//=-- GRExprEngine.cpp - Path-Sensitive Expression-Level Dataflow ---*- C++ -*-= // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file defines a meta-engine for path-sensitive dataflow analysis that // is built on GREngine, but provides the boilerplate to execute transfer // functions and build the ExplodedGraph at the expression level. // //===----------------------------------------------------------------------===// #include "clang/Analysis/PathSensitive/GRExprEngine.h" #include "clang/Analysis/PathSensitive/BugReporter.h" #include "clang/Basic/SourceManager.h" #include "llvm/Support/Streams.h" #include "llvm/ADT/ImmutableList.h" #include "llvm/Support/Compiler.h" #include "llvm/Support/raw_ostream.h" #ifndef NDEBUG #include "llvm/Support/GraphWriter.h" #include #endif using namespace clang; using llvm::dyn_cast; using llvm::cast; using llvm::APSInt; //===----------------------------------------------------------------------===// // Engine construction and deletion. //===----------------------------------------------------------------------===// namespace { class VISIBILITY_HIDDEN MappedBatchAuditor : public GRSimpleAPICheck { typedef llvm::ImmutableList Checks; typedef llvm::DenseMap MapTy; MapTy M; Checks::Factory F; public: MappedBatchAuditor(llvm::BumpPtrAllocator& Alloc) : F(Alloc) {} virtual ~MappedBatchAuditor() { llvm::DenseSet AlreadyVisited; for (MapTy::iterator MI = M.begin(), ME = M.end(); MI != ME; ++MI) for (Checks::iterator I=MI->second.begin(), E=MI->second.end(); I!=E;++I){ GRSimpleAPICheck* check = *I; if (AlreadyVisited.count(check)) continue; AlreadyVisited.insert(check); delete check; } } void AddCheck(GRSimpleAPICheck* A, Stmt::StmtClass C) { assert (A && "Check cannot be null."); void* key = reinterpret_cast((uintptr_t) C); MapTy::iterator I = M.find(key); M[key] = F.Concat(A, I == M.end() ? F.GetEmptyList() : I->second); } virtual void EmitWarnings(BugReporter& BR) { llvm::DenseSet AlreadyVisited; for (MapTy::iterator MI = M.begin(), ME = M.end(); MI != ME; ++MI) for (Checks::iterator I=MI->second.begin(), E=MI->second.end(); I!=E;++I){ GRSimpleAPICheck* check = *I; if (AlreadyVisited.count(check)) continue; check->EmitWarnings(BR); } } virtual bool Audit(NodeTy* N, GRStateManager& VMgr) { Stmt* S = cast(N->getLocation()).getStmt(); void* key = reinterpret_cast((uintptr_t) S->getStmtClass()); MapTy::iterator MI = M.find(key); if (MI == M.end()) return false; bool isSink = false; for (Checks::iterator I=MI->second.begin(), E=MI->second.end(); I!=E; ++I) isSink |= (*I)->Audit(N, VMgr); return isSink; } }; } // end anonymous namespace //===----------------------------------------------------------------------===// // Engine construction and deletion. //===----------------------------------------------------------------------===// static inline Selector GetNullarySelector(const char* name, ASTContext& Ctx) { IdentifierInfo* II = &Ctx.Idents.get(name); return Ctx.Selectors.getSelector(0, &II); } GRExprEngine::GRExprEngine(CFG& cfg, Decl& CD, ASTContext& Ctx, LiveVariables& L) : CoreEngine(cfg, CD, Ctx, *this), G(CoreEngine.getGraph()), Liveness(L), Builder(NULL), StateMgr(G.getContext(), CreateBasicStoreManager, CreateBasicConstraintManager, G.getAllocator(), G.getCFG(), L), SymMgr(StateMgr.getSymbolManager()), CurrentStmt(NULL), NSExceptionII(NULL), NSExceptionInstanceRaiseSelectors(NULL), RaiseSel(GetNullarySelector("raise", G.getContext())) {} GRExprEngine::~GRExprEngine() { for (BugTypeSet::iterator I = BugTypes.begin(), E = BugTypes.end(); I!=E; ++I) delete *I; delete [] NSExceptionInstanceRaiseSelectors; } //===----------------------------------------------------------------------===// // Utility methods. //===----------------------------------------------------------------------===// // SaveAndRestore - A utility class that uses RIIA to save and restore // the value of a variable. template struct VISIBILITY_HIDDEN SaveAndRestore { SaveAndRestore(T& x) : X(x), old_value(x) {} ~SaveAndRestore() { X = old_value; } T get() { return old_value; } T& X; T old_value; }; // SaveOr - Similar to SaveAndRestore. Operates only on bools; the old // value of a variable is saved, and during the dstor the old value is // or'ed with the new value. struct VISIBILITY_HIDDEN SaveOr { SaveOr(bool& x) : X(x), old_value(x) { x = false; } ~SaveOr() { X |= old_value; } bool& X; bool old_value; }; void GRExprEngine::EmitWarnings(BugReporterData& BRData) { for (bug_type_iterator I = bug_types_begin(), E = bug_types_end(); I!