//===--- CGStmt.cpp - Emit LLVM Code from Statements ----------------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This contains code to emit Stmt nodes as LLVM code. // //===----------------------------------------------------------------------===// #include "CGDebugInfo.h" #include "CodeGenModule.h" #include "CodeGenFunction.h" #include "clang/AST/StmtVisitor.h" #include "clang/Basic/TargetInfo.h" #include "llvm/ADT/StringExtras.h" #include "llvm/InlineAsm.h" #include "llvm/Intrinsics.h" #include "llvm/Target/TargetData.h" using namespace clang; using namespace CodeGen; //===----------------------------------------------------------------------===// // Statement Emission //===----------------------------------------------------------------------===// void CodeGenFunction::EmitStopPoint(const Stmt *S) { if (CGDebugInfo *DI = CGM.getDebugInfo()) { DI->setLocation(S->getLocStart()); DI->EmitStopPoint(CurFn, Builder); } } void CodeGenFunction::EmitStmt(const Stmt *S) { assert(S && "Null statement?"); // Check if we can handle this without bothering to generate an // insert point or debug info. if (EmitSimpleStmt(S)) return; // If we happen to be at an unreachable point just create a dummy // basic block to hold the code. We could change parts of irgen to // simply not generate this code, but this situation is rare and // probably not worth the effort. // FIXME: Verify previous performance/effort claim. EnsureInsertPoint(); // Generate a stoppoint if we are emitting debug info. EmitStopPoint(S); switch (S->getStmtClass()) { default: // Must be an expression in a stmt context. Emit the value (to get // side-effects) and ignore the result. if (const Expr *E = dyn_cast(S)) { if (!hasAggregateLLVMType(E->getType())) EmitScalarExpr(E); else if (E->getType()->isAnyComplexType()) EmitComplexExpr(E); else EmitAggExpr(E, 0, false); } else { ErrorUnsupported(S, "statement"); } break; case Stmt::IndirectGotoStmtClass: EmitIndirectGotoStmt(cast(*S)); break; case Stmt::IfStmtClass: EmitIfStmt(cast(*S)); break; case Stmt::WhileStmtClass: EmitWhileStmt(cast(*S)); break; case Stmt::DoStmtClass: EmitDoStmt(cast(*S)); break; case Stmt::ForStmtClass: EmitForStmt(cast(*S)); break; case Stmt::ReturnStmtClass: EmitReturnStmt(cast(*S)); break; case Stmt::DeclStmtClass: EmitDeclStmt(cast(*S)); break; case Stmt::SwitchStmtClass: EmitSwitchStmt(cast(*S)); break; case Stmt::AsmStmtClass: EmitAsmStmt(cast(*S)); break; case Stmt::ObjCAtTryStmtClass: EmitObjCAtTryStmt(cast(*S)); break; case Stmt::ObjCAtCatchStmtClass: assert(0 && "@catch statements should be handled by EmitObjCAtTryStmt"); break; case Stmt::ObjCAtFinallyStmtClass: assert(0 && "@finally statements should be handled by EmitObjCAtTryStmt"); break; case Stmt::ObjCAtThrowStmtClass: EmitObjCAtThrowStmt(cast(*S)); break; case Stmt::ObjCAtSynchronizedStmtClass: EmitObjCAtSynchronizedStmt(cast(*S)); break; case Stmt::ObjCForCollectionStmtClass: EmitObjCForCollectionStmt(cast(*S)); break; } } bool CodeGenFunction::EmitSimpleStmt(const Stmt *S) { switch (S->getStmtClass()) { default: return false; case Stmt::NullStmtClass: break; case Stmt::CompoundStmtClass: EmitCompoundStmt(cast(*S)); break; case Stmt::LabelStmtClass: EmitLabelStmt(cast(*S)); break; case Stmt::GotoStmtClass: EmitGotoStmt(cast(*S)); break; case Stmt::BreakStmtClass: EmitBreakStmt(cast(*S)); break; case Stmt::ContinueStmtClass: EmitContinueStmt(cast(*S)); break; case Stmt::DefaultStmtClass: EmitDefaultStmt(cast(*S)); break; case Stmt::CaseStmtClass: EmitCaseStmt(cast(*S)); break; } return true; } /// EmitCompoundStmt - Emit a compound statement {..