//===--- ObjCMT.cpp - ObjC Migrate Tool -----------------------------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// #include "Transforms.h" #include "clang/ARCMigrate/ARCMTActions.h" #include "clang/AST/ASTConsumer.h" #include "clang/AST/ASTContext.h" #include "clang/AST/NSAPI.h" #include "clang/AST/ParentMap.h" #include "clang/AST/RecursiveASTVisitor.h" #include "clang/Basic/FileManager.h" #include "clang/Edit/Commit.h" #include "clang/Edit/EditedSource.h" #include "clang/Edit/EditsReceiver.h" #include "clang/Edit/Rewriters.h" #include "clang/Frontend/CompilerInstance.h" #include "clang/Frontend/MultiplexConsumer.h" #include "clang/Lex/PPConditionalDirectiveRecord.h" #include "clang/Lex/Preprocessor.h" #include "clang/Rewrite/Core/Rewriter.h" #include "clang/Analysis/DomainSpecific/CocoaConventions.h" #include "clang/StaticAnalyzer/Checkers/ObjCRetainCount.h" #include "clang/AST/Attr.h" #include "llvm/ADT/SmallString.h" using namespace clang; using namespace arcmt; using namespace ento::objc_retain; namespace { class ObjCMigrateASTConsumer : public ASTConsumer { enum CF_BRIDGING_KIND { CF_BRIDGING_NONE, CF_BRIDGING_ENABLE, CF_BRIDGING_MAY_INCLUDE }; void migrateDecl(Decl *D); void migrateObjCInterfaceDecl(ASTContext &Ctx, ObjCContainerDecl *D); void migrateProtocolConformance(ASTContext &Ctx, const ObjCImplementationDecl *ImpDecl); void migrateNSEnumDecl(ASTContext &Ctx, const EnumDecl *EnumDcl, const TypedefDecl *TypedefDcl); void migrateMethods(ASTContext &Ctx, ObjCContainerDecl *CDecl); void migrateMethodInstanceType(ASTContext &Ctx, ObjCContainerDecl *CDecl, ObjCMethodDecl *OM); bool migrateProperty(ASTContext &Ctx, ObjCContainerDecl *D, ObjCMethodDecl *OM); void migrateNsReturnsInnerPointer(ASTContext &Ctx, ObjCMethodDecl *OM); void migrateFactoryMethod(ASTContext &Ctx, ObjCContainerDecl *CDecl, ObjCMethodDecl *OM, ObjCInstanceTypeFamily OIT_Family = OIT_None); void migrateCFAnnotation(ASTContext &Ctx, const Decl *Decl); void AddCFAnnotations(ASTContext &Ctx, const CallEffects &CE, const FunctionDecl *FuncDecl, bool ResultAnnotated); void AddCFAnnotations(ASTContext &Ctx, const CallEffects &CE, const ObjCMethodDecl *MethodDecl, bool ResultAnnotated); void AnnotateImplicitBridging(ASTContext &Ctx); CF_BRIDGING_KIND migrateAddFunctionAnnotation(ASTContext &Ctx, const FunctionDecl *FuncDecl); void migrateARCSafeAnnotation(ASTContext &Ctx, ObjCContainerDecl *CDecl); void migrateAddMethodAnnotation(ASTContext &Ctx, const ObjCMethodDecl *MethodDecl); public: std::string MigrateDir; bool MigrateLiterals; bool MigrateSubscripting; bool MigrateProperty; bool MigrateReadonlyProperty; unsigned FileId; OwningPtr NSAPIObj; OwningPtr Editor; FileRemapper &Remapper; FileManager &FileMgr; const PPConditionalDirectiveRecord *PPRec; Preprocessor &PP; bool IsOutputFile; llvm::SmallPtrSet ObjCProtocolDecls; llvm::SmallVector CFFunctionIBCandidates; ObjCMigrateASTConsumer(StringRef migrateDir, bool migrateLiterals, bool migrateSubscripting, bool migrateProperty, bool migrateReadonlyProperty, FileRemapper &remapper, FileManager &fileMgr, const PPConditionalDirectiveRecord *PPRec, Preprocessor &PP, bool isOutputFile = false) : MigrateDir(migrateDir), MigrateLiterals(migrateLiterals), MigrateSubscripting(migrateSubscripting), MigrateProperty(migrateProperty), MigrateReadonlyProperty(migrateReadonlyProperty), FileId(0), Remapper(remapper), FileMgr(fileMgr), PPRec(PPRec), PP(PP), IsOutputFile(isOutputFile) { } protected: virtual void Initialize(ASTContext &Context) { NSAPIObj.reset(new NSAPI(Context)); Editor.reset(new edit::EditedSource(Context.getSourceManager(), Context.getLangOpts(), PPRec)); } virtual bool HandleTopLevelDecl(DeclGroupRef DG) { for (DeclGroupRef::iterator I = DG.begin(), E = DG.end(); I != E; ++I) migrateDecl(*I); return true; } virtual void HandleInterestingDecl(DeclGroupRef DG) { // Ignore decls from the PCH. } virtual void HandleTopLevelDeclInObjCContainer(DeclGroupRef DG) { ObjCMigrateASTConsumer::HandleTopLevelDecl(DG); } virtual void HandleTranslationUnit(ASTContext &Ctx); }; } ObjCMigrateAction::ObjCMigrateAction(FrontendAction *WrappedAction, StringRef migrateDir, bool migrateLiterals, bool migrateSubscripting, bool migrateProperty, bool migrateReadonlyProperty) : WrapperFrontendAction(WrappedAction), MigrateDir(migrateDir), MigrateLiterals(migrateLiterals), MigrateSubscripting(migrateSubscripting), MigrateProperty(migrateProperty), MigrateReadonlyProperty(migrateReadonlyProperty), CompInst(0) { if (MigrateDir.empty()) MigrateDir = "."; // user current directory if none is given. } ASTConsumer *ObjCMigrateAction::CreateASTConsumer(CompilerInstance &CI, StringRef InFile) { PPConditionalDirectiveRecord * PPRec = new PPConditionalDirectiveRecord(CompInst->getSourceManager()); CompInst->getPreprocessor().addPPCallbacks(PPRec); ASTConsumer * WrappedConsumer = WrapperFrontendAction::CreateASTConsumer(CI, InFile); ASTConsumer *MTConsumer = new ObjCMigrateASTConsumer(MigrateDir, MigrateLiterals, MigrateSubscripting, MigrateProperty, MigrateReadonlyProperty, Remapper, CompInst->getFileManager(), PPRec, CompInst->getPreprocessor()); ASTConsumer *Consumers[] = { MTConsumer, WrappedConsumer }; return new MultiplexConsumer(Consumers); } bool ObjCMigrateAction::BeginInvocation(CompilerInstance &CI) { Remapper.initFromDisk(MigrateDir, CI.getDiagnostics(), /*ignoreIfFilesChanges=*/true); CompInst = &CI; CI.getDiagnostics().setIgnoreAllWarnings(true); return true; } namespace { class ObjCMigrator : public RecursiveASTVisitor { ObjCMigrateASTConsumer &Consumer; ParentMap &PMap; public: ObjCMigrator(ObjCMigrateASTConsumer &consumer, ParentMap &PMap) : Consumer(consumer), PMap(PMap) { } bool shouldVisitTemplateInstantiations() const { return false; } bool shouldWalkTypesOfTypeLocs() const { return false; } bool VisitObjCMessageExpr(ObjCMessageExpr *E) { if (Consumer.MigrateLiterals) { edit::Commit commit(*Consumer.Editor); edit::rewriteToObjCLiteralSyntax(E, *Consumer.NSAPIObj, commit, &PMap); Consumer.Editor->commit(commit); } if (Consumer.MigrateSubscripting) { edit::Commit commit(*Consumer.Editor); edit::rewriteToObjCSubscriptSyntax(E, *Consumer.NSAPIObj, commit); Consumer.Editor->commit(commit); } return true; } bool TraverseObjCMessageExpr(ObjCMessageExpr *E) { // Do depth first; we want to rewrite the subexpressions first so that if // we have to move expressions we will move them already rewritten. for (Stmt::child_range range = E->children(); range; ++range) if (!TraverseStmt(*range)) return false; return WalkUpFromObjCMessageExpr(E); } }; class BodyMigrator : public RecursiveASTVisitor { ObjCMigrateASTConsumer &Consumer; OwningPtr PMap; public: BodyMigrator(ObjCMigrateASTConsumer &consumer) : Consumer(consumer) { } bool shouldVisitTemplateInstantiations() const { return false; } bool shouldWalkTypesOfTypeLocs() const { return false; } bool TraverseStmt(Stmt *S) { PMap.reset(new ParentMap(S)); ObjCMigrator(Consumer, *PMap).TraverseStmt(S); return true; } }; } void ObjCMigrateASTConsumer::migrateDecl(Decl *D) { if (!D) return; if (isa(D)) return; // Wait for the ObjC container declaration. BodyMigrator(*this).TraverseDecl(D); } static void append_attr(std::string &PropertyString, const char *attr) { PropertyString += ", "; PropertyString += attr; } static bool rewriteToObjCProperty(const ObjCMethodDecl *Getter, const ObjCMethodDecl *Setter, const NSAPI &NS, edit::Commit &commit, unsigned LengthOfPrefix) { ASTContext &Context = NS.getASTContext(); std::string PropertyString = "@property(nonatomic"; std::string PropertyNameString = Getter->getNameAsString(); StringRef PropertyName(PropertyNameString); if (LengthOfPrefix > 0) { PropertyString += ", getter="; PropertyString += PropertyNameString; } // Property with no setter may be suggested as a 'readonly' property. if (!Setter) append_attr(PropertyString, "readonly"); // Short circuit properties that contain the name "delegate" or "dataSource", // or have exact name "target" to have unsafe_unretained attribute. if (PropertyName.equals("target") || (PropertyName.find("delegate") != StringRef::npos) || (PropertyName.find("dataSource") != StringRef::npos)) append_attr(PropertyString, "unsafe_unretained"); else if (Setter) { const ParmVarDecl *argDecl = *Setter->param_begin(); QualType ArgType = Context.getCanonicalType(argDecl->getType()); Qualifiers::ObjCLifetime propertyLifetime = ArgType.getObjCLifetime(); bool RetainableObject = ArgType->isObjCRetainableType(); if (RetainableObject && propertyLifetime == Qualifiers::OCL_Strong) { if (const ObjCObjectPointerType *ObjPtrTy = ArgType->getAs()) { ObjCInterfaceDecl *IDecl = ObjPtrTy->getObjectType()->getInterface(); if (IDecl && IDecl->lookupNestedProtocol(&Context.Idents.get("NSCopying"))) append_attr(PropertyString, "copy"); else append_attr(PropertyString, "retain"); } } else if (propertyLifetime == Qualifiers::OCL_Weak) // TODO. More precise determination of 'weak' attribute requires // looking into setter's implementation for backing weak ivar. append_attr(PropertyString, "weak"); else if (RetainableObject) append_attr(PropertyString, "retain"); } PropertyString += ')'; QualType RT = Getter->getResultType(); if (!isa(RT)) { // strip off any ARC lifetime qualifier. QualType CanResultTy = Context.getCanonicalType(RT); if (CanResultTy.getQualifiers().hasObjCLifetime()) { Qualifiers Qs = CanResultTy.getQualifiers(); Qs.removeObjCLifetime(); RT = Context.getQualifiedType(CanResultTy.getUnqualifiedType(), Qs); } } PropertyString += " "; PropertyString += RT.getAsString(Context.getPrintingPolicy()); PropertyString += " "; if (LengthOfPrefix > 0) { // property name must strip off "is" and lower case the first character // after that; e.g. isContinuous will become continuous. StringRef PropertyNameStringRef(PropertyNameString); PropertyNameStringRef = PropertyNameStringRef.drop_front(LengthOfPrefix); PropertyNameString = PropertyNameStringRef; std::string NewPropertyNameString = PropertyNameString; bool NoLowering = (isUppercase(NewPropertyNameString[0]) && NewPropertyNameString.size() > 1 && isUppercase(NewPropertyNameString[1])); if (!NoLowering) NewPropertyNameString[0] = toLowercase(NewPropertyNameString[0]); PropertyString += NewPropertyNameString; } else PropertyString += PropertyNameString; SourceLocation StartGetterSelectorLoc = Getter->getSelectorStartLoc(); Selector GetterSelector = Getter->getSelector(); SourceLocation EndGetterSelectorLoc = StartGetterSelectorLoc.getLocWithOffset(GetterSelector.getNameForSlot(0).size()); commit.replace(CharSourceRange::getCharRange(Getter->getLocStart(), EndGetterSelectorLoc), PropertyString); if (Setter) { SourceLocation EndLoc = Setter->getDeclaratorEndLoc(); // Get location past ';' EndLoc = EndLoc.getLocWithOffset(1); commit.remove(CharSourceRange::getCharRange(Setter->getLocStart(), EndLoc)); } return true; } void ObjCMigrateASTConsumer::migrateObjCInterfaceDecl(ASTContext &Ctx, ObjCContainerDecl *D) { if (D->isDeprecated()) return; for (ObjCContainerDecl::method_iterator M = D->meth_begin(), MEnd = D->meth_end(); M != MEnd; ++M) { ObjCMethodDecl *Method = (*M); if (Method->isDeprecated()) continue; if (!migrateProperty(Ctx, D, Method)) migrateNsReturnsInnerPointer(Ctx, Method); } } static bool ClassImplementsAllMethodsAndProperties(ASTContext &Ctx, const ObjCImplementationDecl *ImpDecl, const ObjCInterfaceDecl *IDecl, ObjCProtocolDecl *Protocol) { // In auto-synthesis, protocol properties are not synthesized. So, // a conforming protocol must have its required properties declared // in class interface. bool HasAtleastOneRequiredProperty = false; if (const ObjCProtocolDecl *PDecl = Protocol->getDefinition()) for (ObjCProtocolDecl::prop_iterator P = PDecl->prop_begin(), E = PDecl->prop_end(); P != E; ++P) { ObjCPropertyDecl *Property = *P; if (Property->getPropertyImplementation() == ObjCPropertyDecl::Optional) continue; HasAtleastOneRequiredProperty = true; DeclContext::lookup_const_result R = IDecl->lookup(Property->getDeclName()); if (R.size() == 0) { // Relax the rule and look into class's implementation for a synthesize // or dynamic declaration. Class is implementing a property coming from // another protocol. This still makes the target protocol as conforming. if (!ImpDecl->FindPropertyImplDecl( Property->getDeclName().getAsIdentifierInfo())) return false; } else if (ObjCPropertyDecl *ClassProperty = dyn_cast(R[0])) { if ((ClassProperty->getPropertyAttributes() != Property->getPropertyAttributes()) || !Ctx.hasSameType(ClassProperty->getType(), Property->getType())) return false; } else return false; } // At this point, all required properties in this protocol conform to those // declared in the class. // Check that class implements the required methods of the protocol too. bool HasAtleastOneRequiredMethod = false; if (const ObjCProtocolDecl *PDecl = Protocol->getDefinition()) { if (PDecl->meth_begin() == PDecl->meth_end()) return HasAtleastOneRequiredProperty; for (ObjCContainerDecl::method_iterator M = PDecl->meth_begin(), MEnd = PDecl->meth_end(); M != MEnd; ++M) { ObjCMethodDecl *MD = (*M); if (MD->isImplicit()) continue; if (MD->getImplementationControl() == ObjCMethodDecl::Optional) continue; DeclContext::lookup_const_result R = ImpDecl->lookup(MD->getDeclName()); if (R.size() == 0) return false; bool match = false; HasAtleastOneRequiredMethod = true; for (unsigned I = 0, N = R.size(); I != N; ++I) if (ObjCMethodDecl *ImpMD = dyn_cast(R[0])) if (Ctx.ObjCMethodsAreEqual(MD, ImpMD)) { match = true; break; } if (!match) return false; } } if (HasAtleastOneRequiredProperty || HasAtleastOneRequiredMethod) return true; return false; } static bool rewriteToObjCInterfaceDecl(const ObjCInterfaceDecl *IDecl, llvm::SmallVectorImpl &ConformingProtocols, const NSAPI &NS, edit::Commit &commit) { const ObjCList &Protocols = IDecl->getReferencedProtocols(); std::string ClassString; SourceLocation EndLoc = IDecl->getSuperClass() ? IDecl->getSuperClassLoc() : IDecl->getLocation(); if (Protocols.empty()) { ClassString = '<'; for (unsigned i = 0, e = ConformingProtocols.size(); i != e; i++) { ClassString += ConformingProtocols[i]->getNameAsString(); if (i != (e-1)) ClassString += ", "; } ClassString += "> "; } else { ClassString = ", "; for (unsigned i = 0, e = ConformingProtocols.size(); i != e; i++) { ClassString += ConformingProtocols[i]->getNameAsString(); if (i != (e-1)) ClassString += ", "; } ObjCInterfaceDecl::protocol_loc_iterator PL = IDecl->protocol_loc_end() - 1; EndLoc = *PL; } commit.insertAfterToken(EndLoc, ClassString); return true; } static bool rewriteToNSEnumDecl(const EnumDecl *EnumDcl, const TypedefDecl *TypedefDcl, const NSAPI &NS, edit::Commit &commit, bool IsNSIntegerType, bool NSOptions) { std::string ClassString; if (NSOptions) ClassString = "typedef NS_OPTIONS(NSUInteger, "; else ClassString = IsNSIntegerType ? "typedef NS_ENUM(NSInteger, " : "typedef NS_ENUM(NSUInteger, "; ClassString += TypedefDcl->getIdentifier()->getName(); ClassString += ')'; SourceRange R(EnumDcl->getLocStart(), EnumDcl->getLocStart()); commit.replace(R, ClassString); SourceLocation EndOfTypedefLoc = TypedefDcl->getLocEnd(); EndOfTypedefLoc = trans::findLocationAfterSemi(EndOfTypedefLoc, NS.getASTContext()); if (!EndOfTypedefLoc.isInvalid()) { commit.remove(SourceRange(TypedefDcl->getLocStart(), EndOfTypedefLoc)); return true; } return false; } static bool rewriteToNSMacroDecl(const EnumDecl *EnumDcl, const TypedefDecl *TypedefDcl, const NSAPI &NS, edit::Commit &commit, bool IsNSIntegerType) { std::string ClassString = IsNSIntegerType ? "NS_ENUM(NSInteger, " : "NS_OPTIONS(NSUInteger, "; ClassString += TypedefDcl->getIdentifier()->getName(); ClassString += ')'; SourceRange R(EnumDcl->getLocStart(), EnumDcl->getLocStart()); commit.replace(R, ClassString); SourceLocation TypedefLoc = TypedefDcl->getLocEnd(); commit.remove(SourceRange(TypedefLoc, TypedefLoc)); return