=E; ++I){ GRBugReporter BR(BRData, *this); (*I)->EmitWarnings(BR); } if (BatchAuditor) { GRBugReporter BR(BRData, *this); BatchAuditor->EmitWarnings(BR); } } void GRExprEngine::setTransferFunctions(GRTransferFuncs* tf) { StateMgr.TF = tf; tf->RegisterChecks(*this); tf->RegisterPrinters(getStateManager().Printers); } void GRExprEngine::AddCheck(GRSimpleAPICheck* A, Stmt::StmtClass C) { if (!BatchAuditor) BatchAuditor.reset(new MappedBatchAuditor(getGraph().getAllocator())); ((MappedBatchAuditor*) BatchAuditor.get())->AddCheck(A, C); } const GRState* GRExprEngine::getInitialState() { return StateMgr.getInitialState(); } //===----------------------------------------------------------------------===// // Top-level transfer function logic (Dispatcher). //===----------------------------------------------------------------------===// void GRExprEngine::ProcessStmt(Stmt* S, StmtNodeBuilder& builder) { Builder = &builder; EntryNode = builder.getLastNode(); // FIXME: Consolidate. CurrentStmt = S; StateMgr.CurrentStmt = S; // Set up our simple checks. if (BatchAuditor) Builder->setAuditor(BatchAuditor.get()); // Create the cleaned state. CleanedState = StateMgr.RemoveDeadBindings(EntryNode->getState(), CurrentStmt, Liveness, DeadSymbols); // Process any special transfer function for dead symbols. NodeSet Tmp; if (DeadSymbols.empty()) Tmp.Add(EntryNode); else { SaveAndRestore OldSink(Builder->BuildSinks); SaveOr OldHasGen(Builder->HasGeneratedNode); SaveAndRestore OldPurgeDeadSymbols(Builder->PurgingDeadSymbols); Builder->PurgingDeadSymbols = true; getTF().EvalDeadSymbols(Tmp, *this, *Builder, EntryNode, S, CleanedState, DeadSymbols); if (!Builder->BuildSinks && !Builder->HasGeneratedNode) Tmp.Add(EntryNode); } bool HasAutoGenerated = false; for (NodeSet::iterator I=Tmp.begin(), E=Tmp.end(); I!=E; ++I) { NodeSet Dst; // Set the cleaned state. Builder->SetCleanedState(*I == EntryNode ? CleanedState : GetState(*I)); // Visit the statement. Visit(S, *I, Dst); // Do we need to auto-generate a node? We only need to do this to generate // a node with a "cleaned" state; GRCoreEngine will actually handle // auto-transitions for other cases. if (Dst.size() == 1 && *Dst.begin() == EntryNode && !Builder->HasGeneratedNode && !HasAutoGenerated) { HasAutoGenerated = true; builder.generateNode(S, GetState(EntryNode), *I); } } // NULL out these variables to cleanup. CleanedState = NULL; EntryNode = NULL; // FIXME: Consolidate. StateMgr.CurrentStmt = 0; CurrentStmt = 0; Builder = NULL; } void GRExprEngine::Visit(Stmt* S, NodeTy* Pred, NodeSet& Dst) { // FIXME: add metadata to the CFG so that we can disable // this check when we KNOW that there is no block-level subexpression. // The motivation is that this check requires a hashtable lookup. if (S != CurrentStmt && getCFG().isBlkExpr(S)) { Dst.Add(Pred); return; } switch (S->getStmtClass()) { default: // Cases we intentionally have "default" handle: // AddrLabelExpr, IntegerLiteral, CharacterLiteral Dst.Add(Pred); // No-op. Simply propagate the current state unchanged. break; case Stmt::ArraySubscriptExprClass: VisitArraySubscriptExpr(cast(S), Pred, Dst, false); break; case Stmt::AsmStmtClass: VisitAsmStmt(cast(S), Pred, Dst); break; case Stmt::BinaryOperatorClass: { BinaryOperator* B = cast(S); if (B->isLogicalOp()) { VisitLogicalExpr(B, Pred, Dst); break; } else if (B->getOpcode() == BinaryOperator::Comma) { const GRState* St = GetState(Pred); MakeNode(Dst, B, Pred, SetRVal(St, B, GetRVal(St, B->getRHS()))); break; } VisitBinaryOperator(cast(S), Pred, Dst); break; } case Stmt::CallExprClass: { CallExpr* C = cast(S); VisitCall(C, Pred, C->arg_begin(), C->arg_end(), Dst); break; } // FIXME: ChooseExpr is really a constant. We need to fix // the CFG do not model them as explicit control-flow. case Stmt::ChooseExprClass: { // __builtin_choose_expr ChooseExpr* C = cast(S); VisitGuardedExpr(C, C->getLHS(), C->getRHS(), Pred, Dst); break; } case Stmt::CompoundAssignOperatorClass: VisitBinaryOperator(cast(S), Pred, Dst); break; case Stmt::ConditionalOperatorClass: { // '?' operator ConditionalOperator* C = cast(S); VisitGuardedExpr(C, C->getLHS(), C->getRHS(), Pred, Dst); break; } case Stmt::DeclRefExprClass: VisitDeclRefExpr(cast(S), Pred, Dst, false); break; case Stmt::DeclStmtClass: VisitDeclStmt(cast(S), Pred, Dst); break; case Stmt::ImplicitCastExprClass: case Stmt::ExplicitCastExprClass: { CastExpr* C = cast(S); VisitCast(C, C->getSubExpr(), Pred, Dst); break; } case Stmt::MemberExprClass: { VisitMemberExpr(cast(S), Pred, Dst, false); break; } case Stmt::ObjCMessageExprClass: { VisitObjCMessageExpr(cast(S), Pred, Dst); break; } case Stmt::ParenExprClass: Visit(cast(S)->getSubExpr()->IgnoreParens(), Pred, Dst); break; case Stmt::ReturnStmtClass: VisitReturnStmt(cast(S), Pred, Dst); break; case Stmt::SizeOfAlignOfTypeExprClass: VisitSizeOfAlignOfTypeExpr(cast(S), Pred, Dst); break; case