//=-- GRExprEngine.cpp - Path-Sensitive Expression-Level Dataflow ---*- C++ -*-= // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file defines a meta-engine for path-sensitive dataflow analysis that // is built on GREngine, but provides the boilerplate to execute transfer // functions and build the ExplodedGraph at the expression level. // //===----------------------------------------------------------------------===// #include "clang/Analysis/PathSensitive/GRExprEngine.h" #include "clang/Analysis/PathSensitive/BugReporter.h" #include "clang/Basic/SourceManager.h" #include "llvm/Support/Streams.h" #ifndef NDEBUG #include "llvm/Support/GraphWriter.h" #include #endif using namespace clang; using llvm::dyn_cast; using llvm::cast; using llvm::APSInt; //===----------------------------------------------------------------------===// // Engine construction and deletion. //===----------------------------------------------------------------------===// GRExprEngine::GRExprEngine(CFG& cfg, Decl& CD, ASTContext& Ctx) : CoreEngine(cfg, CD, Ctx, *this), G(CoreEngine.getGraph()), Liveness(G.getCFG()), Builder(NULL), StateMgr(G.getContext(), G.getAllocator()), BasicVals(StateMgr.getBasicValueFactory()), TF(NULL), // FIXME SymMgr(StateMgr.getSymbolManager()), StmtEntryNode(NULL), CleanedState(NULL), CurrentStmt(NULL) { // Compute liveness information. Liveness.runOnCFG(G.getCFG()); Liveness.runOnAllBlocks(G.getCFG(), NULL, true); } GRExprEngine::~GRExprEngine() { for (BugTypeSet::iterator I = BugTypes.begin(), E = BugTypes.end(); I!=E; ++I) delete *I; for (SimpleChecksTy::iterator I = CallChecks.begin(), E = CallChecks.end(); I != E; ++I) delete *I; for (SimpleChecksTy::iterator I=MsgExprChecks.begin(), E=MsgExprChecks.end(); I != E; ++I) delete *I; } //===----------------------------------------------------------------------===// // Utility methods. //===----------------------------------------------------------------------===// // SaveAndRestore - A utility class that uses RIIA to save and restore // the value of a variable. template struct VISIBILITY_HIDDEN SaveAndRestore { SaveAndRestore(T& x) : X(x), old_value(x) {} ~SaveAndRestore() { X = old_value; } T get() { return old_value; } T& X; T old_value; }; void GRExprEngine::EmitWarnings(Diagnostic& Diag, PathDiagnosticClient* PD) { for (bug_type_iterator I = bug_types_begin(), E = bug_types_end(); I!=E; ++I){ BugReporter BR(Diag, PD, getContext(), *this); (*I)->EmitWarnings(BR); } for (SimpleChecksTy::iterator I = CallChecks.begin(), E = CallChecks.end(); I != E; ++I) { BugReporter BR(Diag, PD, getContext(), *this); (*I)->EmitWarnings(BR); } for (SimpleChecksTy::iterator I=MsgExprChecks.begin(), E=MsgExprChecks.end(); I != E; ++I) { BugReporter BR(Diag, PD, getContext(), *this); (*I)->EmitWarnings(BR); } } void GRExprEngine::setTransferFunctions(GRTransferFuncs* tf) { TF = tf; TF->RegisterChecks(*this); } void GRExprEngine::AddCallCheck(GRSimpleAPICheck* A) { CallChecks.push_back(A); } void GRExprEngine::AddObjCMessageExprCheck(GRSimpleAPICheck* A) { MsgExprChecks.push_back(A); } ValueState* GRExprEngine::getInitialState() { // The LiveVariables information already has a compilation of all VarDecls // used in the function. Iterate through this set, and "symbolicate" // any VarDecl whose value originally comes from outside the function. typedef LiveVariables::AnalysisDataTy LVDataTy; LVDataTy& D = Liveness.getAnalysisData(); ValueState StateImpl = *StateMgr.getInitialState(); for (LVDataTy::decl_iterator I=D.begin_decl(), E=D.end_decl(); I != E; ++I) { VarDecl* VD = cast(const_cast(I->first)); if (VD->hasGlobalStorage() || isa(VD)) { RVal X = RVal::GetSymbolValue(SymMgr, VD); StateMgr.BindVar(StateImpl, VD, X); } } return StateMgr.getPersistentState(StateImpl); } ValueState* GRExprEngine::SetRVal(ValueState* St, Expr* Ex, RVal V) { bool isBlkExpr = false; if (Ex == CurrentStmt) { isBlkExpr = getCFG().isBlkExpr(Ex); if (!isBlkExpr) return St; } return StateMgr.SetRVal(St, Ex, V, isBlkExpr, false); } //===----------------------------------------------------------------------===// // Top-level transfer function logic (Dispatcher). //===----------------------------------------------------------------------===// void GRExprEngine::ProcessStmt(Stmt* S, StmtNodeBuilder& builder) { Builder = &builder; StmtEntryNode = builder.getLastNode(); CurrentStmt = S; NodeSet Dst; // Set up our simple checks. // FIXME: This can probably be installed directly in GRCoreEngine, obviating // the need to do a copy every time we hit a block-level statement. if (!MsgExprChecks.empty()) Builder->setObjCMsgExprAuditors((GRAuditor**) &MsgExprChecks[0], (GRAuditor**) (&MsgExprChecks[0] + MsgExprChecks.size())); if (!CallChecks.empty()) Builder->setCallExprAuditors((GRAuditor**) &CallChecks[0], (GRAuditor**) (&CallChecks[0] + CallChecks.size())); // Create the cleaned state. CleanedState = StateMgr.RemoveDeadBindings(StmtEntryNode->getState(), CurrentStmt, Liveness); Builder->SetCleanedState(CleanedState); // Visit the statement. Visit(S, StmtEntryNode, Dst); // If no nodes were generated, generate a new node that has all the // dead mappings removed. if (Dst.size() == 1 && *Dst.begin() == StmtEntryNode) builder.generateNode(S, GetState(StmtEntryNode), StmtEntryNode); // NULL out these variables to cleanup. CurrentStmt = NULL; StmtEntryNode = NULL; Builder = NULL; CleanedState = NULL; } void GRExprEngine::Visit(Stmt* S, NodeTy* Pred, NodeSet& Dst) { // FIXME: add metadata to the CFG so that we can disable // this check when we KNOW that there is no block-level subexpression. // The motivation is that this check requires a hashtable lookup. if (S != CurrentStmt && getCFG().isBlkExpr(S)) { Dst.Add(Pred); return; } switch (S->getStmtClass()) { default: // Cases we intentionally have "default" handle: // AddrLabelExpr, IntegerLiteral, CharacterLiteral Dst.Add(Pred); // No-op. Simply propagate the current state unchanged. break; case Stmt::AsmStmtClass: VisitAsmStmt(cast(S), Pred, Dst); break; case Stmt::BinaryOperatorClass: { BinaryOperator* B = cast(S); if (B->isLogicalOp()) { VisitLogicalExpr(B, Pred, Dst); break; } else if (B->getOpcode() == BinaryOperator::Comma) { ValueState* St = GetState(Pred); MakeNode(Dst, B, Pred, SetRVal(St, B, GetRVal(St, B->getRHS()))); break; } VisitBinaryOperator(cast(S), Pred, Dst); break; } case Stmt::CallExprClass: { CallExpr* C = cast(S); VisitCall(C, Pred, C->arg_begin(), C->arg_end(), Dst); break; } case Stmt::CastExprClass: { CastExpr* C = cast(S); VisitCast(C, C->getSubExpr(), Pred, Dst); break; } // FIXME: ChooseExpr is really a constant. We need to fix // the