true; } static bool UseNSOptionsMacro(Preprocessor &PP, ASTContext &Ctx, const EnumDecl *EnumDcl) { bool PowerOfTwo = true; bool FoundHexdecimalEnumerator = false; uint64_t MaxPowerOfTwoVal = 0; for (EnumDecl::enumerator_iterator EI = EnumDcl->enumerator_begin(), EE = EnumDcl->enumerator_end(); EI != EE; ++EI) { EnumConstantDecl *Enumerator = (*EI); const Expr *InitExpr = Enumerator->getInitExpr(); if (!InitExpr) { PowerOfTwo = false; continue; } InitExpr = InitExpr->IgnoreParenCasts(); if (const BinaryOperator *BO = dyn_cast(InitExpr)) if (BO->isShiftOp() || BO->isBitwiseOp()) return true; uint64_t EnumVal = Enumerator->getInitVal().getZExtValue(); if (PowerOfTwo && EnumVal) { if (!llvm::isPowerOf2_64(EnumVal)) PowerOfTwo = false; else if (EnumVal > MaxPowerOfTwoVal) MaxPowerOfTwoVal = EnumVal; } if (!FoundHexdecimalEnumerator) { SourceLocation EndLoc = Enumerator->getLocEnd(); Token Tok; if (!PP.getRawToken(EndLoc, Tok, /*IgnoreWhiteSpace=*/true)) if (Tok.isLiteral() && Tok.getLength() > 2) { if (const char *StringLit = Tok.getLiteralData()) FoundHexdecimalEnumerator = (StringLit[0] == '0' && (toLowercase(StringLit[1]) == 'x')); } } } return FoundHexdecimalEnumerator || (PowerOfTwo && (MaxPowerOfTwoVal > 2)); } void ObjCMigrateASTConsumer::migrateProtocolConformance(ASTContext &Ctx, const ObjCImplementationDecl *ImpDecl) { const ObjCInterfaceDecl *IDecl = ImpDecl->getClassInterface(); if (!IDecl || ObjCProtocolDecls.empty() || IDecl->isDeprecated()) return; // Find all implicit conforming protocols for this class // and make them explicit. llvm::SmallPtrSet ExplicitProtocols; Ctx.CollectInheritedProtocols(IDecl, ExplicitProtocols); llvm::SmallVector PotentialImplicitProtocols; for (llvm::SmallPtrSet::iterator I = ObjCProtocolDecls.begin(), E = ObjCProtocolDecls.end(); I != E; ++I) if (!ExplicitProtocols.count(*I)) PotentialImplicitProtocols.push_back(*I); if (PotentialImplicitProtocols.empty()) return; // go through list of non-optional methods and properties in each protocol // in the PotentialImplicitProtocols list. If class implements every one of the // methods and properties, then this class conforms to this protocol. llvm::SmallVector ConformingProtocols; for (unsigned i = 0, e = PotentialImplicitProtocols.size(); i != e; i++) if (ClassImplementsAllMethodsAndProperties(Ctx, ImpDecl, IDecl, PotentialImplicitProtocols[i])) ConformingProtocols.push_back(PotentialImplicitProtocols[i]); if (ConformingProtocols.empty()) return; // Further reduce number of conforming protocols. If protocol P1 is in the list // protocol P2 (P2), No need to include P1. llvm::SmallVector MinimalConformingProtocols; for (unsigned i = 0, e = ConformingProtocols.size(); i != e; i++) { bool DropIt = false; ObjCProtocolDecl *TargetPDecl = ConformingProtocols[i]; for (unsigned i1 = 0, e1 = ConformingProtocols.size(); i1 != e1; i1++) { ObjCProtocolDecl *PDecl = ConformingProtocols[i1]; if (PDecl == TargetPDecl) continue; if (PDecl->lookupProtocolNamed( TargetPDecl->getDeclName().getAsIdentifierInfo())) { DropIt = true; break; } } if (!DropIt) MinimalConformingProtocols.push_back(TargetPDecl); } edit::Commit commit(*Editor); rewriteToObjCInterfaceDecl(IDecl, MinimalConformingProtocols, *NSAPIObj, commit); Editor->commit(commit); } void ObjCMigrateASTConsumer::migrateNSEnumDecl(ASTContext &Ctx, const EnumDecl *EnumDcl, const TypedefDecl *TypedefDcl) { if (!EnumDcl->isCompleteDefinition() || EnumDcl->getIdentifier() || !TypedefDcl->getIdentifier() || EnumDcl->isDeprecated() || TypedefDcl->isDeprecated()) return; QualType qt = TypedefDcl->getTypeSourceInfo()->getType(); bool IsNSIntegerType = NSAPIObj->isObjCNSIntegerType(qt); bool IsNSUIntegerType = !IsNSIntegerType && NSAPIObj->isObjCNSUIntegerType(qt); if (!IsNSIntegerType && !IsNSUIntegerType) { // Also check for typedef enum {...} TD; if (const EnumType *EnumTy = qt->getAs()) { if (EnumTy->getDecl() == EnumDcl) { bool NSOptions = UseNSOptionsMacro(PP, Ctx, EnumDcl); if (NSOptions) { if (!Ctx.Idents.get("NS_OPTIONS").hasMacroDefinition()) return; } else if (!Ctx.Idents.get("NS_ENUM").hasMacroDefinition()) return; edit::Commit commit(*Editor); rewriteToNSMacroDecl(EnumDcl, TypedefDcl, *NSAPIObj, commit, !NSOptions); Editor->commit(commit); } } return; } // We may still use NS_OPTIONS based on what we find in the enumertor list. bool NSOptions = UseNSOptionsMacro(PP, Ctx, EnumDcl); // NS_ENUM must be available. if (IsNSIntegerType && !Ctx.Idents.get("NS_ENUM").hasMacroDefinition()) return; // NS_OPTIONS must be available. if (IsNSUIntegerType && !Ctx.Idents.get("NS_OPTIONS").hasMacroDefinition()) return; edit::Commit commit(*Editor); rewriteToNSEnumDecl(EnumDcl, TypedefDcl, *NSAPIObj, commit, IsNSIntegerType, NSOptions); Editor->commit(commit); } static void ReplaceWithInstancetype(const ObjCMigrateASTConsumer &ASTC, ObjCMethodDecl *OM) { SourceRange R; std::string ClassString; if (TypeSourceInfo *TSInfo = OM->getResultTypeSourceInfo()) { TypeLoc TL = TSInfo->getTypeLoc(); R = SourceRange(TL.getBeginLoc(), TL.getEndLoc()); ClassString = "instancetype"; } else { R = SourceRange(OM->getLocStart(), OM->getLocStart()); ClassString = OM->isInstanceMethod() ? '-' : '+'; ClassString += " (instancetype)"; } edit::Commit