes into "data" and ending "data_length" // bytes later. If "data_offset" is not a valid offset into "data", // then this object will contain no bytes. If "data_offset" is // within "data" yet "data_length" is too large, the length will be // capped at the number of bytes remaining in "data". If "data" // contains a shared pointer to other data, then a ref counted // pointer to that data will be made in this object. If "data" // doesn't contain a shared pointer to data, then the bytes referred // to in "data" will need to exist at least as long as this object // refers to those bytes. The address size and endian swap settings // are copied from the current values in "data". //---------------------------------------------------------------------- uint32_t DataExtractor::SetData (const DataExtractor& data, uint32_t data_offset, uint32_t data_length) { m_addr_size = data.m_addr_size; // If "data" contains shared pointer to data, then we can use that if (data.m_data_sp.get()) { m_byte_order = data.m_byte_order; return SetData(data.m_data_sp, data.GetSharedDataOffset() + data_offset, data_length); } // We have a DataExtractor object that just has a pointer to bytes if (data.ValidOffset(data_offset)) { if (data_length > data.GetByteSize() - data_offset) data_length = data.GetByteSize() - data_offset; return SetData (data.GetDataStart() + data_offset, data_length, data.GetByteOrder()); } return 0; } //---------------------------------------------------------------------- // Assign the data for this object to be a subrange of the shared // data in "data_sp" starting "data_offset" bytes into "data_sp" // and ending "data_length" bytes later. If "data_offset" is not // a valid offset into "data_sp", then this object will contain no // bytes. If "data_offset" is within "data_sp" yet "data_length" is // too large, the length will be capped at the number of bytes // remaining in "data_sp". A ref counted pointer to the data in // "data_sp" will be made in this object IF the number of bytes this // object refers to in greater than zero (if at least one byte was // available starting at "data_offset") to ensure the data stays // around as long as it is needed. The address size and endian swap // settings will remain unchanged from their current settings. //---------------------------------------------------------------------- uint32_t DataExtractor::SetData (const DataBufferSP& data_sp, uint32_t data_offset, uint32_t data_length) { m_start = m_end = NULL; if (data_length > 0) { m_data_sp = data_sp; if (data_sp.get()) { const size_t data_size = data_sp->GetByteSize(); if (data_offset < data_size) { m_start = data_sp->GetBytes() + data_offset; const size_t bytes_left = data_size - data_offset; // Cap the length of we asked for too many if (data_length <= bytes_left) m_end = m_start + data_length; // We got all the bytes we wanted else m_end = m_start + bytes_left; // Not all the bytes requested were available in the shared data } } } uint32_t new_size = GetByteSize(); // Don't hold a shared pointer to the data buffer if we don't share // any valid bytes in the shared buffer. if (new_size == 0) m_data_sp.reset(); return new_size; } //---------------------------------------------------------------------- // Extract a single unsigned char from the binary data and update // the offset pointed to by "offset_ptr". // // RETURNS the byte that was extracted, or zero on failure. //---------------------------------------------------------------------- uint8_t DataExtractor::GetU8 (uint32_t *offset_ptr) const { uint8_t val = 0; if ( m_start < m_end ) { val = m_start[*offset_ptr]; *offset_ptr += sizeof(val); } return val; } //---------------------------------------------------------------------- // Extract "count" unsigned chars from the binary data and update the // offset pointed to by "offset_ptr". The extracted data is copied into // "dst". // // RETURNS the non-NULL buffer pointer upon successful extraction of // all the requested bytes, or NULL when the data is not available in // the buffer due to being out of bounds, or unsufficient data. //---------------------------------------------------------------------- void * DataExtractor::GetU8 (uint32_t *offset_ptr, void *dst, uint32_t count) const { register uint32_t offset = *offset_ptr; if ((count > 0) && ValidOffsetForDataOfSize(offset, count) ) { // Copy the data into the buffer memcpy (dst, m_start + offset, count); // Advance the offset *offset_ptr += count; // Return a non-NULL pointer to the converted data as an indicator of success return dst; } return