Stmt::StmtExprClass: { StmtExpr* SE = cast(S); const GRState* St = GetState(Pred); // FIXME: Not certain if we can have empty StmtExprs. If so, we should // probably just remove these from the CFG. assert (!SE->getSubStmt()->body_empty()); if (Expr* LastExpr = dyn_cast(*SE->getSubStmt()->body_rbegin())) MakeNode(Dst, SE, Pred, SetRVal(St, SE, GetRVal(St, LastExpr))); else Dst.Add(Pred); break; } case Stmt::UnaryOperatorClass: VisitUnaryOperator(cast(S), Pred, Dst, false); break; } } void GRExprEngine::VisitLVal(Expr* Ex, NodeTy* Pred, NodeSet& Dst) { Ex = Ex->IgnoreParens(); if (Ex != CurrentStmt && getCFG().isBlkExpr(Ex)) { Dst.Add(Pred); return; } switch (Ex->getStmtClass()) { default: Visit(Ex, Pred, Dst); return; case Stmt::ArraySubscriptExprClass: VisitArraySubscriptExpr(cast(Ex), Pred, Dst, true); return; case Stmt::DeclRefExprClass: VisitDeclRefExpr(cast(Ex), Pred, Dst, true); return; case Stmt::UnaryOperatorClass: VisitUnaryOperator(cast(Ex), Pred, Dst, true); return; case Stmt::MemberExprClass: VisitMemberExpr(cast(Ex), Pred, Dst, true); return; } } //===----------------------------------------------------------------------===// // Block entrance. (Update counters). //===----------------------------------------------------------------------===// bool GRExprEngine::ProcessBlockEntrance(CFGBlock* B, const GRState*, GRBlockCounter BC) { return BC.getNumVisited(B->getBlockID()) < 3; } //===----------------------------------------------------------------------===// // Branch processing. //===----------------------------------------------------------------------===// const GRState* GRExprEngine::MarkBranch(const GRState* St, Stmt* Terminator, bool branchTaken) { switch (Terminator->getStmtClass()) { default: return St; case Stmt::BinaryOperatorClass: { // '&&' and '||' BinaryOperator* B = cast(Terminator); BinaryOperator::Opcode Op = B->getOpcode(); assert (Op == BinaryOperator::LAnd || Op == BinaryOperator::LOr); // For &&, if we take the true branch, then the value of the whole // expression is that of the RHS expression. // // For ||, if we take the false branch, then the value of the whole // expression is that of the RHS expression. Expr* Ex = (Op == BinaryOperator::LAnd && branchTaken) || (Op == BinaryOperator::LOr && !branchTaken) ? B->getRHS() : B->getLHS(); return SetBlkExprRVal(St, B, UndefinedVal(Ex)); } case Stmt::ConditionalOperatorClass: { // ?: ConditionalOperator* C = cast(Terminator); // For ?, if branchTaken == true then the value is either the LHS or // the condition itself. (GNU extension). Expr* Ex; if (branchTaken) Ex = C->getLHS() ? C->getLHS() : C->getCond(); else Ex = C->getRHS(); return SetBlkExprRVal(St, C, UndefinedVal(Ex)); } case Stmt::ChooseExprClass: { // ?: ChooseExpr* C = cast(Terminator); Expr* Ex = branchTaken ? C->getLHS() : C->getRHS(); return SetBlkExprRVal(St, C, UndefinedVal(Ex)); } } } void GRExprEngine::ProcessBranch(Expr* Condition, Stmt* Term, BranchNodeBuilder& builder) { // Remove old bindings for subexpressions. const GRState* PrevState = StateMgr.RemoveSubExprBindings(builder.getState()); // Check for NULL conditions; e.g. "for(;;)" if (!Condition) { builder.markInfeasible(false); return; } RVal V = GetRVal(PrevState, Condition); switch (V.getBaseKind()) { default: break; case RVal::UnknownKind: builder.generateNode(MarkBranch(PrevState, Term, true), true); builder.generateNode(MarkBranch(PrevState, Term, false), false); return; case RVal::UndefinedKind: { NodeTy* N = builder.generateNode(PrevState, true); if (N) { N->markAsSink(); UndefBranches.insert(N); } builder.markInfeasible(false); return; } } // Process the true branch. bool isFeasible = false; const GRState* St = Assume(PrevState, V, true, isFeasible); if (isFeasible) builder.generateNode(MarkBranch(St, Term, true), true); else builder.markInfeasible(true); // Process the false branch. isFeasible = false; St = Assume(PrevState, V, false, isFeasible); if (isFeasible) builder.generateNode(MarkBranch(St, Term, false), false); else builder.markInfeasible(false); } /// ProcessIndirectGoto - Called by GRCoreEngine. Used to generate successor /// nodes by processing the 'effects' of a computed goto jump. void GRExprEngine::ProcessIndirectGoto(IndirectGotoNodeBuilder& builder) { const GRState* St = builder.getState(); RVal V = GetRVal(St, builder.getTarget()); // Three possibilities: // // (1) We know the computed label. // (2) The label is NULL (or some other constant), or Undefined. // (3) We have no clue about the label. Dispatch to all targets. // typedef IndirectGotoNodeBuilder::iterator iterator; if (isa(V)) { LabelStmt* L = cast(V).getLabel(); for (iterator