commit(*ASTC.Editor); commit.replace(R, ClassString); ASTC.Editor->commit(commit); } void ObjCMigrateASTConsumer::migrateMethodInstanceType(ASTContext &Ctx, ObjCContainerDecl *CDecl, ObjCMethodDecl *OM) { ObjCInstanceTypeFamily OIT_Family = Selector::getInstTypeMethodFamily(OM->getSelector()); std::string ClassName; switch (OIT_Family) { case OIT_None: migrateFactoryMethod(Ctx, CDecl, OM); return; case OIT_Array: ClassName = "NSArray"; break; case OIT_Dictionary: ClassName = "NSDictionary"; break; case OIT_Singleton: migrateFactoryMethod(Ctx, CDecl, OM, OIT_Singleton); return; case OIT_Init: if (OM->getResultType()->isObjCIdType()) ReplaceWithInstancetype(*this, OM); return; } if (!OM->getResultType()->isObjCIdType()) return; ObjCInterfaceDecl *IDecl = dyn_cast(CDecl); if (!IDecl) { if (ObjCCategoryDecl *CatDecl = dyn_cast(CDecl)) IDecl = CatDecl->getClassInterface(); else if (ObjCImplDecl *ImpDecl = dyn_cast(CDecl)) IDecl = ImpDecl->getClassInterface(); } if (!IDecl || !IDecl->lookupInheritedClass(&Ctx.Idents.get(ClassName))) { migrateFactoryMethod(Ctx, CDecl, OM); return; } ReplaceWithInstancetype(*this, OM); } static bool TypeIsInnerPointer(QualType T) { if (!T->isAnyPointerType()) return false; if (T->isObjCObjectPointerType() || T->isObjCBuiltinType() || T->isBlockPointerType() || ento::coreFoundation::isCFObjectRef(T)) return false; // Also, typedef-of-pointer-to-incomplete-struct is something that we assume // is not an innter pointer type. QualType OrigT = T; while (const TypedefType *TD = dyn_cast(T.getTypePtr())) T = TD->getDecl()->getUnderlyingType(); if (OrigT == T || !T->isPointerType()) return true; const PointerType* PT = T->getAs(); QualType UPointeeT = PT->getPointeeType().getUnqualifiedType(); if (UPointeeT->isRecordType()) { const RecordType *RecordTy = UPointeeT->getAs(); if (!RecordTy->getDecl()->isCompleteDefinition()) return false; } return true; } static bool AttributesMatch(const Decl *Decl1, const Decl *Decl2) { if (Decl1->hasAttrs() != Decl2->hasAttrs()) return false; if (!Decl1->hasAttrs()) return true; const AttrVec &Attrs1 = Decl1->getAttrs(); const AttrVec &Attrs2 = Decl2->getAttrs(); // This list is very small, so this need not be optimized. for (unsigned i = 0, e = Attrs1.size(); i != e; i++) { bool match = false; for (unsigned j = 0, f = Attrs2.size(); j != f; j++) { // Matching attribute kind only. We are not getting into // details of the attributes. For all practical purposes // this is sufficient. if (Attrs1[i]->getKind() == Attrs2[j]->getKind()) { match = true; break; } } if (!match) return false; } return true; } bool ObjCMigrateASTConsumer::migrateProperty(ASTContext &Ctx, ObjCContainerDecl *D, ObjCMethodDecl *Method) { if (Method->isPropertyAccessor() || !Method->isInstanceMethod() || Method->param_size() != 0) return false; // Is this method candidate to be a getter? QualType GRT = Method->getResultType(); if (GRT->isVoidType()) return false; Selector GetterSelector = Method->getSelector(); IdentifierInfo *getterName = GetterSelector.getIdentifierInfoForSlot(0); Selector SetterSelector = SelectorTable::constructSetterSelector(PP.getIdentifierTable(), PP.getSelectorTable(), getterName); ObjCMethodDecl *SetterMethod = D->getInstanceMethod(SetterSelector); unsigned LengthOfPrefix = 0; if (!SetterMethod) { // try a different naming convention for getter: isXxxxx StringRef getterNameString = getterName->getName(); bool IsPrefix = getterNameString.startswith("is"); // Note that we don't want to change an isXXX method of retainable object // type to property (readonly or otherwise). if (IsPrefix && GRT->isObjCRetainableType()) return false; if (IsPrefix || getterNameString.startswith("get")) { LengthOfPrefix = (IsPrefix ? 2 : 3); const char *CGetterName = getterNameString.data() + LengthOfPrefix; // Make sure that first character after "is" or "get" prefix can // start an identifier. if (!isIdentifierHead(CGetterName[0])) return false; if (CGetterName[0] && isUppercase(CGetterName[0])) { getterName = &Ctx.Idents.get(CGetterName); SetterSelector = SelectorTable::constructSetterSelector(PP.getIdentifierTable(), PP.getSelectorTable(), getterName); SetterMethod = D->getInstanceMethod(SetterSelector); } } } if (SetterMethod) { if (SetterMethod->isDeprecated() || !AttributesMatch(Method, SetterMethod)) return false; // Is this a valid setter, matching the target getter? QualType SRT = SetterMethod->getResultType(); if (!SRT->isVoidType()) return false; const ParmVarDecl *argDecl = *SetterMethod->param_begin(); QualType ArgType = argDecl->getType(); if (!Ctx.hasSameUnqualifiedType(ArgType, GRT)) return false; edit::Commit commit(*Editor); rewriteToObjCProperty(Method, SetterMethod, *NSAPIObj, commit, LengthOfPrefix); Editor->commit(commit); return true; } else if (MigrateReadonlyProperty) { // Try a non-void method with no argument (and no setter or property of same name // as a 'readonly' property. edit::Commit commit(*Editor); rewriteToObjCProperty(Method, 0 /*SetterMethod*/, *NSAPIObj, commit, LengthOfPrefix); Editor->commit(commit); return true; } return false; } void ObjCMigrateASTConsumer::migrateNsReturnsInnerPointer(ASTContext &Ctx, ObjCMethodDecl *OM) { if (OM->hasAttr()) return; QualType RT = OM->getResultType(); if (!TypeIsInnerPointer(RT) || !Ctx.Idents.get("NS_RETURNS_INNER_POINTER").hasMacroDefinition()) return; edit::Commit