CFG do not model them as explicit control-flow. case Stmt::ChooseExprClass: { // __builtin_choose_expr ChooseExpr* C = cast(S); VisitGuardedExpr(C, C->getLHS(), C->getRHS(), Pred, Dst); break; } case Stmt::CompoundAssignOperatorClass: VisitBinaryOperator(cast(S), Pred, Dst); break; case Stmt::ConditionalOperatorClass: { // '?' operator ConditionalOperator* C = cast(S); VisitGuardedExpr(C, C->getLHS(), C->getRHS(), Pred, Dst); break; } case Stmt::DeclRefExprClass: VisitDeclRefExpr(cast(S), Pred, Dst); break; case Stmt::DeclStmtClass: VisitDeclStmt(cast(S), Pred, Dst); break; case Stmt::ImplicitCastExprClass: { ImplicitCastExpr* C = cast(S); VisitCast(C, C->getSubExpr(), Pred, Dst); break; } case Stmt::ObjCMessageExprClass: { VisitObjCMessageExpr(cast(S), Pred, Dst); break; } case Stmt::ParenExprClass: Visit(cast(S)->getSubExpr(), Pred, Dst); break; case Stmt::SizeOfAlignOfTypeExprClass: VisitSizeOfAlignOfTypeExpr(cast(S), Pred, Dst); break; case Stmt::StmtExprClass: { StmtExpr* SE = cast(S); ValueState* St = GetState(Pred); // FIXME: Not certain if we can have empty StmtExprs. If so, we should // probably just remove these from the CFG. assert (!SE->getSubStmt()->body_empty()); if (Expr* LastExpr = dyn_cast(*SE->getSubStmt()->body_rbegin())) MakeNode(Dst, SE, Pred, SetRVal(St, SE, GetRVal(St, LastExpr))); else Dst.Add(Pred); break; } // FIXME: We may wish to always bind state to ReturnStmts so // that users can quickly query what was the state at the // exit points of a function. case Stmt::ReturnStmtClass: VisitReturnStmt(cast(S), Pred, Dst); break; case Stmt::UnaryOperatorClass: { UnaryOperator* U = cast(S); switch (U->getOpcode()) { case UnaryOperator::Deref: VisitDeref(U, Pred, Dst); break; case UnaryOperator::Plus: Visit(U->getSubExpr(), Pred, Dst); break; case UnaryOperator::SizeOf: VisitSizeOfExpr(U, Pred, Dst); break; default: VisitUnaryOperator(U, Pred, Dst); break; } break; } } } //===----------------------------------------------------------------------===// // Block entrance. (Update counters). //===----------------------------------------------------------------------===// bool GRExprEngine::ProcessBlockEntrance(CFGBlock* B, ValueState*, GRBlockCounter BC) { return BC.getNumVisited(B->getBlockID()) < 3; } //===----------------------------------------------------------------------===// // Branch processing. //===----------------------------------------------------------------------===// ValueState* GRExprEngine::MarkBranch(ValueState* St, Stmt* Terminator, bool branchTaken) { switch (Terminator->getStmtClass()) { default: return St; case Stmt::BinaryOperatorClass: { // '&&' and '||' BinaryOperator* B = cast(Terminator); BinaryOperator::Opcode Op = B->getOpcode(); assert (Op == BinaryOperator::LAnd || Op == BinaryOperator::LOr); // For &&, if we take the true branch, then the value of the whole // expression is that of the RHS expression. // // For ||, if we take the false branch, then the value of the whole // expression is that of the RHS expression. Expr* Ex = (Op == BinaryOperator::LAnd && branchTaken) || (Op == BinaryOperator::LOr && !branchTaken) ? B->getRHS() : B->getLHS(); return SetBlkExprRVal(St, B, UndefinedVal(Ex)); } case Stmt::ConditionalOperatorClass: { // ?: ConditionalOperator* C = cast(Terminator); // For ?, if branchTaken == true then the value is either the LHS or // the condition itself. (GNU extension). Expr* Ex; if (branchTaken) Ex = C->getLHS() ? C->getLHS() : C->getCond(); else Ex = C->getRHS(); return SetBlkExprRVal(St, C, UndefinedVal(Ex)); } case Stmt::ChooseExprClass: { // ?: ChooseExpr* C = cast(Terminator); Expr* Ex = branchTaken ? C->getLHS() : C->getRHS(); return SetBlkExprRVal(St, C, UndefinedVal(Ex)); } } } void GRExprEngine::ProcessBranch(Expr* Condition, Stmt* Term, BranchNodeBuilder& builder) { // Remove old bindings for subexpressions. ValueState* PrevState = StateMgr.RemoveSubExprBindings(builder.getState()); // Check for NULL conditions; e.g. "for(;;)" if (!Condition) { builder.markInfeasible(false); return; } RVal V = GetRVal(PrevState, Condition); switch (V.getBaseKind()) { default: break; case RVal::UnknownKind: builder.generateNode(MarkBranch(PrevState, Term, true), true); builder.generateNode(MarkBranch(PrevState, Term, false), false); return; case RVal::UndefinedKind: { NodeTy* N = builder.generateNode(PrevState, true); if (N) { N->markAsSink(); UndefBranches.insert(N); } builder.markInfeasible(false); return; } } // Process the true branch. bool isFeasible = false; ValueState* St = Assume(PrevState, V, true, isFeasible); if (isFeasible) builder.generateNode(MarkBranch(St, Term, true), true); else builder.markInfeasible(true); // Process the false branch. isFeasible = false; St = Assume(PrevState, V, false, isFeasible); if (isFeasible) builder.generateNode(MarkBranch(St, Term, false), false); else builder.markInfeasible(false); } /// ProcessIndirectGoto - Called by GRCoreEngine. Used to generate successor /// nodes by processing the 'effects' of a computed goto jump. void GRExprEngine::ProcessIndirectGoto(IndirectGotoNodeBuilder& builder) { ValueState* St = builder.getState(); RVal V = GetRVal(St, builder.getTarget()); // Three possibilities: // // (1) We know the computed label. // (2) The label is NULL (or some other constant), or Undefined. // (3) We have no clue about the label. Dispatch to all targets. // typedef IndirectGotoNodeBuilder::iterator iterator; if (isa(V)) { LabelStmt* L = cast(V).getLabel(); for (iterator I=builder.begin(), E=builder.end(); I != E; ++I) { if (I.getLabel() == L) { builder.generateNode(I, St); return; } } assert (false && "No block with label."); return; } if (isa(V) || isa(V)) { // Dispatch to the first target and mark it as a sink. NodeTy* N = builder.generateNode(builder.begin(), St, true); UndefBranches.insert(N); return; } // This is really a catch-all. We don't support symbolics yet. assert (V.isUnknown()); for (iterator I=builder.begin(), E=builder.end(); I != E; ++I) builder.generateNode(I, St); } void GRExprEngine::VisitGuardedExpr(Expr* Ex, Expr* L, Expr* R, NodeTy* Pred, NodeSet& Dst) { assert (Ex == CurrentStmt && getCFG().isBlkExpr(Ex)); ValueState* St = GetState(Pred); RVal X = GetBlkExprRVal(St, Ex); assert (X.isUndef()); Expr* SE = (Expr*) cast(X).getData(); assert (SE); X = GetBlkExprRVal(St, SE); // Make sure that we invalidate the previous binding. MakeNode(Dst, Ex, Pred, StateMgr.SetRVal(St, Ex, X, true, true)); } /// ProcessSwitch - Called by GRCoreEngine. Used to generate successor /// nodes by processing the 'effects' of a switch statement. void GRExprEngine::ProcessSwitch(SwitchNodeBuilder& builder) { typedef