I=builder.begin(), E=builder.end(); I != E; ++I) { if (I.getLabel() == L) { builder.generateNode(I, St); return; } } assert (false && "No block with label."); return; } if (isa(V) || isa(V)) { // Dispatch to the first target and mark it as a sink. NodeTy* N = builder.generateNode(builder.begin(), St, true); UndefBranches.insert(N); return; } // This is really a catch-all. We don't support symbolics yet. assert (V.isUnknown()); for (iterator I=builder.begin(), E=builder.end(); I != E; ++I) builder.generateNode(I, St); } void GRExprEngine::VisitGuardedExpr(Expr* Ex, Expr* L, Expr* R, NodeTy* Pred, NodeSet& Dst) { assert (Ex == CurrentStmt && getCFG().isBlkExpr(Ex)); const GRState* St = GetState(Pred); RVal X = GetBlkExprRVal(St, Ex); assert (X.isUndef()); Expr* SE = (Expr*) cast(X).getData(); assert (SE); X = GetBlkExprRVal(St, SE); // Make sure that we invalidate the previous binding. MakeNode(Dst, Ex, Pred, StateMgr.SetRVal(St, Ex, X, true, true)); } /// ProcessSwitch - Called by GRCoreEngine. Used to generate successor /// nodes by processing the 'effects' of a switch statement. void GRExprEngine::ProcessSwitch(SwitchNodeBuilder& builder) { typedef SwitchNodeBuilder::iterator iterator; const GRState* St = builder.getState(); Expr* CondE = builder.getCondition(); RVal CondV = GetRVal(St, CondE); if (CondV.isUndef()) { NodeTy* N = builder.generateDefaultCaseNode(St, true); UndefBranches.insert(N); return; } const GRState* DefaultSt = St; // While most of this can be assumed (such as the signedness), having it // just computed makes sure everything makes the same assumptions end-to-end. unsigned bits = getContext().getTypeSize(CondE->getType()); APSInt V1(bits, false); APSInt V2 = V1; bool DefaultFeasible = false; for (iterator I = builder.begin(), EI = builder.end(); I != EI; ++I) { CaseStmt* Case = cast(I.getCase()); // Evaluate the case. if (!Case->getLHS()->isIntegerConstantExpr(V1, getContext(), 0, true)) { assert (false && "Case condition must evaluate to an integer constant."); return; } // Get the RHS of the case, if it exists. if (Expr* E = Case->getRHS()) { if (!E->isIntegerConstantExpr(V2, getContext(), 0, true)) { assert (false && "Case condition (RHS) must evaluate to an integer constant."); return ; } assert (V1 <= V2); } else V2 = V1; // FIXME: Eventually we should replace the logic below with a range // comparison, rather than concretize the values within the range. // This should be easy once we have "ranges" for NonLVals. do { nonlval::ConcreteInt CaseVal(getBasicVals().getValue(V1)); RVal Res = EvalBinOp(BinaryOperator::EQ, CondV, CaseVal); // Now "assume" that the case matches. bool isFeasible = false; const GRState* StNew = Assume(St, Res, true, isFeasible); if (isFeasible) { builder.generateCaseStmtNode(I, StNew); // If CondV evaluates to a constant, then we know that this // is the *only* case that we can take, so stop evaluating the // others. if (isa(CondV)) return; } // Now "assume" that the case doesn't match. Add this state // to the default state (if it is feasible). isFeasible = false; StNew = Assume(DefaultSt, Res, false, isFeasible); if (isFeasible) { DefaultFeasible = true; DefaultSt = StNew; } // Concretize the next value in the range. if (V1 == V2) break; ++V1; assert (V1 <= V2); } while (true); } // If we reach here, than we know that the default branch is // possible. if (DefaultFeasible) builder.generateDefaultCaseNode(DefaultSt); } //===----------------------------------------------------------------------===// // Transfer functions: logical operations ('&&', '||'). //===----------------------------------------------------------------------===// void GRExprEngine::VisitLogicalExpr(BinaryOperator* B, NodeTy* Pred, NodeSet& Dst) { assert (B->getOpcode() == BinaryOperator::LAnd || B->getOpcode() == BinaryOperator::LOr); assert (B == CurrentStmt && getCFG().isBlkExpr(B)); const GRState* St = GetState(Pred); RVal X = GetBlkExprRVal(St, B); assert (X.isUndef()); Expr* Ex = (Expr*) cast(X).getData(); assert (Ex); if (Ex == B->getRHS()) { X = GetBlkExprRVal(St, Ex); // Handle undefined values. if (X.isUndef()) { MakeNode(Dst, B, Pred, SetBlkExprRVal(St, B, X)); return; } // We took the RHS. Because the value of the '&&' or '||' expression must // evaluate to 0 or 1, we must assume the value of the RHS evaluates to 0 // or 1. Alternatively, we could take a lazy approach, and calculate this // value later when necessary. We don't have the machinery in place for // this right now, and since most logical expressions are used for branches, // the payoff is not likely to be large. Instead, we do eager evaluation. bool isFeasible = false; const GRState* NewState = Assume(St, X, true, isFeasible); if (isFeasible) MakeNode(Dst, B, Pred, SetBlkExprRVal(NewState, B, MakeConstantVal(1U, B))); isFeasible = false; NewState = Assume(St, X, false, isFeasible); if (isFeasible) MakeNode(Dst, B, Pred, SetBlkExprRVal(NewState, B, MakeConstantVal(0U, B))); } else { // We took the LHS expression. Depending on whether we are '&&' or // '||' we know what the value of the expression is via properties of // the short-circuiting. X = MakeConstantVal( B->getOpcode() == BinaryOperator::LAnd ? 