commit(*Editor); commit.insertBefore(OM->getLocEnd(), " NS_RETURNS_INNER_POINTER"); Editor->commit(commit); } void ObjCMigrateASTConsumer::migrateMethods(ASTContext &Ctx, ObjCContainerDecl *CDecl) { if (CDecl->isDeprecated()) return; // migrate methods which can have instancetype as their result type. for (ObjCContainerDecl::method_iterator M = CDecl->meth_begin(), MEnd = CDecl->meth_end(); M != MEnd; ++M) { ObjCMethodDecl *Method = (*M); if (Method->isDeprecated()) continue; migrateMethodInstanceType(Ctx, CDecl, Method); } } void ObjCMigrateASTConsumer::migrateFactoryMethod(ASTContext &Ctx, ObjCContainerDecl *CDecl, ObjCMethodDecl *OM, ObjCInstanceTypeFamily OIT_Family) { if (OM->isInstanceMethod() || OM->getResultType() == Ctx.getObjCInstanceType() || !OM->getResultType()->isObjCIdType()) return; // Candidate factory methods are + (id) NaMeXXX : ... which belong to a class // NSYYYNamE with matching names be at least 3 characters long. ObjCInterfaceDecl *IDecl = dyn_cast(CDecl); if (!IDecl) { if (ObjCCategoryDecl *CatDecl = dyn_cast(CDecl)) IDecl = CatDecl->getClassInterface(); else if (ObjCImplDecl *ImpDecl = dyn_cast(CDecl)) IDecl = ImpDecl->getClassInterface(); } if (!IDecl) return; std::string StringClassName = IDecl->getName(); StringRef LoweredClassName(StringClassName); std::string StringLoweredClassName = LoweredClassName.lower(); LoweredClassName = StringLoweredClassName; IdentifierInfo *MethodIdName = OM->getSelector().getIdentifierInfoForSlot(0); // Handle method with no name at its first selector slot; e.g. + (id):(int)x. if (!MethodIdName) return; std::string MethodName = MethodIdName->getName(); if (OIT_Family == OIT_Singleton) { StringRef STRefMethodName(MethodName); size_t len = 0; if (STRefMethodName.startswith("standard")) len = strlen("standard"); else if (STRefMethodName.startswith("shared")) len = strlen("shared"); else if (STRefMethodName.startswith("default")) len = strlen("default"); else return; MethodName = STRefMethodName.substr(len); } std::string MethodNameSubStr = MethodName.substr(0, 3); StringRef MethodNamePrefix(MethodNameSubStr); std::string StringLoweredMethodNamePrefix = MethodNamePrefix.lower(); MethodNamePrefix = StringLoweredMethodNamePrefix; size_t Ix = LoweredClassName.rfind(MethodNamePrefix); if (Ix == StringRef::npos) return; std::string ClassNamePostfix = LoweredClassName.substr(Ix); StringRef LoweredMethodName(MethodName); std::string StringLoweredMethodName = LoweredMethodName.lower(); LoweredMethodName = StringLoweredMethodName; if (!LoweredMethodName.startswith(ClassNamePostfix)) return; ReplaceWithInstancetype(*this, OM); } static bool IsVoidStarType(QualType Ty) { if (!Ty->isPointerType()) return false; while (const TypedefType *TD = dyn_cast(Ty.getTypePtr())) Ty = TD->getDecl()->getUnderlyingType(); // Is the type void*? const PointerType* PT = Ty->getAs(); if (PT->getPointeeType().getUnqualifiedType()->isVoidType()) return true; return IsVoidStarType(PT->getPointeeType()); } /// AuditedType - This routine audits the type AT and returns false if it is one of known /// CF object types or of the "void *" variety. It returns true if we don't care about the type /// such as a non-pointer or pointers which have no ownership issues (such as "int *"). static bool AuditedType (QualType AT) { if (!AT->isAnyPointerType() && !AT->isBlockPointerType()) return true; // FIXME. There isn't much we can say about CF pointer type; or is there? if (ento::coreFoundation::isCFObjectRef(AT) || IsVoidStarType(AT) || // If an ObjC object is type, assuming that it is not a CF function and // that it is an un-audited function. AT->isObjCObjectPointerType() || AT->isObjCBuiltinType()) return false; // All other pointers are assumed audited as harmless. return true; } void ObjCMigrateASTConsumer::AnnotateImplicitBridging(ASTContext &Ctx) { if (CFFunctionIBCandidates.empty()) return; if (!Ctx.Idents.get("CF_IMPLICIT_BRIDGING_ENABLED").hasMacroDefinition()) { CFFunctionIBCandidates.clear(); FileId = 0; return; } // Insert CF_IMPLICIT_BRIDGING_ENABLE/CF_IMPLICIT_BRIDGING_DISABLED const Decl *FirstFD = CFFunctionIBCandidates[0]; const Decl *LastFD = CFFunctionIBCandidates[CFFunctionIBCandidates.size()-1]; const char *PragmaString = "\nCF_IMPLICIT_BRIDGING_ENABLED\n\n"; edit::Commit commit(*Editor); commit.insertBefore(FirstFD->getLocStart(), PragmaString); PragmaString = "\n\nCF_IMPLICIT_BRIDGING_DISABLED\n"; SourceLocation EndLoc = LastFD->getLocEnd(); // get location just past end of function location. EndLoc = PP.getLocForEndOfToken(EndLoc); if (isa(LastFD)) { // For Methods, EndLoc points to the ending semcolon. So, // not of these extra work is needed. Token Tok; // get locaiton of token that comes after end of function. bool Failed = PP.getRawToken(EndLoc, Tok, /*IgnoreWhiteSpace=*/true); if (!Failed) EndLoc = Tok.getLocation(); } commit.insertAfterToken(EndLoc, PragmaString); Editor->commit(commit); FileId = 0; CFFunctionIBCandidates.clear(); } void ObjCMigrateASTConsumer::migrateCFAnnotation(ASTContext &Ctx, const Decl *Decl) { if (Decl->isDeprecated()) return; if (Decl->hasAttr()) { assert(CFFunctionIBCandidates.empty() && "Cannot have audited functions/methods inside user " "provided CF_IMPLICIT_BRIDGING_ENABLE"); return; } // Finction