SwitchNodeBuilder::iterator iterator; ValueState* St = builder.getState(); Expr* CondE = builder.getCondition(); RVal CondV = GetRVal(St, CondE); if (CondV.isUndef()) { NodeTy* N = builder.generateDefaultCaseNode(St, true); UndefBranches.insert(N); return; } ValueState* DefaultSt = St; // While most of this can be assumed (such as the signedness), having it // just computed makes sure everything makes the same assumptions end-to-end. unsigned bits = getContext().getTypeSize(CondE->getType()); APSInt V1(bits, false); APSInt V2 = V1; for (iterator I = builder.begin(), EI = builder.end(); I != EI; ++I) { CaseStmt* Case = cast(I.getCase()); // Evaluate the case. if (!Case->getLHS()->isIntegerConstantExpr(V1, getContext(), 0, true)) { assert (false && "Case condition must evaluate to an integer constant."); return; } // Get the RHS of the case, if it exists. if (Expr* E = Case->getRHS()) { if (!E->isIntegerConstantExpr(V2, getContext(), 0, true)) { assert (false && "Case condition (RHS) must evaluate to an integer constant."); return ; } assert (V1 <= V2); } else V2 = V1; // FIXME: Eventually we should replace the logic below with a range // comparison, rather than concretize the values within the range. // This should be easy once we have "ranges" for NonLVals. do { nonlval::ConcreteInt CaseVal(BasicVals.getValue(V1)); RVal Res = EvalBinOp(BinaryOperator::EQ, CondV, CaseVal); // Now "assume" that the case matches. bool isFeasible = false; ValueState* StNew = Assume(St, Res, true, isFeasible); if (isFeasible) { builder.generateCaseStmtNode(I, StNew); // If CondV evaluates to a constant, then we know that this // is the *only* case that we can take, so stop evaluating the // others. if (isa(CondV)) return; } // Now "assume" that the case doesn't match. Add this state // to the default state (if it is feasible). isFeasible = false; StNew = Assume(DefaultSt, Res, false, isFeasible); if (isFeasible) DefaultSt = StNew; // Concretize the next value in the range. if (V1 == V2) break; ++V1; assert (V1 <= V2); } while (true); } // If we reach here, than we know that the default branch is // possible. builder.generateDefaultCaseNode(DefaultSt); } //===----------------------------------------------------------------------===// // Transfer functions: logical operations ('&&', '||'). //===----------------------------------------------------------------------===// void GRExprEngine::VisitLogicalExpr(BinaryOperator* B, NodeTy* Pred, NodeSet& Dst) { assert (B->getOpcode() == BinaryOperator::LAnd || B->getOpcode() == BinaryOperator::LOr); assert (B == CurrentStmt && getCFG().isBlkExpr(B)); ValueState* St = GetState(Pred); RVal X = GetBlkExprRVal(St, B); assert (X.isUndef()); Expr* Ex = (Expr*) cast(X).getData(); assert (Ex); if (Ex == B->getRHS()) { X = GetBlkExprRVal(St, Ex); // Handle undefined values. if (X.isUndef()) { MakeNode(Dst, B, Pred, SetBlkExprRVal(St, B, X)); return; } // We took the RHS. Because the value of the '&&' or '||' expression must // evaluate to 0 or 1, we must assume the value of the RHS evaluates to 0 // or 1. Alternatively, we could take a lazy approach, and calculate this // value later when necessary. We don't have the machinery in place for // this right now, and since most logical expressions are used for branches, // the payoff is not likely to be large. Instead, we do eager evaluation. bool isFeasible = false; ValueState* NewState = Assume(St, X, true, isFeasible); if (isFeasible) MakeNode(Dst, B, Pred, SetBlkExprRVal(NewState, B, MakeConstantVal(1U, B))); isFeasible = false; NewState = Assume(St, X, false, isFeasible); if (isFeasible) MakeNode(Dst, B, Pred, SetBlkExprRVal(NewState, B, MakeConstantVal(0U, B))); } else { // We took the LHS expression. Depending on whether we are '&&' or // '||' we know what the value of the expression is via properties of // the short-circuiting. X = MakeConstantVal( B->getOpcode() == BinaryOperator::LAnd ? 0U : 1U, B); MakeNode(Dst, B, Pred, SetBlkExprRVal(St, B, X)); } } //===----------------------------------------------------------------------===// // Transfer functions: Loads and stores. //===----------------------------------------------------------------------===// void GRExprEngine::VisitDeclRefExpr(DeclRefExpr* D, NodeTy* Pred, NodeSet& Dst){ if (D != CurrentStmt) { Dst.Add(Pred); // No-op. Simply propagate the current state unchanged. return; } // If we are here, we are loading the value of the decl and binding // it to the block-level expression. ValueState* St = GetState(Pred); RVal X = RVal::MakeVal(BasicVals, D); RVal Y = isa(X) ? GetRVal(St, cast(X)) : X; MakeNode(Dst, D, Pred, SetBlkExprRVal(St, D, Y)); } void GRExprEngine::EvalStore(NodeSet& Dst, Expr* E, NodeTy* Pred, ValueState* St, RVal TargetLV, RVal Val) { assert (Builder && "GRStmtNodeBuilder must be defined."); unsigned size = Dst.size(); SaveAndRestore OldSink(Builder->BuildSinks); assert (!TargetLV.isUndef()); TF->EvalStore(Dst, *this, *Builder, E, Pred, St, TargetLV, Val); // Handle the case where no nodes where generated. Auto-generate that // contains the updated state if we aren't generating sinks. if (!Builder->BuildSinks && Dst.size() == size) TF->GRTransferFuncs::EvalStore(Dst, *this, *Builder, E, Pred, St, TargetLV, Val); } //===----------------------------------------------------------------------===// // Transfer function: Function calls. //===----------------------------------------------------------------------===// void GRExprEngine::VisitCall(CallExpr* CE, NodeTy* Pred, CallExpr::arg_iterator AI, CallExpr::arg_iterator AE, NodeSet& Dst) { // Process the arguments. if (AI != AE) { NodeSet DstTmp; Visit(*AI, Pred, DstTmp); ++AI; for (NodeSet::iterator DI=DstTmp.begin(), DE=DstTmp.end(); DI != DE; ++DI) VisitCall(CE, *DI, AI, AE, Dst); return; } // If we reach here we have processed all of the arguments. Evaluate // the callee expression. NodeSet DstTmp; Expr* Callee = CE->getCallee()->IgnoreParenCasts(); VisitLVal(Callee, Pred, DstTmp); if (DstTmp.empty()) DstTmp.Add(Pred); // Finally, evaluate the function call. for (NodeSet::iterator DI = DstTmp.begin(), DE = DstTmp.end(); DI!