} node. If GetLast is true, /// this captures the expression result of the last sub-statement and returns it /// (for use by the statement expression extension). RValue CodeGenFunction::EmitCompoundStmt(const CompoundStmt &S, bool GetLast, llvm::Value *AggLoc, bool isAggVol) { CGDebugInfo *DI = CGM.getDebugInfo(); if (DI) { EnsureInsertPoint(); DI->setLocation(S.getLBracLoc()); DI->EmitRegionStart(CurFn, Builder); } // Keep track of the current cleanup stack depth. size_t CleanupStackDepth = CleanupEntries.size(); bool OldDidCallStackSave = DidCallStackSave; // Push a null stack save value. StackSaveValues.push_back(0); for (CompoundStmt::const_body_iterator I = S.body_begin(), E = S.body_end()-GetLast; I != E; ++I) EmitStmt(*I); if (DI) { EnsureInsertPoint(); DI->setLocation(S.getRBracLoc()); DI->EmitRegionEnd(CurFn, Builder); } RValue RV; if (!GetLast) RV = RValue::get(0); else { // We have to special case labels here. They are statements, but when put // at the end of a statement expression, they yield the value of their // subexpression. Handle this by walking through all labels we encounter, // emitting them before we evaluate the subexpr. const Stmt *LastStmt = S.body_back(); while (const LabelStmt *LS = dyn_cast(LastStmt)) { EmitLabel(*LS); LastStmt = LS->getSubStmt(); } EnsureInsertPoint(); RV = EmitAnyExpr(cast(LastStmt), AggLoc); } if (llvm::Value *V = StackSaveValues.pop_back_val()) { StackDepth = V; V = Builder.CreateLoad(V, "tmp"); llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::stackrestore); Builder.CreateCall(F, V); } DidCallStackSave = OldDidCallStackSave; EmitCleanupBlocks(CleanupStackDepth); return RV; } void CodeGenFunction::EmitBlock(llvm::BasicBlock *BB, bool IsFinished) { // Fall out of the current block (if necessary). EmitBranch(BB); if (IsFinished && BB->use_empty()) { delete BB; return; } // If necessary, associate the block with the cleanup stack size. if (!CleanupEntries.empty()) { BlockScopes[BB] = CleanupEntries.size() - 1; CleanupEntries.back().Blocks.push_back(BB); } CurFn->getBasicBlockList().push_back(BB); Builder.SetInsertPoint(BB); } bool CodeGenFunction::EmitStackUpdate(llvm::Value *V) { // If we're already at the depth we want... if (StackDepth == V) return false; // V can be 0 here, if it is, be sure to start searching from the // top of the function, as we want the next save after that point. for (unsigned int i = 0; i < StackSaveValues.size(); ++i) if (StackSaveValues[i] == V) { // The actual depth is actually in the next used slot, if any. while (++i < StackSaveValues.size() && (V = StackSaveValues[i]) == 0) ; // If there were no other depth changes, we don't need any // adjustments. if (V) { V = Builder.CreateLoad(V, "tmp"); // and restore it. llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::stackrestore); Builder.CreateCall(F, V); } } else return true; return false; } bool CodeGenFunction::EmitStackUpdate(const void *S) { if (StackDepthMap.find(S) == StackDepthMap.end()) { // If we can't find it, just remember the depth now, // so we can validate it later. // FIXME: We need to save a place to insert the adjustment, // if needed, here, sa that later in EmitLabel, we can // backpatch the adjustment into that place, instead of // saying unsupported. StackDepthMap[S] = StackDepth; return false; } // Find applicable stack depth, if any... llvm::Value *V = StackDepthMap[S]; return EmitStackUpdate(V); } void CodeGenFunction::EmitBranch(llvm::BasicBlock *Target) { // Emit a branch from the current block to the target one if this // was a real block. If this was just a fall-through block after a // terminator, don't emit it. llvm::BasicBlock *CurBB = Builder.GetInsertBlock(); if (!CurBB || CurBB->getTerminator()) { // If there is no insert point or the previous block is already // terminated, don't touch it. } else { // Otherwise, create a fall-through branch. Builder.CreateBr(Target); } Builder.ClearInsertionPoint(); } bool CodeGenFunction::StackFixupAtLabel(const void *S) { if (StackDepthMap.find(S) == StackDepthMap.end()) { // We need to remember the stack depth so that we can readjust the // stack back to the right depth for this label if we want to // transfer here from a different depth. StackDepthMap[S] = StackDepth; } else { if (StackDepthMap[S] != StackDepth) { // FIXME: Sema needs to ckeck for jumps that cross decls with // initializations for C++, and all VLAs, not just the first in // a block that does a stacksave. // FIXME: We need to save a place to insert the adjustment // when we do a EmitStackUpdate on a forward jump, and then // backpatch the adjustment