must be annotated first. if (const FunctionDecl *FuncDecl = dyn_cast(Decl)) { CF_BRIDGING_KIND AuditKind = migrateAddFunctionAnnotation(Ctx, FuncDecl); if (AuditKind == CF_BRIDGING_ENABLE) { CFFunctionIBCandidates.push_back(Decl); if (!FileId) FileId = PP.getSourceManager().getFileID(Decl->getLocation()).getHashValue(); } else if (AuditKind == CF_BRIDGING_MAY_INCLUDE) { if (!CFFunctionIBCandidates.empty()) { CFFunctionIBCandidates.push_back(Decl); if (!FileId) FileId = PP.getSourceManager().getFileID(Decl->getLocation()).getHashValue(); } } else AnnotateImplicitBridging(Ctx); } else { migrateAddMethodAnnotation(Ctx, cast(Decl)); AnnotateImplicitBridging(Ctx); } } void ObjCMigrateASTConsumer::AddCFAnnotations(ASTContext &Ctx, const CallEffects &CE, const FunctionDecl *FuncDecl, bool ResultAnnotated) { // Annotate function. if (!ResultAnnotated) { RetEffect Ret = CE.getReturnValue(); const char *AnnotationString = 0; if (Ret.getObjKind() == RetEffect::CF) { if (Ret.isOwned() && Ctx.Idents.get("CF_RETURNS_RETAINED").hasMacroDefinition()) AnnotationString = " CF_RETURNS_RETAINED"; else if (Ret.notOwned() && Ctx.Idents.get("CF_RETURNS_NOT_RETAINED").hasMacroDefinition()) AnnotationString = " CF_RETURNS_NOT_RETAINED"; } else if (Ret.getObjKind() == RetEffect::ObjC) { if (Ret.isOwned() && Ctx.Idents.get("NS_RETURNS_RETAINED").hasMacroDefinition()) AnnotationString = " NS_RETURNS_RETAINED"; } if (AnnotationString) { edit::Commit commit(*Editor); commit.insertAfterToken(FuncDecl->getLocEnd(), AnnotationString); Editor->commit(commit); } } llvm::ArrayRef AEArgs = CE.getArgs(); unsigned i = 0; for (FunctionDecl::param_const_iterator pi = FuncDecl->param_begin(), pe = FuncDecl->param_end(); pi != pe; ++pi, ++i) { const ParmVarDecl *pd = *pi; ArgEffect AE = AEArgs[i]; if (AE == DecRef && !pd->getAttr() && Ctx.Idents.get("CF_CONSUMED").hasMacroDefinition()) { edit::Commit commit(*Editor); commit.insertBefore(pd->getLocation(), "CF_CONSUMED "); Editor->commit(commit); } else if (AE == DecRefMsg && !pd->getAttr() && Ctx.Idents.get("NS_CONSUMED").hasMacroDefinition()) { edit::Commit commit(*Editor); commit.insertBefore(pd->getLocation(), "NS_CONSUMED "); Editor->commit(commit); } } } ObjCMigrateASTConsumer::CF_BRIDGING_KIND ObjCMigrateASTConsumer::migrateAddFunctionAnnotation( ASTContext &Ctx, const FunctionDecl *FuncDecl) { if (FuncDecl->hasBody()) return CF_BRIDGING_NONE; CallEffects CE = CallEffects::getEffect(FuncDecl); bool FuncIsReturnAnnotated = (FuncDecl->getAttr() || FuncDecl->getAttr() || FuncDecl->getAttr() || FuncDecl->getAttr() || FuncDecl->getAttr()); // Trivial case of when funciton is annotated and has no argument. if (FuncIsReturnAnnotated && FuncDecl->getNumParams() == 0) return CF_BRIDGING_NONE; bool ReturnCFAudited = false; if (!FuncIsReturnAnnotated) { RetEffect Ret = CE.getReturnValue(); if (Ret.getObjKind() == RetEffect::CF && (Ret.isOwned() || Ret.notOwned())) ReturnCFAudited = true; else if (!AuditedType(FuncDecl->getResultType())) return CF_BRIDGING_NONE; } // At this point result type is audited for potential inclusion. // Now, how about argument types. llvm::ArrayRef AEArgs = CE.getArgs(); unsigned i = 0; bool ArgCFAudited = false; for (FunctionDecl::param_const_iterator pi = FuncDecl->param_begin(), pe = FuncDecl->param_end(); pi != pe; ++pi, ++i) { const ParmVarDecl *pd = *pi; ArgEffect AE = AEArgs[i]; if (AE == DecRef /*CFConsumed annotated*/ || AE == IncRef) { if (AE == DecRef && !pd->getAttr()) ArgCFAudited = true; else if (AE == IncRef) ArgCFAudited = true; } else { QualType AT = pd->getType(); if (!AuditedType(AT)) { AddCFAnnotations(Ctx, CE, FuncDecl, FuncIsReturnAnnotated); return CF_BRIDGING_NONE; } } } if (ReturnCFAudited || ArgCFAudited) return CF_BRIDGING_ENABLE; return CF_BRIDGING_MAY_INCLUDE; } void ObjCMigrateASTConsumer::migrateARCSafeAnnotation(ASTContext &Ctx, ObjCContainerDecl *CDecl) { if (!isa(CDecl) || CDecl->isDeprecated()) return; // migrate methods which can have instancetype as their result type. for (ObjCContainerDecl::method_iterator M = CDecl->meth_begin(), MEnd = CDecl->meth_end(); M != MEnd; ++M) { ObjCMethodDecl *Method = (*M); migrateCFAnnotation(Ctx, Method); } } void ObjCMigrateASTConsumer::AddCFAnnotations(ASTContext &Ctx, const CallEffects &CE, const ObjCMethodDecl *MethodDecl, bool ResultAnnotated) { // Annotate function. if (!ResultAnnotated) { RetEffect Ret = CE.getReturnValue(); const char *AnnotationString = 0; if (Ret.getObjKind() == RetEffect::CF) { if (Ret.isOwned() && Ctx.Idents.get("CF_RETURNS_RETAINED").hasMacroDefinition()) AnnotationString = " CF_RETURNS_RETAINED"; else if (Ret.notOwned() && Ctx.Idents.get("CF_RETURNS_NOT_RETAINED").hasMacroDefinition()) AnnotationString = " CF_RETURNS_NOT_RETAINED"; } else if (Ret.getObjKind() == RetEffect::ObjC) { ObjCMethodFamily OMF = MethodDecl->getMethodFamily(); switch (OMF) { case clang::OMF_alloc: case clang::OMF_new: case clang::OMF_copy: case clang::OMF_init: case clang::OMF_mutableCopy: break; default: if (Ret.isOwned() && Ctx.Idents.get("NS_RETURNS_RETAINED").hasMacroDefinition()) AnnotationString = " NS_RETURNS_RETAINED"; break; } } if (AnnotationString) { edit::Commit commit(*Editor); commit.insertBefore(MethodDecl->getLocEnd(), AnnotationString); Editor->commit(commit); } } llvm::ArrayRef