=DE; ++DI) { ValueState* St = GetState(*DI); RVal L = GetLVal(St, Callee); // FIXME: Add support for symbolic function calls (calls involving // function pointer values that are symbolic). // Check for undefined control-flow or calls to NULL. if (L.isUndef() || isa(L)) { NodeTy* N = Builder->generateNode(CE, St, *DI); if (N) { N->markAsSink(); BadCalls.insert(N); } continue; } // Check for the "noreturn" attribute. SaveAndRestore OldSink(Builder->BuildSinks); if (isa(L)) { FunctionDecl* FD = cast(L).getDecl(); if (FD->getAttr()) Builder->BuildSinks = true; else { // HACK: Some functions are not marked noreturn, and don't return. // Here are a few hardwired ones. If this takes too long, we can // potentially cache these results. const char* s = FD->getIdentifier()->getName(); unsigned n = strlen(s); switch (n) { default: break; case 4: if (!memcmp(s, "exit", 4)) Builder->BuildSinks = true; break; case 5: if (!memcmp(s, "panic", 5)) Builder->BuildSinks = true; break; } } } // Evaluate the call. bool invalidateArgs = false; if (L.isUnknown()) { // Check for an "unknown" callee. invalidateArgs = true; } else if (isa(L)) { IdentifierInfo* Info = cast(L).getDecl()->getIdentifier(); if (unsigned id = Info->getBuiltinID()) { switch (id) { case Builtin::BI__builtin_expect: { // For __builtin_expect, just return the value of the subexpression. assert (CE->arg_begin() != CE->arg_end()); RVal X = GetRVal(St, *(CE->arg_begin())); MakeNode(Dst, CE, *DI, SetRVal(St, CE, X)); continue; } default: invalidateArgs = true; break; } } } if (invalidateArgs) { // Invalidate all arguments passed in by reference (LVals). for (CallExpr::arg_iterator I = CE->arg_begin(), E = CE->arg_end(); I != E; ++I) { RVal V = GetRVal(St, *I); if (isa(V)) St = SetRVal(St, cast(V), UnknownVal()); } MakeNode(Dst, CE, *DI, St); } else { // Check any arguments passed-by-value against being undefined. bool badArg = false; for (CallExpr::arg_iterator I = CE->arg_begin(), E = CE->arg_end(); I != E; ++I) { if (GetRVal(GetState(*DI), *I).isUndef()) { NodeTy* N = Builder->generateNode(CE, GetState(*DI), *DI); if (N) { N->markAsSink(); UndefArgs[N] = *I; } badArg = true; break; } } if (badArg) continue; // Dispatch to the plug-in transfer function. unsigned size = Dst.size(); SaveAndRestore OldSink(Builder->BuildSinks); EvalCall(Dst, CE, cast(L), *DI); // Handle the case where no nodes where generated. Auto-generate that // contains the updated state if we aren't generating sinks. if (!Builder->BuildSinks && Dst.size() == size) MakeNode(Dst, CE, *DI, St); } } } //===----------------------------------------------------------------------===// // Transfer function: Objective-C message expressions. //===----------------------------------------------------------------------===// void GRExprEngine::VisitObjCMessageExpr(ObjCMessageExpr* ME, NodeTy* Pred, NodeSet& Dst){ VisitObjCMessageExprArgHelper(ME, ME->arg_begin(), ME->arg_end(), Pred, Dst); } void GRExprEngine::VisitObjCMessageExprArgHelper(ObjCMessageExpr* ME, ObjCMessageExpr::arg_iterator AI, ObjCMessageExpr::arg_iterator AE, NodeTy* Pred, NodeSet& Dst) { if (AI == AE) { // Process the receiver. if (Expr* Receiver = ME->getReceiver()) { NodeSet Tmp; Visit(Receiver, Pred, Tmp); for (NodeSet::iterator NI = Tmp.begin(), NE = Tmp.end(); NI != NE; ++NI) VisitObjCMessageExprDispatchHelper(ME, *NI, Dst); return; } VisitObjCMessageExprDispatchHelper(ME, Pred, Dst); return; } NodeSet Tmp; Visit(*AI, Pred, Tmp); ++AI; for (NodeSet::iterator NI = Tmp.begin(), NE = Tmp.end(); NI != NE; ++NI) VisitObjCMessageExprArgHelper(ME, AI, AE, *NI, Dst); } void GRExprEngine::VisitObjCMessageExprDispatchHelper(ObjCMessageExpr* ME, NodeTy* Pred, NodeSet& Dst) { // FIXME: More logic for the processing the method call. ValueState* St = GetState(Pred); if (Expr* Receiver = ME->getReceiver()) { RVal L = GetRVal(St, Receiver); // Check for undefined control-flow or calls to NULL. if (L.isUndef()) { NodeTy* N = Builder->generateNode(ME, St, Pred); if (N) { N->markAsSink(); UndefReceivers.insert(N); } return; } } // Check for any arguments that are uninitialized/undefined. for (ObjCMessageExpr::arg_iterator I = ME->arg_begin(), E = ME->arg_end(); I != E; ++I) { if (GetRVal(St, *I).isUndef()) { // Generate an error node for passing an uninitialized/undefined value // as an argument to a message expression. This node is a sink. NodeTy* N = Builder->generateNode(ME, St, Pred); if (N) { N->markAsSink(); MsgExprUndefArgs[N] = *I; } return; } } // Dispatch to plug-in transfer function. unsigned size = Dst.size(); SaveAndRestore OldSink(Builder->BuildSinks); EvalObjCMessageExpr(Dst, ME, Pred); // Handle the case where no nodes where generated. Auto-generate that // contains the updated state if we aren't generating sinks. if (!Builder->BuildSinks && Dst.size() == size) MakeNode(Dst, ME, Pred, St); } //===----------------------------------------------------------------------===// // Transfer functions: Miscellaneous statements. //===----------------------------------------------------------------------===// void GRExprEngine::VisitCast(Expr* CastE, Expr* Ex, NodeTy* Pred, NodeSet& Dst){ NodeSet S1; QualType T = CastE->getType(); if (T->isReferenceType()) VisitLVal(Ex, Pred, S1); else Visit(Ex, Pred, S1); // Check for redundant casts or casting to "void" if (T->isVoidType() || Ex->getType() == T || (T->isPointerType() && Ex->getType()->isFunctionType())) { for (NodeSet::iterator I1 = S1.begin(), E1 = S1.end(); I1 != E1; ++I1) Dst.Add(*I1); return; } for (NodeSet::iterator I1 = S1.begin(), E1 = S1.end(); I1 != E1; ++I1) { NodeTy* N = *I1; ValueState* St = GetState(N); RVal V = T->isReferenceType() ? GetLVal(St, Ex) : GetRVal(St, Ex); MakeNode(Dst, CastE, N, SetRVal(St, CastE, EvalCast(V, CastE->getType()))); } } void GRExprEngine::VisitDeclStmt(DeclStmt* DS, GRExprEngine::NodeTy* Pred, GRExprEngine::NodeSet& Dst) { ValueState* St = GetState(Pred); for (const ScopedDecl* D = DS->getDecl(); D; D = D->getNextDeclarator()) if (const VarDecl* VD = dyn_cast(D)) { // FIXME: Add support for local arrays. if (VD->getType()->isArrayType()) continue; const Expr* Ex = VD->getInit(); if (!VD->hasGlobalStorage() || VD->getStorageClass() == VarDecl::Static) { // In this context, Static => Local variable. assert (!VD->getStorageClass() == VarDecl::Static || !VD->isFileVarDecl()); // If there is no initializer, set the value of the // variable to "Undefined". // // FIXME: static variables may have an initializer, but the second // time a function is called those values may not be current. QualType T = VD->getType(); if ( VD->getStorageClass() == VarDecl::Static) { // C99: 6.7.8 Initialization // If an object that has static storage duration is not initialized // explicitly, then: // —if it has pointer type, it is initialized to a null pointer; // —if it has arithmetic type, it is initialized to (positive or // unsigned) zero; // FIXME: Handle structs. Now we treat their values as unknown. if (T->isPointerType()) { St = SetRVal(St, lval::DeclVal(VD), lval::ConcreteInt(BasicVals.getValue(0, T))); } else if (T->isIntegerType()) { St = SetRVal(St, lval::DeclVal(VD), nonlval::ConcreteInt(BasicVals.getValue(0, T))); } } else { // FIXME: Handle structs. Now we treat them as unknown. What // we need to do is treat their members as unknown. if (T->isPointerType() || T->isIntegerType()) St = SetRVal(St, lval::DeclVal(VD), Ex ? GetRVal(St, Ex) : UndefinedVal()); } } } MakeNode(Dst, DS, Pred, St); } /// VisitSizeOfAlignOfTypeExpr - Transfer function for sizeof(type). void GRExprEngine::VisitSizeOfAlignOfTypeExpr(SizeOfAlignOfTypeExpr* Ex, NodeTy* Pred, NodeSet& Dst) { QualType T = Ex->getArgumentType(); uint64_t amt; if (Ex->isSizeOf()) { // FIXME: Add support for VLAs. if (!T.getTypePtr()->isConstantSizeType()) return; amt = 1; // Handle sizeof(void) if (T != getContext().VoidTy) amt = getContext().getTypeSize(T) / 8; } else // Get alignment of the type. amt = getContext().getTypeAlign(T) / 8; MakeNode(Dst, Ex, Pred, SetRVal(GetState(Pred), Ex, NonLVal::MakeVal(BasicVals, amt, Ex->getType()))); } void GRExprEngine::VisitDeref(UnaryOperator* U, NodeTy* Pred, NodeSet& Dst, bool GetLVal) { Expr* Ex = U->getSubExpr()->IgnoreParens(); NodeSet DstTmp; if (isa(Ex)) DstTmp.Add(Pred); else Visit(Ex, Pred, DstTmp); for (NodeSet::iterator I = DstTmp.begin(), DE = DstTmp.end(); I != DE; ++I) { NodeTy* N = *I; ValueState* St = GetState(N); // FIXME: Bifurcate when dereferencing a symbolic with no constraints? RVal V = GetRVal(St, Ex); // Check for dereferences of undefined values. if (V.isUndef()) { NodeTy* Succ = Builder->generateNode(U, St, N); if (Succ) { Succ->markAsSink(); UndefDeref.insert(Succ); } continue; } // Check for dereferences of unknown values. Treat as No-Ops. if (V.isUnknown()) { Dst.Add(N); continue; } // After a dereference, one of two possible situations arise: // (1) A crash, because the pointer was NULL. // (2) The pointer is not NULL, and the dereference works. // // We add these assumptions. LVal LV = cast(V); bool isFeasibleNotNull; // "Assume" that the pointer is Not-NULL. ValueState* StNotNull = Assume(St, LV, true, isFeasibleNotNull); if (isFeasibleNotNull) { if (GetLVal) MakeNode(Dst, U, N, SetRVal(StNotNull, U, LV)); else { // FIXME: Currently symbolic analysis "generates" new symbols // for the contents of values. We need a better approach. MakeNode(Dst, U, N, SetRVal(StNotNull, U, GetRVal(StNotNull, LV, U->getType()))); } } bool isFeasibleNull; // Now "assume" that the pointer is NULL. ValueState* StNull = Assume(St, LV, false, isFeasibleNull); if (isFeasibleNull) { // We don't use "MakeNode" here because the node will be a sink // and we have no intention of processing it later. NodeTy* NullNode = Builder->generateNode(U, StNull, N); if (NullNode) { NullNode->markAsSink(); if (isFeasibleNotNull) ImplicitNullDeref.insert(NullNode); else ExplicitNullDeref.insert(NullNode); } } } } void GRExprEngine::VisitUnaryOperator(UnaryOperator* U, NodeTy* Pred, NodeSet& Dst) { NodeSet S1; assert (U->getOpcode() != UnaryOperator::Deref); assert (U->getOpcode() != UnaryOperator::SizeOf); assert (U->getOpcode() != UnaryOperator::AlignOf); bool use_GetLVal = false; switch (U->getOpcode()) { case UnaryOperator::PostInc: case UnaryOperator::PostDec: case UnaryOperator::PreInc: case UnaryOperator::PreDec: case UnaryOperator::AddrOf: // Evalue subexpression as an LVal. use_GetLVal = true; VisitLVal(U->getSubExpr(), Pred, S1); break; default: Visit(U->getSubExpr(), Pred, S1); break; } for (NodeSet::iterator I1 = S1.begin(), E1 = S1.end(); I1 != E1; ++I1) { NodeTy* N1 = *I1; ValueState* St = GetState(N1); RVal SubV = use_GetLVal ? GetLVal(St, U->getSubExpr()) : GetRVal(St, U->getSubExpr()); if (SubV.isUnknown()) { Dst.Add(N1); continue; } if (SubV.isUndef()) { MakeNode(Dst, U, N1, SetRVal(St, U, SubV)); continue; } if (U->isIncrementDecrementOp()) { // Handle ++ and -- (both pre- and post-increment). LVal SubLV = cast(SubV); RVal V = GetRVal(St, SubLV, U->getType()); if (V.isUnknown()) { Dst.Add(N1); continue; } // Propagate undefined values. if (V.isUndef()) { MakeNode(Dst, U, N1, SetRVal(St, U, V)); continue; } // Handle all other values. BinaryOperator::Opcode Op = U->isIncrementOp() ? BinaryOperator::Add : BinaryOperator::Sub; RVal Result = EvalBinOp(Op, V, MakeConstantVal(1U, U)); if (U->isPostfix()) St = SetRVal(SetRVal(St, U, V), SubLV, Result); else St = SetRVal(SetRVal(St, U, Result), SubLV, Result); MakeNode(Dst, U, N1, St); continue; } // Handle all other unary operators. switch (U->getOpcode()) { case UnaryOperator::Extension: St = SetRVal(St, U, SubV); break; case UnaryOperator::Minus: St = SetRVal(St, U, EvalMinus(U, cast(SubV))); break; case UnaryOperator::Not: St = SetRVal(St, U, EvalComplement(cast(SubV))); break; case UnaryOperator::LNot: // C99 6.5.3.3: "The expression !E is equivalent to (0==E)." // // Note: technically we do "E == 0", but this is the same in the // transfer functions as "0 == E". if (isa(SubV)) { lval::ConcreteInt V(BasicVals.getZeroWithPtrWidth()); RVal Result = EvalBinOp(BinaryOperator::EQ, cast(SubV), V); St = SetRVal(St, U, Result); } else { Expr* Ex = U->getSubExpr(); nonlval::ConcreteInt V(BasicVals.getValue(0, Ex->getType())); RVal Result = EvalBinOp(BinaryOperator::EQ, cast(SubV), V); St = SetRVal(St, U, Result); } break; case UnaryOperator::AddrOf: { assert (isa(SubV)); St = SetRVal(St, U, SubV); break; } default: ; assert (false && "Not implemented."); } MakeNode(Dst, U, N1, St); } } void GRExprEngine::VisitSizeOfExpr(UnaryOperator* U, NodeTy* Pred, NodeSet& Dst) { QualType T = U->getSubExpr()->getType(); // FIXME: Add support for VLAs. if (!T.getTypePtr()->isConstantSizeType()) return; uint64_t size = getContext().getTypeSize(T) / 8; ValueState* St = GetState(Pred); St = SetRVal(St, U, NonLVal::MakeVal(BasicVals, size, U->getType())); MakeNode(Dst, U, Pred, St); } void GRExprEngine::VisitLVal(Expr* Ex, NodeTy* Pred, NodeSet& Dst) { if (Ex != CurrentStmt && getCFG().isBlkExpr(Ex)) { Dst.Add(Pred); return; } Ex = Ex->IgnoreParens(); if (isa(Ex)) { Dst.Add(Pred); return; } if (UnaryOperator* U = dyn_cast(Ex)) if (U->getOpcode() == UnaryOperator::Deref) { VisitDeref(U, Pred, Dst, true); return; } Visit(Ex, Pred, Dst); } void GRExprEngine::VisitAsmStmt(AsmStmt* A, NodeTy* Pred, NodeSet& Dst) { VisitAsmStmtHelperOutputs(A, A->begin_outputs(), A->end_outputs(), Pred, Dst); } void GRExprEngine::VisitAsmStmtHelperOutputs(AsmStmt* A, AsmStmt::outputs_iterator I, AsmStmt::outputs_iterator E, NodeTy* Pred, NodeSet& Dst) { if (I == E) { VisitAsmStmtHelperInputs(A, A->begin_inputs(), A->end_inputs(), Pred, Dst); return; } NodeSet Tmp; VisitLVal(*I, Pred, Tmp); ++I; for (NodeSet::iterator NI = Tmp.begin(), NE = Tmp.end(); NI != NE; ++NI) VisitAsmStmtHelperOutputs(A, I, E, *NI, Dst); } void GRExprEngine::VisitAsmStmtHelperInputs(AsmStmt* A, AsmStmt::inputs_iterator I, AsmStmt::inputs_iterator E, NodeTy* Pred, NodeSet& Dst) { if (I == E) { // We have processed both the inputs and the outputs. All of the outputs // should evaluate to LVals. Nuke all of their values. // FIXME: Some day in the future it would be nice to allow a "plug-in" // which interprets the inline asm and stores proper results in the // outputs. ValueState* St = GetState(Pred); for (AsmStmt::outputs_iterator OI = A->begin_outputs(), OE = A->end_outputs(); OI != OE; ++OI) { RVal X = GetLVal(St, *OI); assert (!isa(X)); if (isa(X)) St = SetRVal(St, cast(X), UnknownVal()); } MakeNode(Dst, A, Pred, St); return; } NodeSet Tmp; Visit(*I, Pred, Tmp); ++I; for (NodeSet::iterator NI = Tmp.begin(), NE = Tmp.end(); NI != NE; ++NI) VisitAsmStmtHelperInputs(A, I, E, *NI, Dst); } void GRExprEngine::EvalReturn(NodeSet& Dst, ReturnStmt* S, NodeTy* Pred) { assert (Builder && "GRStmtNodeBuilder must be defined."); unsigned size = Dst.size(); SaveAndRestore OldSink(Builder->BuildSinks); TF->EvalReturn(Dst, *this, *Builder, S, Pred); // Handle the case where no nodes where generated. Auto-generate that // contains the updated state if we aren't generating sinks. if (!Builder->BuildSinks && Dst.size() == size) MakeNode(Dst, S, Pred, GetState(Pred)); } void GRExprEngine::VisitReturnStmt(ReturnStmt* S, NodeTy* Pred, NodeSet& Dst) { Expr* R = S->getRetValue(); if (!R) { EvalReturn(Dst, S, Pred); return; } NodeSet DstRet; QualType T = R->getType(); if (T->isPointerLikeType()) { // Check if any of the return values return the address of a stack variable. NodeSet Tmp; Visit(R, Pred, Tmp); for (NodeSet::iterator I=Tmp.begin(), E=Tmp.end(); I!=E; ++I) { RVal X = GetRVal((*I)->getState(), R); if (isa(X)) { if (cast(X).getDecl()->hasLocalStorage()) { // Create a special node representing the v NodeTy* RetStackNode = Builder->generateNode(S, GetState(*I), *I); if (RetStackNode) { RetStackNode->markAsSink(); RetsStackAddr.insert(RetStackNode); } continue; } } DstRet.Add(*I); } } else Visit(R, Pred, DstRet); for (NodeSet::iterator I=DstRet.begin(), E=DstRet.end(); I!=E; ++I) EvalReturn(Dst, S, *I); } //===----------------------------------------------------------------------===// // Transfer functions: Binary operators. //===----------------------------------------------------------------------===// void GRExprEngine::VisitBinaryOperator(BinaryOperator* B, GRExprEngine::NodeTy* Pred, GRExprEngine::NodeSet& Dst) { NodeSet S1; if (B->isAssignmentOp()) VisitLVal(B->getLHS(), Pred, S1); else Visit(B->getLHS(), Pred, S1); for (NodeSet::iterator I1=S1.begin(), E1=S1.end(); I1 != E1; ++I1) { NodeTy* N1 = *I1; // When getting the value for the LHS, check if we are in an assignment. // In such cases, we want to (initially) treat the LHS as an LVal, // so we use GetLVal instead of GetRVal so that DeclRefExpr's are // evaluated to LValDecl's instead of to an NonLVal. RVal LeftV = B->isAssignmentOp() ? GetLVal(GetState(N1), B->getLHS()) : GetRVal(GetState(N1), B->getLHS()); // Visit the RHS... NodeSet S2; Visit(B->getRHS(), N1, S2); // Process the binary operator. for (NodeSet::iterator I2 = S2.begin(), E2 = S2.end(); I2 != E2; ++I2) { NodeTy* N2 = *I2; ValueState* St = GetState(N2); Expr* RHS = B->getRHS(); RVal RightV = GetRVal(St, RHS); BinaryOperator::Opcode Op = B->getOpcode(); if ((Op == BinaryOperator::Div || Op == BinaryOperator::Rem) && RHS->getType()->isIntegerType()) { // Check if the denominator is undefined. if (!RightV.isUnknown()) { if (RightV.isUndef()) { NodeTy* DivUndef = Builder->generateNode(B, St, N2); if (DivUndef) { DivUndef->markAsSink(); ExplicitBadDivides.insert(DivUndef); } continue; } // Check for divide/remainder-by-zero. // // First, "assume" that the denominator is 0 or undefined. bool isFeasibleZero = false; ValueState* ZeroSt = Assume(St, RightV, false, isFeasibleZero); // Second, "assume" that the denominator cannot be 0. bool isFeasibleNotZero = false; St = Assume(St, RightV, true, isFeasibleNotZero); // Create the node for the divide-by-zero (if it occurred). if (isFeasibleZero) if (NodeTy* DivZeroNode = Builder->generateNode(B, ZeroSt, N2)) { DivZeroNode->markAsSink(); if (isFeasibleNotZero) ImplicitBadDivides.insert(DivZeroNode); else ExplicitBadDivides.insert(DivZeroNode); } if (!isFeasibleNotZero) continue; } // Fall-through. The logic below processes the divide. } if (Op <= BinaryOperator::Or) { // Process non-assignements except commas or short-circuited // logical expressions (LAnd and LOr). RVal Result = EvalBinOp(Op, LeftV, RightV); if (Result.isUnknown()) { Dst.Add(N2); continue; } if (Result.isUndef() && !LeftV.isUndef() && !RightV.isUndef()) { // The operands were not undefined, but the result is undefined. if (NodeTy* UndefNode = Builder->generateNode(B, St, N2)) { UndefNode->markAsSink(); UndefResults.insert(UndefNode); } continue; } MakeNode(Dst, B, N2, SetRVal(St, B, Result)); continue; } // Process assignments. switch (Op) { case BinaryOperator::Assign: { // Simple assignments. if (LeftV.isUndef()) { HandleUndefinedStore(B, N2); continue; } // EXPERIMENTAL: "Conjured" symbols. if (RightV.isUnknown()) { unsigned Count = Builder->getCurrentBlockCount(); SymbolID Sym = SymMgr.getConjuredSymbol(B->getRHS(), Count); RightV = B->getRHS()->getType()->isPointerType() ? cast(lval::SymbolVal(Sym)) : cast(nonlval::SymbolVal(Sym)); } // Simulate the effects of a "store": bind the value of the RHS // to the L-Value represented by the LHS. EvalStore(Dst, B, N2, SetRVal(St, B, RightV), LeftV, RightV); continue; } // Compound assignment operators. default: { assert (B->isCompoundAssignmentOp()); if (Op >= BinaryOperator::AndAssign) ((int&) Op) -= (BinaryOperator::AndAssign - BinaryOperator::And); else ((int&) Op) -= BinaryOperator::MulAssign; // Check if the LHS is undefined. if (LeftV.isUndef()) { HandleUndefinedStore(B, N2); continue; } if (LeftV.isUnknown()) { assert (isa(GetRVal(St, B))); Dst.Add(N2); continue; } // At this pointer we know that the LHS evaluates to an LVal // that is neither "Unknown" or "Undefined." LVal LeftLV = cast(LeftV); // Fetch the value of the LHS (the value of the variable, etc.). RVal V = GetRVal(GetState(N1), LeftLV, B->getLHS()->getType()); // Propagate undefined value (left-side). We // propogate undefined values for the RHS below when // we also check for divide-by-zero. if (V.isUndef()) { St = SetRVal(St, B, V); break; } // Propagate unknown values. if (V.isUnknown()) { // The value bound to LeftV is unknown. Thus we just // propagate the current node (as "B" is already bound to nothing). assert (isa(GetRVal(St, B))); Dst.Add(N2); continue; } if (RightV.isUnknown()) { assert (isa(GetRVal(St, B))); St = SetRVal(St, LeftLV, UnknownVal()); break; } // At this point: // // The LHS is not Undef/Unknown. // The RHS is not Unknown. // Get the computation type. QualType CTy = cast(B)->getComputationType(); // Perform promotions. V = EvalCast(V, CTy); RightV = EvalCast(RightV, CTy); // Evaluate operands and promote to result type. if ((Op == BinaryOperator::Div || Op == BinaryOperator::Rem) && RHS->getType()->isIntegerType()) { // Check if the denominator is undefined. if (RightV.isUndef()) { NodeTy* DivUndef = Builder->generateNode(B, St, N2); if (DivUndef) { DivUndef->markAsSink(); ExplicitBadDivides.insert(DivUndef); } continue; } // First, "assume" that the denominator is 0. bool isFeasibleZero = false; ValueState* ZeroSt = Assume(St, RightV, false, isFeasibleZero); // Second, "assume" that the denominator cannot be 0. bool isFeasibleNotZero = false; St = Assume(St, RightV, true, isFeasibleNotZero); // Create the node for the divide-by-zero error (if it occurred). if (isFeasibleZero) { NodeTy* DivZeroNode = Builder->generateNode(B, ZeroSt, N2); if (DivZeroNode) { DivZeroNode->markAsSink(); if (isFeasibleNotZero) ImplicitBadDivides.insert(DivZeroNode); else ExplicitBadDivides.insert(DivZeroNode); } } if (!isFeasibleNotZero) continue; // Fall-through. The logic below processes the divide. } else { // Propagate undefined values (right-side). if (RightV.isUndef()) { St = SetRVal(SetRVal(St, B, RightV), LeftLV, RightV); break; } } RVal Result = EvalCast(EvalBinOp(Op, V, RightV), B->getType()); if (Result.isUndef()) { // The operands were not undefined, but the result is undefined. if (NodeTy* UndefNode = Builder->generateNode(B, St, N2)) { UndefNode->markAsSink(); UndefResults.insert(UndefNode); } continue; } // St = SetRVal(SetRVal(St, B, Result), LeftLV, Result); EvalStore(Dst, B, N2, SetRVal(St, B, Result), LeftLV, Result); continue; } } MakeNode(Dst, B, N2, St); } } } void GRExprEngine::HandleUndefinedStore(Stmt* S, NodeTy* Pred) { NodeTy* N = Builder->generateNode(S, GetState(Pred), Pred); N->markAsSink(); UndefStores.insert(N); } //===----------------------------------------------------------------------===// // "Assume" logic. //===----------------------------------------------------------------------===// ValueState* GRExprEngine::Assume(ValueState* St, LVal Cond, bool Assumption, bool& isFeasible) { switch (Cond.getSubKind()) { default: assert (false && "'Assume' not implemented for this LVal."); return St; case lval::SymbolValKind: if (Assumption) return AssumeSymNE(St, cast(Cond).getSymbol(), BasicVals.getZeroWithPtrWidth(), isFeasible); else return AssumeSymEQ(St, cast(Cond).getSymbol(), BasicVals.getZeroWithPtrWidth(), isFeasible); case lval::DeclValKind: case lval::FuncValKind: case lval::GotoLabelKind: isFeasible = Assumption; return St; case lval::ConcreteIntKind: { bool b = cast(Cond).getValue() != 0; isFeasible = b ? Assumption : !Assumption; return St; } } } ValueState* GRExprEngine::Assume(ValueState* St, NonLVal Cond, bool Assumption, bool& isFeasible) { switch (Cond.getSubKind()) { default: assert (false && "'Assume' not implemented for this NonLVal."); return St; case nonlval::SymbolValKind: { nonlval::SymbolVal& SV = cast(Cond); SymbolID sym = SV.getSymbol(); if (Assumption) return AssumeSymNE(St, sym, BasicVals.getValue(0, SymMgr.getType(sym)), isFeasible); else return AssumeSymEQ(St, sym, BasicVals.getValue(0, SymMgr.getType(sym)), isFeasible); } case nonlval::SymIntConstraintValKind: return AssumeSymInt(St, Assumption, cast(Cond).getConstraint(), isFeasible); case nonlval::ConcreteIntKind: { bool b = cast(Cond).getValue() != 0; isFeasible = b ? Assumption : !Assumption; return St; } } } ValueState* GRExprEngine::AssumeSymNE(ValueState* St, SymbolID sym, const llvm::APSInt& V, bool& isFeasible) { // First, determine if sym == X, where X != V. if (const llvm::APSInt* X = St->getSymVal(sym)) { isFeasible = *X != V; return St; } // Second, determine if sym != V. if (St->isNotEqual(sym, V)) { isFeasible = true; return St; } // If we reach here, sym is not a constant and we don't know if it is != V. // Make that assumption. isFeasible = true; return StateMgr.AddNE(St, sym, V); } ValueState* GRExprEngine::AssumeSymEQ(ValueState* St, SymbolID sym, const llvm::APSInt& V, bool& isFeasible) { // First, determine if sym == X, where X != V. if (const llvm::APSInt* X = St->getSymVal(sym)) { isFeasible = *X == V; return St; } // Second, determine if sym != V. if (St->isNotEqual(sym, V)) { isFeasible = false; return St; } // If we reach here, sym is not a constant and we don't know if it is == V. // Make that assumption. isFeasible = true; return StateMgr.AddEQ(St, sym, V); } ValueState* GRExprEngine::AssumeSymInt(ValueState* St, bool Assumption, const SymIntConstraint& C, bool& isFeasible) { switch (C.getOpcode()) { default: // No logic yet for other operators. isFeasible = true; return St; case BinaryOperator::EQ: if (Assumption) return AssumeSymEQ(St, C.getSymbol(), C.getInt(), isFeasible); else return AssumeSymNE(St, C.getSymbol(), C.getInt(), isFeasible); case BinaryOperator::NE: if (Assumption) return AssumeSymNE(St, C.getSymbol(), C.getInt(), isFeasible); else return AssumeSymEQ(St, C.getSymbol(), C.getInt(), isFeasible); } } //===----------------------------------------------------------------------===// // Visualization. //===----------------------------------------------------------------------===// #ifndef NDEBUG static GRExprEngine* GraphPrintCheckerState; static SourceManager* GraphPrintSourceManager; static ValueState::CheckerStatePrinter* GraphCheckerStatePrinter; namespace llvm { template<> struct VISIBILITY_HIDDEN DOTGraphTraits : public DefaultDOTGraphTraits { static void PrintVarBindings(std::ostream& Out, ValueState* St) { Out << "Variables:\\l"; bool isFirst = true; for (ValueState::vb_iterator I=St->vb_begin(), E=St->vb_end(); I!=E;++I) { if (isFirst) isFirst = false; else Out << "\\l"; Out << ' ' << I.getKey()->getName() << " : "; I.getData().print(Out); } } static void PrintSubExprBindings(std::ostream& Out, ValueState* St){ bool isFirst = true; for (ValueState::seb_iterator I=St->seb_begin(), E=St->seb_end();I!=E;++I) { if (isFirst) { Out << "\\l\\lSub-Expressions:\\l"; isFirst = false; } else Out << "\\l"; Out << " (" << (void*) I.getKey() << ") "; I.getKey()->printPretty(Out); Out << " : "; I.getData().print(Out); } } static void PrintBlkExprBindings(std::ostream& Out, ValueState* St){ bool isFirst = true; for (ValueState::beb_iterator I=St->beb_begin(), E=St->beb_end(); I!