NULL; } //---------------------------------------------------------------------- // Extract a single uint16_t from the data and update the offset // pointed to by "offset_ptr". // // RETURNS the uint16_t that was extracted, or zero on failure. //---------------------------------------------------------------------- uint16_t DataExtractor::GetU16 (uint32_t *offset_ptr) const { uint16_t val = 0; register uint32_t offset = *offset_ptr; if ( ValidOffsetForDataOfSize(offset, sizeof(val)) ) { if (m_byte_order != lldb::endian::InlHostByteOrder()) val = ReadSwapInt16(m_start, offset); else val = ReadInt16 (m_start, offset); // Advance the offset *offset_ptr += sizeof(val); } return val; } uint16_t DataExtractor::GetU16_unchecked (uint32_t *offset_ptr) const { uint16_t val = (m_byte_order == lldb::endian::InlHostByteOrder()) ? ReadInt16 (m_start, *offset_ptr) : ReadSwapInt16(m_start, *offset_ptr); *offset_ptr += sizeof(val); return val; } uint32_t DataExtractor::GetU32_unchecked (uint32_t *offset_ptr) const { uint32_t val = (m_byte_order == lldb::endian::InlHostByteOrder()) ? ReadInt32 (m_start, *offset_ptr) : ReadSwapInt32 (m_start, *offset_ptr); *offset_ptr += sizeof(val); return val; } uint64_t DataExtractor::GetU64_unchecked (uint32_t *offset_ptr) const { uint64_t val = (m_byte_order == lldb::endian::InlHostByteOrder()) ? ReadInt64 (m_start, *offset_ptr) : ReadSwapInt64 (m_start, *offset_ptr); *offset_ptr += sizeof(val); return val; } //---------------------------------------------------------------------- // Extract "count" uint16_t values from the binary data and update // the offset pointed to by "offset_ptr". The extracted data is // copied into "dst". // // RETURNS the non-NULL buffer pointer upon successful extraction of // all the requested bytes, or NULL when the data is not available // in the buffer due to being out of bounds, or unsufficient data. //---------------------------------------------------------------------- void * DataExtractor::GetU16 (uint32_t *offset_ptr, void *void_dst, uint32_t count) const { uint16_t *dst = (uint16_t *)void_dst; const size_t value_size = sizeof(*dst); register uint32_t offset = *offset_ptr; if ((count > 0) && ValidOffsetForDataOfSize(offset, value_size * count) ) { uint16_t *value_ptr; uint16_t *end = dst + count; if (m_byte_order != lldb::endian::InlHostByteOrder()) { for (value_ptr = dst; value_ptr < end; ++value_ptr, offset += value_size) *value_ptr = ReadSwapInt16 (m_start, offset); } else { for (value_ptr = dst; value_ptr < end; ++value_ptr, offset += value_size) *value_ptr = ReadInt16 (m_start, offset); } // Advance the offset *offset_ptr = offset; // Return a non-NULL pointer to the converted data as an indicator of success return dst; } return NULL; } //---------------------------------------------------------------------- // Extract a single uint32_t from the data and update the offset // pointed to by "offset_ptr". // // RETURNS the uint32_t that was extracted, or zero on failure. //---------------------------------------------------------------------- uint32_t DataExtractor::GetU32 (uint32_t *offset_ptr) const { uint32_t val = 0; register uint32_t offset = *offset_ptr; if ( ValidOffsetForDataOfSize(offset, sizeof(val)) ) { if (m_byte_order != lldb::endian::InlHostByteOrder()) val = ReadSwapInt32 (m_start, offset); else val = ReadInt32 (m_start, offset); // Advance the offset *offset_ptr += sizeof(val); } return val; } //---------------------------------------------------------------------- // Extract "count" uint32_t values from the binary data and update // the offset pointed to by "offset_ptr". The extracted data is // copied into "dst". // // RETURNS the non-NULL buffer pointer upon successful extraction of // all the requested bytes, or NULL when the data is not available // in the buffer due to being out of bounds, or unsufficient data. //---------------------------------------------------------------------- void * DataExtractor::GetU32 (uint32_t *offset_ptr, void *void_dst, uint32_t count) const { uint32_t *dst = (uint32_t *)void_dst; const size_t value_size = sizeof(*dst); register uint32_t offset = *offset_ptr; if ((count > 0) && ValidOffsetForDataOfSize(offset, value_size * count)) { uint32_t *value_ptr; uint32_t *end = dst + count; if (m_byte_order != lldb::endian::InlHostByteOrder()) { for (value_ptr = dst; value_ptr < end; ++value_ptr, offset += value_size) *value_ptr = ReadSwapInt32 (m_start, offset); } else { for (value_ptr = dst; value_ptr < end; ++value_ptr, offset += value_size) *value_ptr = ReadInt32 (m_start, offset); } // Advance the offset *offset_ptr = offset; // Return