0U : 1U, B); MakeNode(Dst, B, Pred, SetBlkExprRVal(St, B, X)); } } //===----------------------------------------------------------------------===// // Transfer functions: Loads and stores. //===----------------------------------------------------------------------===// void GRExprEngine::VisitDeclRefExpr(DeclRefExpr* D, NodeTy* Pred, NodeSet& Dst, bool asLVal) { const GRState* St = GetState(Pred); RVal X = RVal::MakeVal(getStateManager(), D); if (asLVal) MakeNode(Dst, D, Pred, SetRVal(St, D, cast(X))); else { RVal V = isa(X) ? GetRVal(St, cast(X)) : X; MakeNode(Dst, D, Pred, SetRVal(St, D, V)); } } /// VisitArraySubscriptExpr - Transfer function for array accesses void GRExprEngine::VisitArraySubscriptExpr(ArraySubscriptExpr* A, NodeTy* Pred, NodeSet& Dst, bool asLVal) { Expr* Base = A->getBase()->IgnoreParens(); Expr* Idx = A->getIdx()->IgnoreParens(); // Always visit the base as an LVal expression. This computes the // abstract address of the base object. NodeSet Tmp; if (LVal::IsLValType(Base->getType())) // Base always is an LVal. Visit(Base, Pred, Tmp); else VisitLVal(Base, Pred, Tmp); for (NodeSet::iterator I1=Tmp.begin(), E1=Tmp.end(); I1!=E1; ++I1) { // Evaluate the index. NodeSet Tmp2; Visit(Idx, *I1, Tmp2); for (NodeSet::iterator I2=Tmp2.begin(), E2=Tmp2.end(); I2!=E2; ++I2) { const GRState* St = GetState(*I2); RVal BaseV = GetRVal(St, Base); RVal IdxV = GetRVal(St, Idx); // If IdxV is 0, return just BaseV. bool useBase = false; if (nonlval::ConcreteInt* IdxInt = dyn_cast(&IdxV)) useBase = IdxInt->getValue() == 0; RVal V = useBase ? BaseV : lval::ArrayOffset::Make(getBasicVals(), BaseV,IdxV); if (asLVal) MakeNode(Dst, A, *I2, SetRVal(St, A, V)); else EvalLoad(Dst, A, *I2, St, V); } } } /// VisitMemberExpr - Transfer function for member expressions. void GRExprEngine::VisitMemberExpr(MemberExpr* M, NodeTy* Pred, NodeSet& Dst, bool asLVal) { Expr* Base = M->getBase()->IgnoreParens(); // Always visit the base as an LVal expression. This computes the // abstract address of the base object. NodeSet Tmp; if (asLVal) { if (LVal::IsLValType(Base->getType())) // Base always is an LVal. Visit(Base, Pred, Tmp); else VisitLVal(Base, Pred, Tmp); for (NodeSet::iterator I=Tmp.begin(), E=Tmp.end(); I!=E; ++I) { const GRState* St = GetState(*I); RVal BaseV = GetRVal(St, Base); RVal V = lval::FieldOffset::Make(getBasicVals(), GetRVal(St, Base), M->getMemberDecl()); MakeNode(Dst, M, *I, SetRVal(St, M, V)); } return; } // Evaluate the base. Can be an LVal or NonLVal (depends on whether // or not isArrow() is true). Visit(Base, Pred, Tmp); for (NodeSet::iterator I=Tmp.begin(), E=Tmp.end(); I!=E; ++I) { const GRState* St = GetState(*I); RVal BaseV = GetRVal(St, Base); if (LVal::IsLValType(Base->getType())) { assert (M->isArrow()); RVal V = lval::FieldOffset::Make(getBasicVals(), GetRVal(St, Base), M->getMemberDecl()); EvalLoad(Dst, M, *I, St, V); } else { assert (!M->isArrow()); if (BaseV.isUnknownOrUndef()) { MakeNode(Dst, M, *I, SetRVal(St, M, BaseV)); continue; } // FIXME: Implement nonlval objects representing struct temporaries. assert (isa(BaseV)); MakeNode(Dst, M, *I, SetRVal(St, M, UnknownVal())); } } } void GRExprEngine::EvalStore(NodeSet& Dst, Expr* Ex, NodeTy* Pred, const GRState* St, RVal location, RVal Val) { assert (Builder && "GRStmtNodeBuilder must be defined."); // Evaluate the location (checks for bad dereferences). St = EvalLocation(Ex, Pred, St, location); if (!St) return; // Proceed with the store. unsigned size = Dst.size(); SaveAndRestore OldSink(Builder->BuildSinks); SaveAndRestore OldSPointKind(Builder->PointKind); SaveOr OldHasGen(Builder->HasGeneratedNode); assert (!location.isUndef()); Builder->PointKind = ProgramPoint::PostStoreKind; getTF().EvalStore(Dst, *this, *Builder, Ex, Pred, St, location, Val); // Handle the case where no nodes where generated. Auto-generate that // contains the updated state if we aren't generating sinks. if (!Builder->BuildSinks && Dst.size() == size && !Builder->HasGeneratedNode) getTF().GRTransferFuncs::EvalStore(Dst, *this, *Builder, Ex, Pred, St, location, Val); } void GRExprEngine::EvalLoad(NodeSet& Dst, Expr* Ex, NodeTy* Pred, const GRState* St, RVal location, bool