into that place. return true; } } return false; } void CodeGenFunction::EmitLabel(const LabelStmt &S) { llvm::BasicBlock *NextBB = getBasicBlockForLabel(&S); if (StackFixupAtLabel(&S)) CGM.ErrorUnsupported(&S, "forward goto inside scope with VLA"); EmitBlock(NextBB); } void CodeGenFunction::EmitLabelStmt(const LabelStmt &S) { EmitLabel(S); EmitStmt(S.getSubStmt()); } void CodeGenFunction::EmitGotoStmt(const GotoStmt &S) { // FIXME: Implement goto out in @try or @catch blocks. if (!ObjCEHStack.empty()) { CGM.ErrorUnsupported(&S, "goto inside an Obj-C exception block"); return; } // If this code is reachable then emit a stop point (if generating // debug info). We have to do this ourselves because we are on the // "simple" statement path. if (HaveInsertPoint()) EmitStopPoint(&S); // We need to adjust the stack, if the destination was (will be) at // a different depth. if (EmitStackUpdate(S.getLabel())) // FIXME: Move to semq and assert here, codegen isn't the right // time to be checking. CGM.ErrorUnsupported(S.getLabel(), "invalid goto to VLA scope that has finished"); EmitBranchThroughCleanup(getBasicBlockForLabel(S.getLabel())); } void CodeGenFunction::EmitIndirectGotoStmt(const IndirectGotoStmt &S) { // FIXME: Implement indirect goto in @try or @catch blocks. if (!ObjCEHStack.empty()) { CGM.ErrorUnsupported(&S, "goto inside an Obj-C exception block"); return; } // Emit initial switch which will be patched up later by // EmitIndirectSwitches(). We need a default dest, so we use the // current BB, but this is overwritten. llvm::Value *V = Builder.CreatePtrToInt(EmitScalarExpr(S.getTarget()), llvm::Type::Int32Ty, "addr"); llvm::SwitchInst *I = Builder.CreateSwitch(V, Builder.GetInsertBlock()); IndirectSwitches.push_back(I); // Clear the insertion point to indicate we are in unreachable code. Builder.ClearInsertionPoint(); } void CodeGenFunction::EmitIfStmt(const IfStmt &S) { // C99 6.8.4.1: The first substatement is executed if the expression compares // unequal to 0. The condition must be a scalar type. // If the condition constant folds and can be elided, try to avoid emitting // the condition and the dead arm of the if/else. if (int Cond = ConstantFoldsToSimpleInteger(S.getCond())) { // Figure out which block (then or else) is executed. const Stmt *Executed = S.getThen(), *Skipped = S.getElse(); if (Cond == -1) // Condition false? std::swap(Executed, Skipped); // If the skipped block has no labels in it, just emit the executed block. // This avoids emitting dead code and simplifies the CFG substantially. if (!ContainsLabel(Skipped)) { if (Executed) EmitStmt(Executed); return; } } // Otherwise, the condition did not fold, or we couldn't elide it. Just emit // the conditional branch. llvm::BasicBlock *ThenBlock = createBasicBlock("if.then"); llvm::BasicBlock *ContBlock = createBasicBlock("if.end"); llvm::BasicBlock *ElseBlock = ContBlock; if (S.getElse()) ElseBlock = createBasicBlock("if.else"); EmitBranchOnBoolExpr(S.getCond(), ThenBlock, ElseBlock); // Emit the 'then' code. EmitBlock(ThenBlock); EmitStmt(S.getThen()); EmitBranch(ContBlock); // Emit the 'else' code if present. if (const Stmt *Else = S.getElse()) { EmitBlock(ElseBlock); EmitStmt(Else); EmitBranch(ContBlock); } // Emit the continuation block for code after the if. EmitBlock(ContBlock, true); } void CodeGenFunction::EmitWhileStmt(const WhileStmt &S) { // Emit the header for the loop, insert it, which will create an uncond br to // it. llvm::BasicBlock *LoopHeader = createBasicBlock("while.cond"); EmitBlock(LoopHeader); // Create an exit block for when the condition fails, create a block for the // body of the loop. llvm::BasicBlock *ExitBlock = createBasicBlock("while.end"); llvm::BasicBlock *LoopBody = createBasicBlock("while.body"); // Store the blocks to use for break and continue. BreakContinuePush(ExitBlock, LoopHeader); // Evaluate the conditional in the while header. C99 6.8.5.1: The // evaluation of the controlling expression takes place before each // execution of the loop body. llvm::Value *BoolCondVal = EvaluateExprAsBool(S.getCond()); // while(1) is