=E;++I){ if (isFirst) { Out << "\\l\\lBlock-level Expressions:\\l"; isFirst = false; } else Out << "\\l"; Out << " (" << (void*) I.getKey() << ") "; I.getKey()->printPretty(Out); Out << " : "; I.getData().print(Out); } } static void PrintEQ(std::ostream& Out, ValueState* St) { ValueState::ConstEqTy CE = St->ConstEq; if (CE.isEmpty()) return; Out << "\\l\\|'==' constraints:"; for (ValueState::ConstEqTy::iterator I=CE.begin(), E=CE.end(); I!=E;++I) Out << "\\l $" << I.getKey() << " : " << I.getData()->toString(); } static void PrintNE(std::ostream& Out, ValueState* St) { ValueState::ConstNotEqTy NE = St->ConstNotEq; if (NE.isEmpty()) return; Out << "\\l\\|'!=' constraints:"; for (ValueState::ConstNotEqTy::iterator I=NE.begin(), EI=NE.end(); I != EI; ++I){ Out << "\\l $" << I.getKey() << " : "; bool isFirst = true; ValueState::IntSetTy::iterator J=I.getData().begin(), EJ=I.getData().end(); for ( ; J != EJ; ++J) { if (isFirst) isFirst = false; else Out << ", "; Out << (*J)->toString(); } } } static std::string getNodeAttributes(const GRExprEngine::NodeTy* N, void*) { if (GraphPrintCheckerState->isImplicitNullDeref(N) || GraphPrintCheckerState->isExplicitNullDeref(N) || GraphPrintCheckerState->isUndefDeref(N) || GraphPrintCheckerState->isUndefStore(N) || GraphPrintCheckerState->isUndefControlFlow(N) || GraphPrintCheckerState->isExplicitBadDivide(N) || GraphPrintCheckerState->isImplicitBadDivide(N) || GraphPrintCheckerState->isUndefResult(N) || GraphPrintCheckerState->isBadCall(N) || GraphPrintCheckerState->isUndefArg(N)) return "color=\"red\",style=\"filled\""; if (GraphPrintCheckerState->isNoReturnCall(N)) return "color=\"blue\",style=\"filled\""; return ""; } static std::string getNodeLabel(const GRExprEngine::NodeTy* N, void*) { std::ostringstream Out; // Program Location. ProgramPoint Loc = N->getLocation(); switch (Loc.getKind()) { case ProgramPoint::BlockEntranceKind: Out << "Block Entrance: B" << cast(Loc).getBlock()->getBlockID(); break; case ProgramPoint::BlockExitKind: assert (false); break; case ProgramPoint::PostStmtKind: { const PostStmt& L = cast(Loc); Stmt* S = L.getStmt(); SourceLocation SLoc = S->getLocStart(); Out << S->getStmtClassName() << ' ' << (void*) S << ' '; S->printPretty(Out); if (SLoc.isFileID()) { Out << "\\lline=" << GraphPrintSourceManager->getLineNumber(SLoc) << " col=" << GraphPrintSourceManager->getColumnNumber(SLoc) << "\\l"; } if (GraphPrintCheckerState->isImplicitNullDeref(N)) Out << "\\|Implicit-Null Dereference.\\l"; else if (GraphPrintCheckerState->isExplicitNullDeref(N)) Out << "\\|Explicit-Null Dereference.\\l"; else if (GraphPrintCheckerState->isUndefDeref(N)) Out << "\\|Dereference of undefialied value.\\l"; else if (GraphPrintCheckerState->isUndefStore(N)) Out << "\\|Store to Undefined LVal."; else if (GraphPrintCheckerState->isExplicitBadDivide(N)) Out << "\\|Explicit divide-by zero or undefined value."; else if (GraphPrintCheckerState->isImplicitBadDivide(N)) Out << "\\|Implicit divide-by zero or undefined value."; else if (GraphPrintCheckerState->isUndefResult(N)) Out << "\\|Result of operation is undefined."; else if (GraphPrintCheckerState->isNoReturnCall(N)) Out << "\\|Call to function marked \"noreturn\"."; else if (GraphPrintCheckerState->isBadCall(N)) Out << "\\|Call to NULL/Undefined."; else if (GraphPrintCheckerState->isUndefArg(N)) Out << "\\|Argument in call is undefined"; break; } default: { const BlockEdge& E = cast(Loc); Out << "Edge: (B" << E.getSrc()->getBlockID() << ", B" << E.getDst()->getBlockID() << ')'; if (Stmt* T = E.getSrc()->getTerminator()) { SourceLocation SLoc = T->getLocStart(); Out << "\\|Terminator: "; E.getSrc()->printTerminator(Out); if (SLoc.isFileID()) { Out << "\\lline=" << GraphPrintSourceManager->getLineNumber(SLoc) << " col=" << GraphPrintSourceManager->getColumnNumber(SLoc); } if (isa(T)) { Stmt* Label = E.getDst()->getLabel(); if (Label) { if (CaseStmt* C = dyn_cast(Label)) { Out << "\\lcase "; C->getLHS()->printPretty(Out); if (Stmt* RHS = C->getRHS()) { Out << " .. "; RHS->printPretty(Out); } Out << ":"; } else { assert (isa(Label)); Out << "\\ldefault:"; } } else Out << "\\l(implicit) default:"; } else if (isa(T)) { // FIXME } else { Out << "\\lCondition: "; if (*E.getSrc()->succ_begin() == E.getDst()) Out << "true"; else Out << "false"; } Out << "\\l"; } if (GraphPrintCheckerState->isUndefControlFlow(N)) { Out << "\\|Control-flow based on\\lUndefined value.\\l"; } } } Out << "\\|StateID: " << (void*) N->getState() << "\\|"; N->getState()->printDOT(Out, GraphCheckerStatePrinter); Out << "\\l"; return Out.str(); } }; } // end llvm namespace #endif #ifndef NDEBUG template GRExprEngine::NodeTy* GetGraphNode(ITERATOR I) { return *I; } template <> GRExprEngine::NodeTy* GetGraphNode::iterator> (llvm::DenseMap::iterator I) { return I->first; } template static void AddSources(llvm::SmallVector& Sources, ITERATOR I, ITERATOR E) { llvm::SmallPtrSet CachedSources; for ( ; I != E; ++I ) { GRExprEngine::NodeTy* N = GetGraphNode(I); void* p = N->getLocation().getRawData(); if (CachedSources.count(p)) continue; CachedSources.insert(p); Sources.push_back(N); } } #endif void GRExprEngine::ViewGraph(bool trim) { #ifndef NDEBUG if (trim) { llvm::SmallVector Src; AddSources(Src, null_derefs_begin(), null_derefs_end()); AddSources(Src, undef_derefs_begin(), undef_derefs_end()); AddSources(Src, explicit_bad_divides_begin(), explicit_bad_divides_end()); AddSources(Src, undef_results_begin(), undef_results_end()); AddSources(Src, bad_calls_begin(), bad_calls_end()); AddSources(Src, undef_arg_begin(), undef_arg_end()); AddSources(Src, undef_branches_begin(), undef_branches_end()); ViewGraph(&Src[0], &Src[0]+Src.size()); } else { GraphPrintCheckerState = this; GraphPrintSourceManager = &getContext().getSourceManager(); GraphCheckerStatePrinter = TF->getCheckerStatePrinter(); llvm::ViewGraph(*G.roots_begin(), "GRExprEngine"); GraphPrintCheckerState = NULL; GraphPrintSourceManager = NULL; GraphCheckerStatePrinter = NULL; } #endif } void GRExprEngine::ViewGraph(NodeTy** Beg, NodeTy** End) { #ifndef NDEBUG GraphPrintCheckerState = this; GraphPrintSourceManager = &getContext().getSourceManager(); GraphCheckerStatePrinter = TF->getCheckerStatePrinter(); GRExprEngine::GraphTy* TrimmedG = G.Trim(Beg, End); if (!TrimmedG) llvm::cerr << "warning: Trimmed ExplodedGraph is empty.\n"; else { llvm::ViewGraph(*TrimmedG->roots_begin(), "TrimmedGRExprEngine"); delete TrimmedG; } GraphPrintCheckerState = NULL; GraphPrintSourceManager = NULL; GraphCheckerStatePrinter = NULL; #endif }