a non-NULL pointer to the converted data as an indicator of success return dst; } return NULL; } //---------------------------------------------------------------------- // Extract a single uint64_t from the data and update the offset // pointed to by "offset_ptr". // // RETURNS the uint64_t that was extracted, or zero on failure. //---------------------------------------------------------------------- uint64_t DataExtractor::GetU64 (uint32_t *offset_ptr) const { uint64_t val = 0; register uint32_t offset = *offset_ptr; if ( ValidOffsetForDataOfSize(offset, sizeof(val)) ) { if (m_byte_order != lldb::endian::InlHostByteOrder()) val = ReadSwapInt64 (m_start, offset); else val = ReadInt64 (m_start, offset); // Advance the offset *offset_ptr += sizeof(val); } return val; } //---------------------------------------------------------------------- // GetU64 // // Get multiple consecutive 64 bit values. Return true if the entire // read succeeds and increment the offset pointed to by offset_ptr, else // return false and leave the offset pointed to by offset_ptr unchanged. //---------------------------------------------------------------------- void * DataExtractor::GetU64 (uint32_t *offset_ptr, void *void_dst, uint32_t count) const { uint64_t *dst = (uint64_t *)void_dst; const size_t value_size = sizeof(uint64_t); register uint32_t offset = *offset_ptr; if ((count > 0) && ValidOffsetForDataOfSize(offset, value_size * count)) { uint64_t *value_ptr; uint64_t *end = dst + count; if (m_byte_order != lldb::endian::InlHostByteOrder()) { for (value_ptr = dst; value_ptr < end; ++value_ptr, offset += value_size) *value_ptr = ReadSwapInt64 (m_start, offset); } else { for (value_ptr = dst; value_ptr < end; ++value_ptr, offset += value_size) *value_ptr = ReadInt64 (m_start, offset); } // Advance the offset *offset_ptr = offset; // Return a non-NULL pointer to the converted data as an indicator of success return dst; } return NULL; } //---------------------------------------------------------------------- // Extract a single integer value from the data and update the offset // pointed to by "offset_ptr". The size of the extracted integer // is specified by the "byte_size" argument. "byte_size" should have // a value between 1 and 4 since the return value is only 32 bits // wide. Any "byte_size" values less than 1 or greater than 4 will // result in nothing being extracted, and zero being returned. // // RETURNS the integer value that was extracted, or zero on failure. //---------------------------------------------------------------------- uint32_t DataExtractor::GetMaxU32 (uint32_t *offset_ptr, uint32_t byte_size) const { switch (byte_size) { case 1: return GetU8 (offset_ptr); break; case 2: return GetU16(offset_ptr); break; case 4: return GetU32(offset_ptr); break; default: assert(!"GetMaxU32 unhandled case!"); break; } return 0; } //---------------------------------------------------------------------- // Extract a single integer value from the data and update the offset // pointed to by "offset_ptr". The size of the extracted integer // is specified by the "byte_size" argument. "byte_size" should have // a value >= 1 and <= 8 since the return value is only 64 bits // wide. Any "byte_size" values less than 1 or greater than 8 will // result in nothing being extracted, and zero being returned. // // RETURNS the integer value that was extracted, or zero on failure. //---------------------------------------------------------------------- uint64_t DataExtractor::GetMaxU64 (uint32_t *offset_ptr, uint32_t size) const { switch (size) { case 1: return GetU8 (offset_ptr); break; case 2: return GetU16(offset_ptr); break; case 4: return GetU32(offset_ptr); break; case 8: return GetU64(offset_ptr); break; default: assert(!"GetMax64 unhandled case!"); break; } return 0; } int64_t DataExtractor::GetMaxS64 (uint32_t *offset_ptr, uint32_t size) const { switch (size) { case 1: return (int8_t)GetU8 (offset_ptr); break; case 2: return (int16_t)GetU16(offset_ptr); break; case 4: return (int32_t)GetU32(offset_ptr); break; case 8: return (int64_t)GetU64(offset_ptr); break; default: assert(!"GetMax64 unhandled case!"); break; } return 0; } uint64_t DataExtractor::GetMaxU64Bitfield (uint32_t *offset_ptr, uint32_t size, uint32_t bitfield_bit_size, uint32_t bitfield_bit_offset) const { uint64_t uval64 = GetMaxU64 (offset_ptr, size); if (bitfield_bit_size > 0) { if (bitfield_bit_offset > 0) uval64 >>= bitfield_bit_offset; uint64_t bitfield_mask = ((1 << bitfield_bit_size) - 1); uval64 &= bitfield_mask; } return uval64; } int64_t DataExtractor::GetMaxS64Bitfield (uint32_t *offset_ptr, uint32_t size, uint32_t bitfield_bit_size, uint32_t bitfield_bit_offset) const { int64_t sval64 = GetMaxS64 (offset_ptr, size); if (bitfield_bit_size > 0) { if (bitfield_bit_offset > 0) sval64 >>= bitfield_bit_offset; uint64_t bitfield_mask = ((1 << bitfield_bit_size) - 1); sval64 &= bitfield_mask; // sign extend if needed if (sval64 & (1 << (bitfield_bit_size - 1))) sval64 |= ~bitfield_mask; } return sval64; } float DataExtractor::GetFloat (uint32_t *offset_ptr) const { typedef float float_type; float_type val = 0.0; const uint8_t *src_data = PeekData (*offset_ptr, sizeof(float_type)); if (src_data) { if (m_byte_order != lldb::endian::InlHostByteOrder()) { uint8_t *dst_data = (uint8_t *)&val; for (int i=0; im_addr_size" member variable and should be // set correctly prior to extracting any address values. // // RETURNS the address that was extracted, or zero on failure. //------------------------------------------------------------------ uint64_t DataExtractor::GetAddress (uint32_t *offset_ptr) const { return GetMaxU64 (offset_ptr, m_addr_size); } //------------------------------------------------------------------ // Extract a single pointer from the data and update the offset // pointed to by "offset_ptr". The size of the extracted pointer // comes from the "this->m_addr_size" member variable and should be // set correctly prior to extracting any pointer values. // // RETURNS the pointer that was extracted, or zero on failure. //------------------------------------------------------------------ uint64_t DataExtractor::GetPointer (uint32_t *offset_ptr) const { return GetMaxU64 (offset_ptr, m_addr_size); } //---------------------------------------------------------------------- // GetDwarfEHPtr // // Used for calls when the value type is specified by a DWARF EH Frame // pointer encoding. //---------------------------------------------------------------------- uint64_t DataExtractor::GetGNUEHPointer (uint32_t *offset_ptr, uint32_t eh_ptr_enc, lldb::addr_t pc_rel_addr, lldb::addr_t text_addr, lldb::addr_t data_addr)//, BSDRelocs *data_relocs) const { if (eh_ptr_enc == DW_EH_PE_omit) return ULONG_LONG_MAX; // Value isn't in the buffer... uint64_t baseAddress = 0; uint64_t addressValue = 0; const uint32_t addr_size = GetAddressByteSize(); bool signExtendValue = false; // Decode the base part or adjust our offset switch (eh_ptr_enc & 0x70) { case DW_EH_PE_pcrel: signExtendValue = true; baseAddress = *offset_ptr; if (pc_rel_addr != LLDB_INVALID_ADDRESS) baseAddress += pc_rel_addr; // else // Log::GlobalWarning ("PC relative pointer encoding found with invalid pc relative address."); break; case DW_EH_PE_textrel: signExtendValue = true; if (text_addr != LLDB_INVALID_ADDRESS) baseAddress = text_addr; // else // Log::GlobalWarning ("text relative pointer encoding being decoded with invalid text section address, setting base address to zero."); break; case DW_EH_PE_datarel: signExtendValue = true; if (data_addr != LLDB_INVALID_ADDRESS) baseAddress = data_addr; // else // Log::GlobalWarning ("data relative pointer encoding being decoded with invalid data section address, setting base address to zero."); break; case DW_EH_PE_funcrel: signExtendValue = true; break; case DW_EH_PE_aligned: { // SetPointerSize should be called prior to extracting these so the // pointer size is cached assert(addr_size != 0); if (addr_size) { // Align to a address size boundary first uint32_t alignOffset = *offset_ptr % addr_size; if (alignOffset) offset_ptr += addr_size - alignOffset; } } break; default: break; } // Decode the value part switch (eh_ptr_enc & DW_EH_PE_MASK_ENCODING) { case DW_EH_PE_absptr : { addressValue = GetAddress (offset_ptr); // if (data_relocs) // addressValue = data_relocs->Relocate(*offset_ptr - addr_size, *this, addressValue); } break; case DW_EH_PE_uleb128 : addressValue = GetULEB128(offset_ptr); break; case DW_EH_PE_udata2 : addressValue = GetU16(offset_ptr); break; case DW_EH_PE_udata4 : addressValue = GetU32(offset_ptr); break; case DW_EH_PE_udata8 : addressValue = GetU64(offset_ptr); break; case DW_EH_PE_sleb128 : addressValue = GetSLEB128(offset_ptr); break; case DW_EH_PE_sdata2 : addressValue = (int16_t)GetU16(offset_ptr); break; case DW_EH_PE_sdata4 : addressValue = (int32_t)GetU32(offset_ptr); break; case DW_EH_PE_sdata8 : addressValue = (int64_t)GetU64(offset_ptr); break; default: // Unhandled encoding type assert(eh_ptr_enc); break; } // Since we promote everything to 64 bit, we may need to sign extend if (signExtendValue && addr_size < sizeof(baseAddress)) { uint64_t