common, avoid extra exit blocks. Be sure // to correctly handle break/continue though. bool EmitBoolCondBranch = true; if (llvm::ConstantInt *C = dyn_cast(BoolCondVal)) if (C->isOne()) EmitBoolCondBranch = false; // As long as the condition is true, go to the loop body. if (EmitBoolCondBranch) Builder.CreateCondBr(BoolCondVal, LoopBody, ExitBlock); // Emit the loop body. EmitBlock(LoopBody); EmitStmt(S.getBody()); BreakContinuePop(); // Cycle to the condition. EmitBranch(LoopHeader); // Emit the exit block. EmitBlock(ExitBlock, true); // If LoopHeader is a simple forwarding block then eliminate it. if (!EmitBoolCondBranch && &LoopHeader->front() == LoopHeader->getTerminator()) { LoopHeader->replaceAllUsesWith(LoopBody); LoopHeader->getTerminator()->eraseFromParent(); LoopHeader->eraseFromParent(); } } void CodeGenFunction::EmitDoStmt(const DoStmt &S) { // Emit the body for the loop, insert it, which will create an uncond br to // it. llvm::BasicBlock *LoopBody = createBasicBlock("do.body"); llvm::BasicBlock *AfterDo = createBasicBlock("do.end"); EmitBlock(LoopBody); llvm::BasicBlock *DoCond = createBasicBlock("do.cond"); // Store the blocks to use for break and continue. BreakContinuePush(AfterDo, DoCond); // Emit the body of the loop into the block. EmitStmt(S.getBody()); BreakContinuePop(); EmitBlock(DoCond); // C99 6.8.5.2: "The evaluation of the controlling expression takes place // after each execution of the loop body." // Evaluate the conditional in the while header. // C99 6.8.5p2/p4: The first substatement is executed if the expression // compares unequal to 0. The condition must be a scalar type. llvm::Value *BoolCondVal = EvaluateExprAsBool(S.getCond()); // "do {} while (0)" is common in macros, avoid extra blocks. Be sure // to correctly handle break/continue though. bool EmitBoolCondBranch = true; if (llvm::ConstantInt *C = dyn_cast(BoolCondVal)) if (C->isZero()) EmitBoolCondBranch = false; // As long as the condition is true, iterate the loop. if (EmitBoolCondBranch) Builder.CreateCondBr(BoolCondVal, LoopBody, AfterDo); // Emit the exit block. EmitBlock(AfterDo, true); // If DoCond is a simple forwarding block then eliminate it. if (!EmitBoolCondBranch && &DoCond->front() == DoCond->getTerminator()) { DoCond->replaceAllUsesWith(AfterDo); DoCond->getTerminator()->eraseFromParent(); DoCond->eraseFromParent(); } } void CodeGenFunction::EmitForStmt(const ForStmt &S) { // FIXME: What do we do if the increment (f.e.) contains a stmt expression, // which contains a continue/break? // Evaluate the first part before the loop. if (S.getInit()) EmitStmt(S.getInit()); // Start the loop with a block that tests the condition. llvm::BasicBlock *CondBlock = createBasicBlock("for.cond"); llvm::BasicBlock *AfterFor = createBasicBlock("for.end"); EmitBlock(CondBlock); llvm::Value *saveStackDepth = StackDepth; // Evaluate the condition if present. If not, treat it as a // non-zero-constant according to 6.8.5.3p2, aka, true. if (S.getCond()) { // As long as the condition is true, iterate the loop. llvm::BasicBlock *ForBody = createBasicBlock("for.body"); // C99 6.8.5p2/p4: The first substatement is executed if the expression // compares unequal to 0. The condition must be a scalar type. EmitBranchOnBoolExpr(S.getCond(), ForBody, AfterFor); EmitBlock(ForBody); } else { // Treat it as a non-zero constant. Don't even create a new block for the // body, just fall into it. } // If the for loop doesn't have an increment we can just use the // condition as the continue block. llvm::BasicBlock *ContinueBlock; if (S.getInc()) ContinueBlock = createBasicBlock("for.inc"); else ContinueBlock = CondBlock; // Store the blocks to use for break and continue. // Ensure any vlas created between there and here, are undone BreakContinuePush(AfterFor, ContinueBlock, saveStackDepth, saveStackDepth); // If the condition is true, execute the body of the for stmt. EmitStmt(S.getBody()); BreakContinuePop(); // If there is an increment, emit it next. if (S.getInc()) { EmitBlock(ContinueBlock); EmitStmt(S.getInc()); } // Finally, branch back up to the condition for the next