CheckOnly) { // Evaluate the location (checks for bad dereferences). St = EvalLocation(Ex, Pred, St, location, true); if (!St) return; // Proceed with the load. ProgramPoint::Kind K = ProgramPoint::PostLoadKind; // FIXME: Currently symbolic analysis "generates" new symbols // for the contents of values. We need a better approach. // FIXME: The "CheckOnly" option exists only because Array and Field // loads aren't fully implemented. Eventually this option will go away. if (CheckOnly) MakeNode(Dst, Ex, Pred, St, K); else if (location.isUnknown()) { // This is important. We must nuke the old binding. MakeNode(Dst, Ex, Pred, SetRVal(St, Ex, UnknownVal()), K); } else MakeNode(Dst, Ex, Pred, SetRVal(St, Ex, GetRVal(St, cast(location), Ex->getType())), K); } void GRExprEngine::EvalStore(NodeSet& Dst, Expr* Ex, Expr* StoreE, NodeTy* Pred, const GRState* St, RVal location, RVal Val) { NodeSet TmpDst; EvalStore(TmpDst, StoreE, Pred, St, location, Val); for (NodeSet::iterator I=TmpDst.begin(), E=TmpDst.end(); I!=E; ++I) MakeNode(Dst, Ex, *I, (*I)->getState()); } const GRState* GRExprEngine::EvalLocation(Expr* Ex, NodeTy* Pred, const GRState* St, RVal location, bool isLoad) { // Check for loads/stores from/to undefined values. if (location.isUndef()) { ProgramPoint::Kind K = isLoad ? ProgramPoint::PostLoadKind : ProgramPoint::PostStmtKind; if (NodeTy* Succ = Builder->generateNode(Ex, St, Pred, K)) { Succ->markAsSink(); UndefDeref.insert(Succ); } return NULL; } // Check for loads/stores from/to unknown locations. Treat as No-Ops. if (location.isUnknown()) return St; // During a load, one of two possible situations arise: // (1) A crash, because the location (pointer) was NULL. // (2) The location (pointer) is not NULL, and the dereference works. // // We add these assumptions. LVal LV = cast(location); // "Assume" that the pointer is not NULL. bool isFeasibleNotNull = false; const GRState* StNotNull = Assume(St, LV, true, isFeasibleNotNull); // "Assume" that the pointer is NULL. bool isFeasibleNull = false; GRStateRef StNull = GRStateRef(Assume(St, LV, false, isFeasibleNull), getStateManager()); if (isFeasibleNull) { // Use the Generic Data Map to mark in the state what lval was null. const RVal* PersistentLV = getBasicVals().getPersistentRVal(LV); StNull = StNull.set(PersistentLV); // We don't use "MakeNode" here because the node will be a sink // and we have no intention of processing it later. ProgramPoint::Kind K = isLoad ? ProgramPoint::PostLoadKind : ProgramPoint::PostStmtKind; NodeTy* NullNode = Builder->generateNode(Ex, StNull, Pred, K); if (NullNode) { NullNode->markAsSink(); if (isFeasibleNotNull) ImplicitNullDeref.insert(NullNode); else ExplicitNullDeref.insert(NullNode); } } return isFeasibleNotNull ? StNotNull : NULL; } //===----------------------------------------------------------------------===// // Transfer function: Function calls. //===----------------------------------------------------------------------===// void GRExprEngine::VisitCall(CallExpr* CE, NodeTy* Pred, CallExpr::arg_iterator AI, CallExpr::arg_iterator AE, NodeSet& Dst) { // Process the arguments. if (AI != AE) { NodeSet DstTmp; Visit(*AI, Pred, DstTmp); ++AI; for (NodeSet::iterator DI=DstTmp.begin(), DE=DstTmp.end(); DI != DE; ++DI) VisitCall(CE, *DI, AI, AE, Dst); return; } // If we reach here we have processed all of the arguments. Evaluate // the callee expression. NodeSet DstTmp; Expr* Callee = CE->getCallee()->IgnoreParens(); VisitLVal(Callee, Pred, DstTmp); // Finally, evaluate the function call. for (NodeSet::iterator DI = DstTmp.begin(), DE = DstTmp.end(); DI!=DE; ++DI) { const GRState* St = GetState(*DI); RVal L = GetRVal(St, Callee); // FIXME: Add support for symbolic function calls (calls involving // function pointer values that are symbolic). // Check for undefined control-flow or calls to NULL. if (L.isUndef() || isa(L)) { NodeTy* N = Builder->generateNode(CE, St, *DI); if (N) { N->markAsSink(); BadCalls.insert(N); } continue; } // Check for the "noreturn" attribute. SaveAndRestore OldSink(Builder->BuildSinks); if (isa(L)) { FunctionDecl* FD = cast(L).getDecl(); if (FD->getAttr()) Builder->BuildSinks = true; else { // HACK: Some functions are not marked noreturn, and don't return. // Here are a few hardwired ones. If this takes too long, we can // potentially cache these results. const char* s = FD->getIdentifier()->getName(); unsigned n = strlen(s); switch (n) { default: break; case 4: if (!memcmp(s, "exit", 4)) Builder->BuildSinks = true; break; case 5: if (!memcmp(s, "panic", 5)) Builder->BuildSinks = true; else if (!memcmp(s, "error", 5)) { if (CE->getNumArgs() > 0) { RVal X = GetRVal(St, *CE->arg_begin()); // FIXME: use Assume