sign_bit = 1ull << ((addr_size * 8ull) - 1ull); if (sign_bit & addressValue) { uint64_t mask = ~sign_bit + 1; addressValue |= mask; } } return baseAddress + addressValue; } size_t DataExtractor::ExtractBytes (uint32_t offset, uint32_t length, ByteOrder dst_byte_order, void *dst) const { const uint8_t *src = PeekData (offset, length); if (src) { if (dst_byte_order != GetByteOrder()) { for (uint32_t i=0; i 0 && ValidOffsetForDataOfSize(offset, length) ) return m_start + offset; return NULL; } //---------------------------------------------------------------------- // Returns a pointer to a bytes in this object's data at the offset // pointed to by "offset_ptr". If "length" is zero or too large, // then the offset pointed to by "offset_ptr" will not be updated // and NULL will be returned. // // Returns a pointer to the data if the offset and length are valid, // or NULL otherwise. //---------------------------------------------------------------------- const void* DataExtractor::GetData (uint32_t *offset_ptr, uint32_t length) const { const uint8_t* bytes = NULL; register uint32_t offset = *offset_ptr; if ( length > 0 && ValidOffsetForDataOfSize(offset, length) ) { bytes = m_start + offset; *offset_ptr = offset + length; } return bytes; } //---------------------------------------------------------------------- // Extracts a AsCString (fixed length, or variable length) from // the data at the offset pointed to by "offset_ptr". If // "length" is zero, then a variable length NULL terminated C // string will be extracted from the data the "offset_ptr" will be // updated with the offset of the byte that follows the NULL // terminator byte. If "length" is greater than zero, then // the function will make sure there are "length" bytes // available in the current data and if so, return a valid pointer. // // If the offset pointed to by "offset_ptr" is out of bounds, or if // "length" is non-zero and there aren't enough avaialable // bytes, NULL will be returned and "offset_ptr" will not be // updated. //---------------------------------------------------------------------- const char* DataExtractor::GetCStr (uint32_t *offset_ptr) const { const char *s = NULL; if ( m_start < m_end ) { s = (char*)m_start + *offset_ptr; size_t length = strlen(s) + 1; if (!ValidOffsetForDataOfSize(*offset_ptr, length)) return NULL; // Advance the offset *offset_ptr += length; } return s; } //------------------------------------------------------------------ // Peeks at a string in the contained data. No verification is done // to make sure the entire string lies within the bounds of this // object's data, only "offset" is verified to be a valid offset. // // Returns a valid C string pointer if "offset" is a valid offset in // this object's data, else NULL is returned. //------------------------------------------------------------------ const char * DataExtractor::PeekCStr (uint32_t offset) const { if (ValidOffset (offset)) return (const char*)m_start + offset; return NULL; } //---------------------------------------------------------------------- // Extracts an unsigned LEB128 number from this object's data // starting at the offset pointed to by "offset_ptr". The offset // pointed to by "offset_ptr" will be updated with the offset of the // byte following the last extracted byte. // // Returned the extracted integer value. //---------------------------------------------------------------------- uint64_t DataExtractor::GetULEB128 (uint32_t *offset_ptr) const { uint64_t result = 0; if ( m_start < m_end ) { int shift = 0; const uint8_t *src = m_start + *offset_ptr; uint8_t byte; int bytecount = 0; while (src < m_end) { bytecount++; byte = *src++; result |= (byte & 0x7f) << shift; shift += 7; if ((byte & 0x80) == 0) break; } *offset_ptr += bytecount; } return result; } //---------------------------------------------------------------------- // Extracts an signed LEB128 number from this object's data // starting at the offset pointed to by "offset_ptr". The offset // pointed to by "offset_ptr" will be updated with the offset of the // byte following the last extracted byte. // // Returned the extracted integer value. //---------------------------------------------------------------------- int64_t DataExtractor::GetSLEB128 (uint32_t *offset_ptr) const { int64_t result = 0; if ( m_start < m_end ) { int shift = 0; int size = sizeof (uint32_t) * 8; const uint8_t *src = m_start + *offset_ptr; uint8_t byte = 0; int bytecount = 0; while (src < m_end) { bytecount++; byte = *src++; result |= (byte & 0x7f) << shift; shift += 7; if ((byte & 0x80) == 0) break; } // Sign