iteration. EmitBranch(CondBlock); // Emit the fall-through block. EmitBlock(AfterFor, true); } void CodeGenFunction::EmitReturnOfRValue(RValue RV, QualType Ty) { if (RV.isScalar()) { Builder.CreateStore(RV.getScalarVal(), ReturnValue); } else if (RV.isAggregate()) { EmitAggregateCopy(ReturnValue, RV.getAggregateAddr(), Ty); } else { StoreComplexToAddr(RV.getComplexVal(), ReturnValue, false); } EmitBranchThroughCleanup(ReturnBlock); } /// EmitReturnStmt - Note that due to GCC extensions, this can have an operand /// if the function returns void, or may be missing one if the function returns /// non-void. Fun stuff :). void CodeGenFunction::EmitReturnStmt(const ReturnStmt &S) { for (unsigned i = 0; i < StackSaveValues.size(); i++) { if (StackSaveValues[i]) { CGM.ErrorUnsupported(&S, "return inside scope with VLA"); return; } } // Emit the result value, even if unused, to evalute the side effects. const Expr *RV = S.getRetValue(); // FIXME: Clean this up by using an LValue for ReturnTemp, // EmitStoreThroughLValue, and EmitAnyExpr. if (!ReturnValue) { // Make sure not to return anything, but evaluate the expression // for side effects. if (RV) EmitAnyExpr(RV); } else if (RV == 0) { // Do nothing (return value is left uninitialized) } else if (!hasAggregateLLVMType(RV->getType())) { Builder.CreateStore(EmitScalarExpr(RV), ReturnValue); } else if (RV->getType()->isAnyComplexType()) { EmitComplexExprIntoAddr(RV, ReturnValue, false); } else { EmitAggExpr(RV, ReturnValue, false); } if (!ObjCEHStack.empty()) { for (ObjCEHStackType::reverse_iterator i = ObjCEHStack.rbegin(), e = ObjCEHStack.rend(); i != e; ++i) { llvm::BasicBlock *ReturnPad = createBasicBlock("return.pad"); EmitJumpThroughFinally(*i, ReturnPad); EmitBlock(ReturnPad); } } EmitBranchThroughCleanup(ReturnBlock); } void CodeGenFunction::EmitDeclStmt(const DeclStmt &S) { for (DeclStmt::const_decl_iterator I = S.decl_begin(), E = S.decl_end(); I != E; ++I) EmitDecl(**I); } void CodeGenFunction::EmitBreakStmt(const BreakStmt &S) { assert(!BreakContinueStack.empty() && "break stmt not in a loop or switch!"); // FIXME: Implement break in @try or @catch blocks. if (ObjCEHStack.size() != BreakContinueStack.back().EHStackSize) { CGM.ErrorUnsupported(&S, "break inside an Obj-C exception block"); return; } // If this code is reachable then emit a stop point (if generating // debug info). We have to do this ourselves because we are on the // "simple" statement path. if (HaveInsertPoint()) EmitStopPoint(&S); // We need to adjust the stack, if the destination was (will be) at // a different depth. if (EmitStackUpdate(BreakContinueStack.back().SaveBreakStackDepth)) assert (0 && "break vla botch"); llvm::BasicBlock *Block = BreakContinueStack.back().BreakBlock; EmitBranchThroughCleanup(Block); } void CodeGenFunction::EmitContinueStmt(const ContinueStmt &S) { assert(!BreakContinueStack.empty() && "continue stmt not in a loop!"); // FIXME: Implement continue in @try or @catch blocks. if (ObjCEHStack.size() != BreakContinueStack.back().EHStackSize) { CGM.ErrorUnsupported(&S, "continue inside an Obj-C exception block"); return; } // If this code is reachable then emit a stop point (if generating // debug info). We have to do this ourselves because we are on the // "simple" statement path. if (HaveInsertPoint()) EmitStopPoint(&S); // We need to adjust the stack, if the destination was (will be) at // a different depth. if (EmitStackUpdate(BreakContinueStack.back().SaveContinueStackDepth)) assert (0 && "continue vla botch"); llvm::BasicBlock *Block = BreakContinueStack.back().ContinueBlock; EmitBranchThroughCleanup(Block); } /// EmitCaseStmtRange - If case statement range is not too big then /// add multiple cases to switch instruction, one for each value within /// the range. If range is too big then emit "if" condition check. void CodeGenFunction::EmitCaseStmtRange(const CaseStmt &S) { assert(S.getRHS() && "Expected RHS value in CaseStmt"); llvm::APSInt LHS = S.getLHS()->EvaluateAsInt(getContext()); llvm::APSInt RHS = S.getRHS()->EvaluateAsInt(getContext()); // Emit the code for this case. We do this