AEArgs = CE.getArgs(); unsigned i = 0; for (ObjCMethodDecl::param_const_iterator pi = MethodDecl->param_begin(), pe = MethodDecl->param_end(); pi != pe; ++pi, ++i) { const ParmVarDecl *pd = *pi; ArgEffect AE = AEArgs[i]; if (AE == DecRef && !pd->getAttr() && Ctx.Idents.get("CF_CONSUMED").hasMacroDefinition()) { edit::Commit commit(*Editor); commit.insertBefore(pd->getLocation(), "CF_CONSUMED "); Editor->commit(commit); } } } void ObjCMigrateASTConsumer::migrateAddMethodAnnotation( ASTContext &Ctx, const ObjCMethodDecl *MethodDecl) { if (MethodDecl->hasBody() || MethodDecl->isImplicit()) return; CallEffects CE = CallEffects::getEffect(MethodDecl); bool MethodIsReturnAnnotated = (MethodDecl->getAttr() || MethodDecl->getAttr() || MethodDecl->getAttr() || MethodDecl->getAttr() || MethodDecl->getAttr()); if (CE.getReceiver() == DecRefMsg && !MethodDecl->getAttr() && MethodDecl->getMethodFamily() != OMF_init && MethodDecl->getMethodFamily() != OMF_release && Ctx.Idents.get("NS_CONSUMES_SELF").hasMacroDefinition()) { edit::Commit commit(*Editor); commit.insertBefore(MethodDecl->getLocEnd(), " NS_CONSUMES_SELF"); Editor->commit(commit); } // Trivial case of when funciton is annotated and has no argument. if (MethodIsReturnAnnotated && (MethodDecl->param_begin() == MethodDecl->param_end())) return; if (!MethodIsReturnAnnotated) { RetEffect Ret = CE.getReturnValue(); if ((Ret.getObjKind() == RetEffect::CF || Ret.getObjKind() == RetEffect::ObjC) && (Ret.isOwned() || Ret.notOwned())) { AddCFAnnotations(Ctx, CE, MethodDecl, false); return; } else if (!AuditedType(MethodDecl->getResultType())) return; } // At this point result type is either annotated or audited. // Now, how about argument types. llvm::ArrayRef AEArgs = CE.getArgs(); unsigned i = 0; for (ObjCMethodDecl::param_const_iterator pi = MethodDecl->param_begin(), pe = MethodDecl->param_end(); pi != pe; ++pi, ++i) { const ParmVarDecl *pd = *pi; ArgEffect AE = AEArgs[i]; if ((AE == DecRef && !pd->getAttr()) || AE == IncRef || !AuditedType(pd->getType())) { AddCFAnnotations(Ctx, CE, MethodDecl, MethodIsReturnAnnotated); return; } } return; } namespace { class RewritesReceiver : public edit::EditsReceiver { Rewriter &Rewrite; public: RewritesReceiver(Rewriter &Rewrite) : Rewrite(Rewrite) { } virtual void insert(SourceLocation loc, StringRef text) { Rewrite.InsertText(loc, text); } virtual void replace(CharSourceRange range, StringRef text) { Rewrite.ReplaceText(range.getBegin(), Rewrite.getRangeSize(range), text); } }; } void ObjCMigrateASTConsumer::HandleTranslationUnit(ASTContext &Ctx) { TranslationUnitDecl *TU = Ctx.getTranslationUnitDecl(); if (MigrateProperty) { for (DeclContext::decl_iterator D = TU->decls_begin(), DEnd = TU->decls_end(); D != DEnd; ++D) { if (unsigned FID = PP.getSourceManager().getFileID((*D)->getLocation()).getHashValue()) if (FileId && FileId != FID) AnnotateImplicitBridging(Ctx); if (ObjCInterfaceDecl *CDecl = dyn_cast(*D)) migrateObjCInterfaceDecl(Ctx, CDecl); if (ObjCCategoryDecl *CatDecl = dyn_cast(*D)) migrateObjCInterfaceDecl(Ctx, CatDecl); else if (ObjCProtocolDecl *PDecl = dyn_cast(*D)) ObjCProtocolDecls.insert(PDecl); else if (const ObjCImplementationDecl *ImpDecl = dyn_cast(*D)) migrateProtocolConformance(Ctx, ImpDecl); else if (const EnumDecl *ED = dyn_cast(*D)) { DeclContext::decl_iterator N = D; ++N; if (N != DEnd) if (const TypedefDecl *TD = dyn_cast(*N)) migrateNSEnumDecl(Ctx, ED, TD); } else if (const FunctionDecl *FD = dyn_cast(*D)) migrateCFAnnotation(Ctx, FD); if (ObjCContainerDecl *CDecl = dyn_cast(*D)) { // migrate methods which can have instancetype as their result type. migrateMethods(Ctx, CDecl); // annotate methods with CF annotations. migrateARCSafeAnnotation(Ctx, CDecl); } } AnnotateImplicitBridging(Ctx); } Rewriter rewriter(Ctx.getSourceManager(), Ctx.getLangOpts()); RewritesReceiver Rec(rewriter); Editor->applyRewrites(Rec); for (Rewriter::buffer_iterator I = rewriter.buffer_begin(), E = rewriter.buffer_end(); I != E; ++I) { FileID FID = I->first; RewriteBuffer &buf = I->second; const FileEntry *file = Ctx.getSourceManager().getFileEntryForID(FID); assert(file); SmallString<512> newText; llvm::raw_svector_ostream vecOS(newText); buf.write(vecOS); vecOS.flush(); llvm::MemoryBuffer *memBuf = llvm::MemoryBuffer::getMemBufferCopy( StringRef(newText.data(), newText.size()), file->getName()); SmallString<64> filePath(file->getName()); FileMgr.FixupRelativePath(filePath); Remapper.remap(filePath.str(), memBuf); } if (IsOutputFile) { Remapper.flushToFile(MigrateDir, Ctx.getDiagnostics()); } else { Remapper.flushToDisk(MigrateDir, Ctx.getDiagnostics()); } } bool MigrateSourceAction::BeginInvocation(CompilerInstance &CI) { CI.getDiagnostics().setIgnoreAllWarnings(true); return true; } ASTConsumer *MigrateSourceAction::CreateASTConsumer(CompilerInstance &CI, StringRef InFile) { PPConditionalDirectiveRecord * PPRec = new PPConditionalDirectiveRecord(CI.getSourceManager()); CI.getPreprocessor().addPPCallbacks(PPRec); return new ObjCMigrateASTConsumer(CI.getFrontendOpts().OutputFile, /*MigrateLiterals=*/true, /*MigrateSubscripting=*/true, /*MigrateProperty*/true, /*MigrateReadonlyProperty*/true, Remapper, CI.getFileManager(), PPRec, CI.getPreprocessor(), /*isOutputFile=*/true); }