bit of byte is 2nd high order bit (0x40) if (shift < size && (byte & 0x40)) result |= - (1 << shift); *offset_ptr += bytecount; } return result; } //---------------------------------------------------------------------- // Skips a ULEB128 number (signed or unsigned) from this object's // data starting at the offset pointed to by "offset_ptr". The // offset pointed to by "offset_ptr" will be updated with the offset // of the byte following the last extracted byte. // // Returns the number of bytes consumed during the extraction. //---------------------------------------------------------------------- uint32_t DataExtractor::Skip_LEB128 (uint32_t *offset_ptr) const { uint32_t bytes_consumed = 0; if ( m_start < m_end ) { const uint8_t *start = m_start + *offset_ptr; const uint8_t *src = start; while ((src < m_end) && (*src++ & 0x80)) ++bytes_consumed; *offset_ptr += src - start; } return bytes_consumed; } uint32_t DataExtractor::Dump ( Stream *s, uint32_t start_offset, lldb::Format item_format, uint32_t item_byte_size, uint32_t item_count, uint32_t num_per_line, uint64_t base_addr, uint32_t item_bit_size, // If zero, this is not a bitfield value, if non-zero, the value is a bitfield uint32_t item_bit_offset // If "item_bit_size" is non-zero, this is the shift amount to apply to a bitfield ) const { if (s == NULL) return start_offset; uint32_t offset; uint32_t count; uint32_t line_start_offset; if (item_format == eFormatPointer) { if (item_byte_size != 4 && item_byte_size != 8) item_byte_size = s->GetAddressByteSize(); } if (item_format == eFormatOSType && item_byte_size > 8) item_format = eFormatHex; for (offset = start_offset, line_start_offset = start_offset, count = 0; ValidOffset(offset) && count < item_count; ++count) { if ((count % num_per_line) == 0) { if (count > 0) { if (item_format == eFormatBytesWithASCII && offset > line_start_offset) { s->Printf("%*s", (num_per_line - (offset - line_start_offset)) * 3 + 2, ""); Dump(s, line_start_offset, eFormatCharPrintable, 1, offset - line_start_offset, UINT32_MAX, LLDB_INVALID_ADDRESS, 0, 0); } s->EOL(); } if (base_addr != LLDB_INVALID_ADDRESS) s->Printf ("0x%8.8llx: ", (uint64_t)(base_addr + (offset - start_offset))); line_start_offset = offset; } else if (item_format != eFormatChar && item_format != eFormatCharPrintable && count > 0) { s->PutChar(' '); } uint32_t i; switch (item_format) { case eFormatBoolean: s->Printf ("%s", GetMaxU64Bitfield(&offset, item_byte_size, item_bit_size, item_bit_offset) ? "true" : "false"); break; case eFormatBinary: { uint64_t uval64 = GetMaxU64Bitfield(&offset, item_byte_size, item_bit_size, item_bit_offset); // Avoid std::bitset<64>::to_string() since it is missing in // earlier C++ libraries std::string binary_value(64, '0'); std::bitset<64> bits(uval64); for (i = 0; i < 64; ++i) if (bits[i]) binary_value[64 - 1 - i] = '1'; if (item_bit_size > 0) s->Printf("0b%s", binary_value.c_str() + 64 - item_bit_size); else if (item_byte_size > 0 && item_byte_size <= 8) s->Printf("0b%s", binary_value.c_str() + 64 - item_byte_size * 8); } break; case eFormatBytes: case eFormatBytesWithASCII: for (i=0; iPrintf ("%2.2x", GetU8(&offset)); } // Put an extra space between the groups of bytes if more than one // is being dumped in a group (item_byte_size is more than 1). if (item_byte_size > 1) s->PutChar(' '); break; case eFormatChar: case eFormatCharPrintable: { // If we are only printing one character surround it with single // quotes if (item_count == 1 && item_format == eFormatChar) s->PutChar('\''); uint32_t ch = GetMaxU64(&offset, item_byte_size); if (isprint(ch)) s->Printf ("%c", ch); else if (item_format == eFormatChar) { switch (ch) { case '\e': s->Printf ("\\e", (uint8_t)ch); break; case '\a': s->Printf ("\\a", ch); break; case '\b': s->Printf ("\\b", ch); break; case '\f': s->Printf ("\\f", ch); break; case '\n': s->Printf ("\\n", ch); break; case '\r': s->Printf ("\\r", ch); break; case '\t': s->Printf ("\\t", ch); break; case '\v': s->Printf ("\\v", ch); break; case '\0': s->Printf ("\\0", ch); break; default: if (item_byte_size == 1) s->Printf ("\\x%2.2x", ch); else s->Printf ("\\u%x", ch); break; } } else { s->PutChar(NON_PRINTABLE_CHAR); } // If we are only printing one character surround it with single quotes if (item_count == 1 && item_format == eFormatChar) s->PutChar('\''); } break; case eFormatDecimal: if (item_byte_size <= 8) s->Printf ("%lld", GetMaxS64Bitfield(&offset, item_byte_size, item_bit_size, item_bit_offset)); break; case eFormatUnsigned: if (item_byte_size <= 8) s->Printf ("%llu", GetMaxU64Bitfield(&offset, item_byte_size, item_bit_size, item_bit_offset)); break; case eFormatOctal: if (item_byte_size <= 8) s->Printf ("0%llo", GetMaxS64Bitfield(&offset, item_byte_size, item_bit_size, item_bit_offset)); break; case eFormatOSType: { uint64_t uval64 = GetMaxU64Bitfield(&offset, item_byte_size, item_bit_size, item_bit_offset); s->PutChar('\''); for (i=0; i 0) ch = (uint8_t)(uval64 >> ((item_byte_size - i - 1) * 8)); else ch = (uint8_t)uval64; if (isprint(ch)) s->Printf ("%c", ch); else { switch (ch) { case '\e': s->Printf ("\\e", (uint8_t)ch); break; case '\a': s->Printf ("\\a", ch); break; case '\b': s->Printf ("\\b", ch); break; case '\f': s->Printf ("\\f", ch); break; case '\n': s->Printf ("\\n", ch); break; case '\r': s->Printf ("\\r", ch); break; case '\t': s->Printf ("\\t", ch); break; case '\v': s->Printf ("\\v", ch); break; case '\0': s->Printf ("\\0", ch); break; default: s->Printf ("\\x%2.2x", ch); break; } } } s->PutChar('\''); } break; case eFormatEnum: // Print enum value as a signed integer when we don't get the enum type s->Printf ("%lld", GetMaxU64Bitfield(&offset, item_byte_size, item_bit_size, item_bit_offset)); break; case eFormatCString: { const char *cstr = GetCStr(&offset); if (cstr) s->Printf("\"%s\"", cstr); else { s->Printf("NULL", cstr); offset = UINT32_MAX; } } break; case eFormatPointer: s->Address(GetMaxU64Bitfield(&offset, item_byte_size, item_bit_size, item_bit_offset), sizeof (addr_t)); break; case eFormatComplexInteger: { uint32_t complex_int_byte_size = item_byte_size / 2; if (complex_int_byte_size <= 8) { s->Printf("%llu", GetMaxU64Bitfield(&offset, complex_int_byte_size, 0, 0)); s->Printf(" + %llui", GetMaxU64Bitfield(&offset, complex_int_byte_size, 0, 0)); } } break; case eFormatComplex: if (sizeof(float) * 2 == item_byte_size) { float f32_1 = GetFloat (&offset); float f32_2 = GetFloat (&offset); s->Printf ("%g + %gi", f32_1, f32_2); break; } else if (sizeof(double) * 2 == item_byte_size) { double d64_1 = GetDouble (&offset); double d64_2 = GetDouble (&offset); s->Printf ("%lg + %lgi", d64_1, d64_2); break; } else if (sizeof(long double) * 2 == item_byte_size) { long double ld64_1 = GetLongDouble (&offset); long double ld64_2 = GetLongDouble (&offset); s->Printf ("%Lg + %Lgi", ld64_1, ld64_2); break; } else { s->Printf ("unsupported complex float byte size %u", item_byte_size); return start_offset; } break; default: case eFormatDefault: case eFormatHex: if (item_byte_size <= 8) { s->Printf("0x%*.*llx", 2 * item_byte_size, 2 * item_byte_size, GetMaxU64Bitfield(&offset, item_byte_size, item_bit_size, item_bit_offset)); } else { assert (item_bit_size == 0 && item_bit_offset == 0); s->PutCString("0x"); int32_t start_idx, end_idx, delta; if (m_byte_order == eByteOrderBig) { start_idx = offset; end_idx = offset + item_byte_size; delta = 1; } else { start_idx = offset + item_byte_size - 1; end_idx = -1; delta = -1; } const uint8_t *bytes = (const uint8_t* )GetData(&offset, item_byte_size); if (bytes) { for (int32_t idx = start_idx; idx != end_idx; idx += delta) s->Printf("%2.2x", bytes[idx]); } } break; case eFormatFloat: if (sizeof(float) == item_byte_size) { s->Printf ("%g", GetFloat (&offset)); } else if (sizeof(double) == item_byte_size) { s->Printf ("%lg", GetDouble(&offset)); } else if (sizeof(long double) == item_byte_size) { s->Printf ("%Lg", GetLongDouble(&offset)); } break; case eFormatUnicode16: s->Printf("0x%4.4x", GetU16 (&offset)); break; case eFormatUnicode32: s->Printf("0x%8.8x", GetU32 (&offset)); break; case eFormatVectorOfChar: s->PutChar('{'); offset = Dump (s, start_offset, eFormatChar, 1, item_byte_size, item_byte_size, LLDB_INVALID_ADDRESS, 0, 0); s->PutChar('}'); break; case eFormatVectorOfSInt8: s->PutChar('{'); offset = Dump (s, start_offset, eFormatDecimal, 1, item_byte_size, item_byte_size, LLDB_INVALID_ADDRESS, 0, 0); s->PutChar('}'); break; case eFormatVectorOfUInt8: s->PutChar('{'); offset = Dump (s, start_offset, eFormatHex, 1, item_byte_size, item_byte_size, LLDB_INVALID_ADDRESS, 0, 0); s->PutChar('}'); break; case eFormatVectorOfSInt16: s->PutChar('{'); offset = Dump (s, start_offset, eFormatDecimal, sizeof(uint16_t), item_byte_size / sizeof(uint16_t), item_byte_size / sizeof(uint16_t), LLDB_INVALID_ADDRESS, 0, 0); s->PutChar('}'); break; case eFormatVectorOfUInt16: s->PutChar('{'); offset = Dump (s, start_offset, eFormatHex, sizeof(uint16_t), item_byte_size / sizeof(uint16_t), item_byte_size / sizeof(uint16_t), LLDB_INVALID_ADDRESS, 0, 0); s->PutChar('}'); break; case eFormatVectorOfSInt32: s->PutChar('{'); offset = Dump (s, start_offset, eFormatDecimal, sizeof(uint32_t), item_byte_size / sizeof(uint32_t), item_byte_size / sizeof(uint32_t), LLDB_INVALID_ADDRESS, 0, 0); s->PutChar('}'); break; case eFormatVectorOfUInt32: s->PutChar('{'); offset = Dump (s, start_offset, eFormatHex, sizeof(uint32_t), item_byte_size / sizeof(uint32_t), item_byte_size / sizeof(uint32_t), LLDB_INVALID_ADDRESS, 0, 0); s->PutChar('}'); break; case eFormatVectorOfSInt64: s->PutChar('{'); offset = Dump (s, start_offset, eFormatDecimal, sizeof(uint64_t), item_byte_size / sizeof(uint64_t), item_byte_size / sizeof(uint64_t), LLDB_INVALID_ADDRESS, 0, 0); s->PutChar('}'); break; case eFormatVectorOfUInt64: s->PutChar('{'); offset = Dump (s, start_offset, eFormatHex, sizeof(uint32_t), item_byte_size / sizeof(uint32_t), item_byte_size / sizeof(uint32_t), LLDB_INVALID_ADDRESS, 0, 0); s->PutChar('}'); break; case eFormatVectorOfFloat32: s->PutChar('{'); offset = Dump (s, start_offset, eFormatFloat, 4, item_byte_size / 4, item_byte_size / 4, LLDB_INVALID_ADDRESS, 0, 0); s->PutChar('}'); break; case eFormatVectorOfFloat64: s->PutChar('{'); offset = Dump (s, start_offset, eFormatFloat, 8, item_byte_size / 8, item_byte_size / 8, LLDB_INVALID_ADDRESS, 0, 0); s->PutChar('}'); break; case eFormatVectorOfUInt128: s->PutChar('{'); offset = Dump (s, start_offset, eFormatHex, 16, item_byte_size / 16, item_byte_size / 16, LLDB_INVALID_ADDRESS, 0, 0); s->PutChar('}'); break; } } if (item_format == eFormatBytesWithASCII && offset > line_start_offset) { s->Printf("%*s", (num_per_line - (offset - line_start_offset)) * 3 + 2, ""); Dump(s, line_start_offset, eFormatCharPrintable, 1, offset - line_start_offset, UINT32_MAX, LLDB_INVALID_ADDRESS, 0, 0); } return offset; // Return the offset at which we ended up } //---------------------------------------------------------------------- // Dumps bytes from this object's data to the stream "s" starting // "start_offset" bytes into this data, and ending with the byte // before "end_offset". "base_addr" will be added to the offset // into the dumped data when showing the offset into the data in the // output information. "num_per_line" objects of type "type" will // be dumped with the option to override the format for each object // with "type_format". "type_format" is a printf style formatting // string. If "type_format" is NULL, then an appropriate format // string will be used for the supplied "type". If the stream "s" // is NULL, then the output will be send to Log(). //---------------------------------------------------------------------- uint32_t DataExtractor::PutToLog ( Log *log, uint32_t start_offset, uint32_t length, uint64_t base_addr, uint32_t num_per_line, DataExtractor::Type type, const char *format ) const { if (log == NULL) return start_offset; uint32_t offset; uint32_t end_offset; uint32_t count; StreamString sstr; for (offset = start_offset, end_offset = offset + length, count = 0; ValidOffset(offset) && offset < end_offset; ++count) { if ((count % num_per_line) == 0) { // Print out any previous string if (sstr.GetSize() > 0) { log->Printf("%s", sstr.GetData()); sstr.Clear(); } // Reset string offset and fill the current line string with address: if (base_addr != LLDB_INVALID_ADDRESS) sstr.Printf("0x%8.8llx:", (uint64_t)(base_addr + (offset - start_offset))); } switch (type) { default: case TypeUInt8: sstr.Printf (format ? format : " %2.2x", GetU8(&offset)); break; case TypeChar: { char ch = GetU8(&offset); sstr.Printf (format ? format : " %c", isprint(ch) ? ch : ' '); } break; case TypeUInt16: sstr.Printf (format ? format : " %4.4x", GetU16(&offset)); break; case TypeUInt32: sstr.Printf (format ? format : " %8.8x", GetU32(&offset)); break; case TypeUInt64: sstr.Printf (format ? format : " %16.16llx", GetU64(&offset)); break; case TypePointer: sstr.Printf (format ? format : " 0x%llx", GetAddress(&offset)); break; case TypeULEB128: sstr.Printf (format ? format : " 0x%llx", GetULEB128(&offset)); break; case TypeSLEB128: sstr.Printf (format ? format : " %lld", GetSLEB128(&offset)); break; } } if (sstr.GetSize() > 0) log->Printf("%s", sstr.GetData()); return offset; // Return the offset at which we ended up } //---------------------------------------------------------------------- // DumpUUID // // Dump out a UUID starting at 'offset' bytes into the buffer //---------------------------------------------------------------------- void DataExtractor::DumpUUID (Stream *s, uint32_t offset) const { if (s) { const uint8_t *uuid_data = PeekData(offset, 16); if ( uuid_data ) { lldb_private::UUID uuid(uuid_data, 16); uuid.Dump(s); } else { s->Printf("", offset); } } }