first to make sure it is // properly chained from our predecessor before generating the // switch machinery to enter this block. EmitBlock(createBasicBlock("sw.bb")); llvm::BasicBlock *CaseDest = Builder.GetInsertBlock(); EmitStmt(S.getSubStmt()); // If range is empty, do nothing. if (LHS.isSigned() ? RHS.slt(LHS) : RHS.ult(LHS)) return; llvm::APInt Range = RHS - LHS; // FIXME: parameters such as this should not be hardcoded. if (Range.ult(llvm::APInt(Range.getBitWidth(), 64))) { // Range is small enough to add multiple switch instruction cases. for (unsigned i = 0, e = Range.getZExtValue() + 1; i != e; ++i) { SwitchInsn->addCase(llvm::ConstantInt::get(LHS), CaseDest); LHS++; } return; } // The range is too big. Emit "if" condition into a new block, // making sure to save and restore the current insertion point. llvm::BasicBlock *RestoreBB = Builder.GetInsertBlock(); // Push this test onto the chain of range checks (which terminates // in the default basic block). The switch's default will be changed // to the top of this chain after switch emission is complete. llvm::BasicBlock *FalseDest = CaseRangeBlock; CaseRangeBlock = createBasicBlock("sw.caserange"); CurFn->getBasicBlockList().push_back(CaseRangeBlock); Builder.SetInsertPoint(CaseRangeBlock); // Emit range check. llvm::Value *Diff = Builder.CreateSub(SwitchInsn->getCondition(), llvm::ConstantInt::get(LHS), "tmp"); llvm::Value *Cond = Builder.CreateICmpULE(Diff, llvm::ConstantInt::get(Range), "tmp"); Builder.CreateCondBr(Cond, CaseDest, FalseDest); // Restore the appropriate insertion point. if (RestoreBB) Builder.SetInsertPoint(RestoreBB); else Builder.ClearInsertionPoint(); } void CodeGenFunction::EmitCaseStmt(const CaseStmt &S) { if (S.getRHS()) { EmitCaseStmtRange(S); return; } EmitBlock(createBasicBlock("sw.bb")); llvm::BasicBlock *CaseDest = Builder.GetInsertBlock(); llvm::APSInt CaseVal = S.getLHS()->EvaluateAsInt(getContext()); SwitchInsn->addCase(llvm::ConstantInt::get(CaseVal), CaseDest); EmitStmt(S.getSubStmt()); } void CodeGenFunction::EmitDefaultStmt(const DefaultStmt &S) { llvm::BasicBlock *DefaultBlock = SwitchInsn->getDefaultDest(); assert(DefaultBlock->empty() && "EmitDefaultStmt: Default block already defined?"); EmitBlock(DefaultBlock); EmitStmt(S.getSubStmt()); } void CodeGenFunction::EmitSwitchStmt(const SwitchStmt &S) { llvm::Value *CondV = EmitScalarExpr(S.getCond()); // Handle nested switch statements. llvm::SwitchInst *SavedSwitchInsn = SwitchInsn; llvm::BasicBlock *SavedCRBlock = CaseRangeBlock; // Ensure any vlas created inside are destroyed on break. llvm::Value *saveBreakStackDepth = StackDepth; // Create basic block to hold stuff that comes after switch // statement. We also need to create a default block now so that // explicit case ranges tests can have a place to jump to on // failure. llvm::BasicBlock *NextBlock = createBasicBlock("sw.epilog"); llvm::BasicBlock *DefaultBlock = createBasicBlock("sw.default"); SwitchInsn = Builder.CreateSwitch(CondV, DefaultBlock); CaseRangeBlock = DefaultBlock; // Clear the insertion point to indicate we are in unreachable code. Builder.ClearInsertionPoint(); // All break statements jump to NextBlock. If BreakContinueStack is non empty // then reuse last ContinueBlock. llvm::BasicBlock *ContinueBlock = NULL; llvm::Value *saveContinueStackDepth = NULL; if (!BreakContinueStack.empty()) { ContinueBlock = BreakContinueStack.back().ContinueBlock; saveContinueStackDepth = BreakContinueStack.back().SaveContinueStackDepth; } // Ensure any vlas created between there and here, are undone BreakContinuePush(NextBlock, ContinueBlock, saveBreakStackDepth, saveContinueStackDepth); // Emit switch body. EmitStmt(S.getBody()); BreakContinuePop(); // Update the default block in case explicit case range tests have // been chained on top. SwitchInsn->setSuccessor(0, CaseRangeBlock); // If a default was never emitted then reroute any jumps to it and // discard. if (!DefaultBlock->getParent()) { DefaultBlock->replaceAllUsesWith(NextBlock); delete DefaultBlock; } // Emit continuation. EmitBlock(NextBlock, true); SwitchInsn = SavedSwitchInsn; CaseRangeBlock = SavedCRBlock; } static std::string ConvertAsmString(const AsmStmt& S, bool &Failed) { // FIXME: No need to create new std::string here, we could just make sure // that we don't read past the end of the string data. std::string str(S.getAsmString()->getStrData(), S.getAsmString()->getByteLength()); const char *Start = str.c_str(); unsigned NumOperands = S.getNumOutputs() + S.getNumInputs(); bool IsSimple = S.isSimple(); Failed = false; static unsigned AsmCounter = 0; AsmCounter++; std::string Result; if (IsSimple) { while (*Start) { switch (*Start) { default: Result += *Start; break; case '$': Result += "$$"; break; } Start++; } return Result; } while (*Start) { switch (*Start) { default: Result += *Start; break; case '$': Result += "$$"; break; case '%': // Escaped character Start++; if (!*Start) { // FIXME: This should be caught during Sema. assert(0 && "Trailing '%' in asm string."); } char EscapedChar = *Start; if (EscapedChar == '%') { // Escaped percentage sign. Result += '%'; } else if (EscapedChar == '=') { // Generate an unique ID. Result += llvm::utostr(AsmCounter); } else if (isdigit(EscapedChar)) { // %n - Assembler operand n char *End; unsigned long n = strtoul(Start, &End, 10); if (Start == End) { // FIXME: This should be caught during Sema. assert(0 && "Missing operand!"); } else if (n >= NumOperands) { // FIXME: This should be caught during Sema. assert(0 && "Operand number out of range!"); } Result += '$' + llvm::utostr(n); Start = End - 1; } else if (isalpha(EscapedChar)) { char *End; unsigned long n = strtoul(Start + 1, &End, 10); if (Start == End) { // FIXME: This should be caught during Sema. assert(0 && "Missing operand!"); } else if (n >= NumOperands) { // FIXME: This should be caught during Sema. assert(0 && "Operand number out of range!"); } Result += "${" + llvm::utostr(n) + ':' + EscapedChar + '}'; Start = End - 1; } else if (EscapedChar == '[') { std::string SymbolicName; Start++; while (*Start && *Start != ']') { SymbolicName += *Start; Start++; } if (!Start) { // FIXME: Should be caught by sema. assert(0 && "Could not parse symbolic name"); } assert(*Start == ']' && "Error parsing symbolic name"); int Index = -1; // Check if this is an output operand. for (unsigned i = 0; i < S.getNumOutputs(); i++) { if (S.getOutputName(i) == SymbolicName) { Index = i; break; } } if (Index == -1) { for (unsigned i = 0; i < S.getNumInputs(); i++) { if (S.getInputName(i) == SymbolicName) { Index = S.getNumOutputs() + i; } } } assert(Index != -1 && "Did not find right operand!"); Result += '$' + llvm::utostr(Index); } else { Failed = true; return ""; } } Start++; } return Result; } static std::string SimplifyConstraint(const char* Constraint, TargetInfo &Target, const std::string *OutputNamesBegin = 0, const std::string *OutputNamesEnd = 0) { std::string Result; while (*Constraint) { switch (*Constraint) { default: Result += Target.convertConstraint(*Constraint); break; // Ignore these case '*': case '?': case '!': break; case 'g': Result += "imr"; break; case '[': { assert(OutputNamesBegin && OutputNamesEnd && "Must pass output names to constraints with a symbolic name"); unsigned Index; bool result = Target.resolveSymbolicName(Constraint, OutputNamesBegin, OutputNamesEnd, Index); assert(result && "Could not resolve symbolic name"); result=result; Result += llvm::utostr(Index); break; } } Constraint++; } return Result; } llvm::Value* CodeGenFunction::EmitAsmInput(const AsmStmt &S, TargetInfo::ConstraintInfo Info, const Expr *InputExpr, std::string &ConstraintStr) { llvm::Value *Arg; if ((Info & TargetInfo::CI_AllowsRegister) || !(Info & TargetInfo::CI_AllowsMemory)) { const llvm::Type *Ty = ConvertType(InputExpr->getType()); if (Ty->isSingleValueType()) { Arg = EmitScalarExpr(InputExpr); } else { LValue Dest = EmitLValue(InputExpr); uint64_t Size = CGM.getTargetData().getTypeSizeInBits(Ty); if (Size <= 64 && llvm::isPowerOf2_64(Size)) { Ty = llvm::IntegerType::get(Size); Ty = llvm::PointerType::getUnqual(Ty); Arg = Builder.CreateLoad(Builder.CreateBitCast(Dest.getAddress(), Ty)); } else { Arg = Dest.getAddress(); ConstraintStr += '*'; } } } else { LValue Dest = EmitLValue(InputExpr); Arg = Dest.getAddress(); ConstraintStr += '*'; } return Arg; } void CodeGenFunction::EmitAsmStmt(const AsmStmt &S) { bool Failed; std::string AsmString = ConvertAsmString(S, Failed); if (Failed) { ErrorUnsupported(&S, "asm string"); return; } std::string Constraints; llvm::Value *ResultAddr = 0; const llvm::Type *ResultType = llvm::Type::VoidTy; std::vector ArgTypes; std::vector Args; // Keep track of inout constraints. std::string InOutConstraints; std::vector InOutArgs; std::vector InOutArgTypes; llvm::SmallVector OutputConstraintInfos; for (unsigned i = 0, e = S.getNumOutputs(); i != e; i++) { std::string OutputConstraint(S.getOutputConstraint(i)->getStrData(), S.getOutputConstraint(i)->getByteLength()); TargetInfo::ConstraintInfo Info; bool result = Target.validateOutputConstraint(OutputConstraint.c_str(), Info); assert(result && "Failed to parse output constraint"); result=result; OutputConstraintInfos.push_back(Info); // Simplify the output constraint. OutputConstraint = SimplifyConstraint(OutputConstraint.c_str() + 1, Target); LValue Dest = EmitLValue(S.getOutputExpr(i)); const llvm::Type *DestValueType = cast(Dest.getAddress()->getType())->getElementType(); // If the first output operand is not a memory dest, we'll // make it the return value. if (i == 0 && !(Info & TargetInfo::CI_AllowsMemory) && DestValueType->isSingleValueType()) { ResultAddr = Dest.getAddress(); ResultType = DestValueType; Constraints += "=" + OutputConstraint; } else { ArgTypes.push_back(Dest.getAddress()->getType()); Args.push_back(Dest.getAddress()); if (i != 0) Constraints += ','; Constraints += "=*"; Constraints += OutputConstraint; } if (Info & TargetInfo::CI_ReadWrite) { InOutConstraints += ','; const Expr *InputExpr = S.getOutputExpr(i); llvm::Value *Arg = EmitAsmInput(S, Info, InputExpr, InOutConstraints); if (Info & TargetInfo::CI_AllowsRegister) InOutConstraints += llvm::utostr(i); else InOutConstraints += OutputConstraint; InOutArgTypes.push_back(Arg->getType()); InOutArgs.push_back(Arg); } } unsigned NumConstraints = S.getNumOutputs() + S.getNumInputs(); for (unsigned i = 0, e = S.getNumInputs(); i != e; i++) { const Expr *InputExpr = S.getInputExpr(i); std::string InputConstraint(S.getInputConstraint(i)->getStrData(), S.getInputConstraint(i)->getByteLength()); TargetInfo::ConstraintInfo Info; bool result = Target.validateInputConstraint(InputConstraint.c_str(), S.begin_output_names(), S.end_output_names(), &OutputConstraintInfos[0], Info); result=result; assert(result && "Failed to parse input constraint"); if (i != 0 || S.getNumOutputs() > 0) Constraints += ','; // Simplify the input constraint. InputConstraint = SimplifyConstraint(InputConstraint.c_str(), Target, S.begin_output_names(), S.end_output_names()); llvm::Value *Arg = EmitAsmInput(S, Info, InputExpr, Constraints); ArgTypes.push_back(Arg->getType()); Args.push_back(Arg); Constraints += InputConstraint; } // Append the "input" part of inout constraints last. for (unsigned i = 0, e = InOutArgs.size(); i != e; i++) { ArgTypes.push_back(InOutArgTypes[i]); Args.push_back(InOutArgs[i]); } Constraints += InOutConstraints; // Clobbers for (unsigned i = 0, e = S.getNumClobbers(); i != e; i++) { std::string Clobber(S.getClobber(i)->getStrData(), S.getClobber(i)->getByteLength()); Clobber = Target.getNormalizedGCCRegisterName(Clobber.c_str()); if (i != 0 || NumConstraints != 0) Constraints += ','; Constraints += "~{"; Constraints += Clobber; Constraints += '}'; } // Add machine specific clobbers std::string MachineClobbers = Target.getClobbers(); if (!MachineClobbers.empty()) { if (!Constraints.empty()) Constraints += ','; Constraints += MachineClobbers; } const llvm::FunctionType *FTy = llvm::FunctionType::get(ResultType, ArgTypes, false); llvm::InlineAsm *IA = llvm::InlineAsm::get(FTy, AsmString, Constraints, S.isVolatile() || S.getNumOutputs() == 0); llvm::Value *Result = Builder.CreateCall(IA, Args.begin(), Args.end(), ""); if (ResultAddr) // FIXME: volatility Builder.CreateStore(Result, ResultAddr); }