to inspect the possible symbolic value of // X. Also check the specific signature of error(). nonlval::ConcreteInt* CI = dyn_cast(&X); if (CI && CI->getValue() != 0) Builder->BuildSinks = true; } } break; case 6: if (!memcmp(s, "Assert", 6)) { Builder->BuildSinks = true; break; } // FIXME: This is just a wrapper around throwing an exception. // Eventually inter-procedural analysis should handle this easily. if (!memcmp(s, "ziperr", 6)) Builder->BuildSinks = true; break; case 7: if (!memcmp(s, "assfail", 7)) Builder->BuildSinks = true; break; case 8: if (!memcmp(s ,"db_error", 8)) Builder->BuildSinks = true; break; case 12: if (!memcmp(s, "__assert_rtn", 12)) Builder->BuildSinks = true; break; case 13: if (!memcmp(s, "__assert_fail", 13)) Builder->BuildSinks = true; break; case 14: if (!memcmp(s, "dtrace_assfail", 14)) Builder->BuildSinks = true; break; case 26: if (!memcmp(s, "_XCAssertionFailureHandler", 26) || !memcmp(s, "_DTAssertionFailureHandler", 26)) Builder->BuildSinks = true; break; } } } // Evaluate the call. if (isa(L)) { IdentifierInfo* Info = cast(L).getDecl()->getIdentifier(); if (unsigned id = Info->getBuiltinID()) switch (id) { case Builtin::BI__builtin_expect: { // For __builtin_expect, just return the value of the subexpression. assert (CE->arg_begin() != CE->arg_end()); RVal X = GetRVal(St, *(CE->arg_begin())); MakeNode(Dst, CE, *DI, SetRVal(St, CE, X)); continue; } default: break; } } // Check any arguments passed-by-value against being undefined. bool badArg = false; for (CallExpr::arg_iterator I = CE->arg_begin(), E = CE->arg_end(); I != E; ++I) { if (GetRVal(GetState(*DI), *I).isUndef()) { NodeTy* N = Builder->generateNode(CE, GetState(*DI), *DI); if (N) { N->markAsSink(); UndefArgs[N] = *I; } badArg = true; break; } } if (badArg) continue; // Dispatch to the plug-in transfer function. unsigned size = Dst.size(); SaveOr OldHasGen(Builder->HasGeneratedNode); EvalCall(Dst, CE, L, *DI); // Handle the case where no nodes where generated. Auto-generate that // contains the updated state if we aren't generating sinks. if (!Builder->BuildSinks && Dst.size() == size && !Builder->HasGeneratedNode) MakeNode(Dst, CE, *DI, St); } } //===----------------------------------------------------------------------===// // Transfer function: Objective-C message expressions. //===----------------------------------------------------------------------===// void GRExprEngine::VisitObjCMessageExpr(ObjCMessageExpr* ME, NodeTy* Pred, NodeSet& Dst){ VisitObjCMessageExprArgHelper(ME, ME->arg_begin(), ME->arg_end(), Pred, Dst); } void GRExprEngine::VisitObjCMessageExprArgHelper(ObjCMessageExpr* ME, ObjCMessageExpr::arg_iterator AI, ObjCMessageExpr::arg_iterator AE, NodeTy* Pred, NodeSet& Dst) { if (AI == AE) { // Process the receiver. if (Expr* Receiver = ME->getReceiver()) { NodeSet Tmp; Visit(Receiver, Pred, Tmp); for (NodeSet::iterator NI = Tmp.begin(), NE = Tmp.end(); NI != NE; ++NI) VisitObjCMessageExprDispatchHelper(ME, *NI, Dst); return; } VisitObjCMessageExprDispatchHelper(ME, Pred, Dst); return; } NodeSet Tmp; Visit(*AI, Pred, Tmp); ++AI; for (NodeSet::iterator NI = Tmp.begin(), NE = Tmp.end(); NI != NE; ++NI) VisitObjCMessageExprArgHelper(ME, AI, AE, *NI, Dst); } void GRExprEngine::VisitObjCMessageExprDispatchHelper(ObjCMessageExpr* ME, NodeTy* Pred, NodeSet& Dst) { // FIXME: More logic for the processing the method call. const GRState* St = GetState(Pred); bool RaisesException = false; if (Expr* Receiver = ME->getReceiver()) { RVal L = GetRVal(St, Receiver); // Check for undefined control-flow or calls to NULL. if (L.isUndef()) { NodeTy* N = Builder->generateNode(ME, St, Pred); if (N) { N->markAsSink(); UndefReceivers.insert(N); } return; } // Check if the "raise" message was sent. if (ME->getSelector() == RaiseSel) RaisesException = true; } else { IdentifierInfo* ClsName = ME->getClassName(); Selector S = ME->getSelector(); // Check for special instance methods. if (!NSExceptionII) { ASTContext& Ctx = getContext(); NSExceptionII = &Ctx.Idents.get("NSException"); } if (ClsName == NSExceptionII) { enum { NUM_RAISE_SELECTORS = 2 }; // Lazily create a cache of the selectors. if (!NSExceptionInstanceRaiseSelectors) { ASTContext& Ctx = getContext(); NSExceptionInstanceRaiseSelectors = new Selector[NUM_RAISE_SELECTORS]; llvm::SmallVector II; unsigned idx = 0; // raise:format: II.push_back(&Ctx.Idents.get("raise")); II.push_back(&Ctx.Idents.get("format")); NSExceptionInstanceRaiseSelectors[idx++] = Ctx.Selectors.getSelector(II.size(), &II[0]); // raise:format::arguments: II.push_back(&Ctx.Idents.get("arguments")); NSExceptionInstanceRaiseSelectors[idx++] = Ctx.Selectors.getSelector(II.size(), &II[0]); } for (unsigned i = 0; i < NUM_RAISE_SELECTORS; ++i) if (S == NSExceptionInstanceRaiseSelectors[i]) { RaisesException = true; break; } } } // Check for any arguments that are uninitialized/undefined. for (ObjCMessageExpr::arg_iterator I = ME->arg_begin(), E = ME->arg_end(); I != E; ++I) { if (GetRVal(St, *I).isUndef()) { // Generate an error node for passing an uninitialized/undefined value // as an argument to a message expression. This node is a sink. NodeTy* N = Builder->generateNode(ME, St, Pred); if (N) { N->markAsSink(); MsgExprUndefArgs[N] = *I; } return; } } // Check if we raise an exception. For now treat these as sinks. Eventually // we will want to handle exceptions properly. SaveAndRestore OldSink(Builder->BuildSinks); if (RaisesException) Builder->BuildSinks = true; // Dispatch to plug-in transfer function. unsigned size = Dst.size(); SaveOr OldHasGen(Builder->HasGeneratedNode); EvalObjCMessageExpr(Dst, ME, Pred); // Handle the case where no nodes where generated. Auto-generate that // contains the updated state if we aren't generating sinks. if (!Builder->BuildSinks && Dst.size() == size && !Builder->HasGeneratedNode) MakeNode(Dst, ME, Pred, St); } //===----------------------------------------------------------------------===// // Transfer functions: Miscellaneous statements. //===----------------------------------------------------------------------===// void GRExprEngine::VisitCast(Expr* CastE, Expr* Ex, NodeTy* Pred, NodeSet& Dst){ NodeSet S1; QualType T = CastE->getType(); if (T->isReferenceType()) VisitLVal(Ex, Pred, S1); else Visit(Ex, Pred, S1); // Check for casting to "void". if (T->isVoidType()) { for (NodeSet::iterator I1 = S1.begin(), E1 = S1.end(); I1 != E1; ++I1) Dst.Add(*I1); return; } // FIXME: The rest of this should probably just go into EvalCall, and // let the transfer function object be responsible for constructing // nodes. QualType ExTy = Ex->getType(); for (NodeSet::iterator I1 = S1.begin(), E1 = S1.end(); I1 != E1; ++I1) { NodeTy* N = *I1; const GRState* St = GetState(N); RVal V = GetRVal(St, Ex); // Unknown? if (V.isUnknown()) { Dst.Add(N); continue; } // Undefined? if (V.isUndef()) { MakeNode(Dst, CastE, N, SetRVal(St, CastE, V)); continue; } // For const casts, just propagate the value. ASTContext& C = getContext(); if (C.getCanonicalType(T).getUnqualifiedType() == C.getCanonicalType(ExTy).getUnqualifiedType()) { MakeNode(Dst, CastE, N, SetRVal(St, CastE, V)); continue; } // Check for casts from pointers to integers. if (T->isIntegerType() && LVal::IsLValType(ExTy)) { unsigned bits = getContext().getTypeSize(ExTy); // FIXME: Determine if the number of bits of the target type is // equal or exceeds the number of bits to store the pointer value. // If not, flag an error. V = nonlval::LValAsInteger::Make(getBasicVals(), cast(V), bits); MakeNode(Dst, CastE, N, SetRVal(St, CastE, V)); continue; } // Check for casts from integers to pointers. if (LVal::IsLValType(T) && ExTy->isIntegerType()) if (nonlval::LValAsInteger *LV = dyn_cast(&V)) { // Just unpackage the lval and return it. V = LV->getLVal(); MakeNode(Dst, CastE, N, SetRVal(St, CastE, V)); continue; } // All other cases. MakeNode(Dst, CastE, N, SetRVal(St, CastE, EvalCast(V, CastE->getType()))); } } void GRExprEngine::VisitDeclStmt(DeclStmt* DS, NodeTy* Pred, NodeSet& Dst) { // The CFG has one DeclStmt per Decl. ScopedDecl* D = *DS->decl_begin(); if (!D || !isa(D)) return; const VarDecl* VD = dyn_cast(D); // FIXME: Add support for local arrays. if (VD->getType()->isArrayType()) { return; } Expr* Ex = const_cast(VD->getInit()); // FIXME: static variables may have an initializer, but the second // time a function is called those values may not be current. NodeSet Tmp; if (Ex) Visit(Ex, Pred, Tmp); if (Tmp.empty()) Tmp.Add(Pred); for (NodeSet::iterator I=Tmp.begin(), E=Tmp.end(); I!=E; ++I) { const GRState* St = GetState(*I); St = StateMgr.AddDecl(St, VD, Ex, Builder->getCurrentBlockCount()); MakeNode(Dst, DS, *I, St); } } /// VisitSizeOfAlignOfTypeExpr - Transfer function for sizeof(type). void GRExprEngine::VisitSizeOfAlignOfTypeExpr(SizeOfAlignOfTypeExpr* Ex, NodeTy* Pred, NodeSet& Dst) { QualType T = Ex->getArgumentType(); uint64_t amt; if (Ex->isSizeOf()) { // FIXME: Add support for VLAs. if (!T.getTypePtr()->isConstantSizeType()) return; // Some code tries to take the sizeof an ObjCInterfaceType, relying that // the compiler has laid out its representation. Just report Unknown // for these. if (T->isObjCInterfaceType()) return; amt = 1; // Handle sizeof(void) if (T != getContext().VoidTy) amt = getContext().getTypeSize(T) / 8; } else // Get alignment of the type. amt = getContext().getTypeAlign(T) / 8; MakeNode(Dst, Ex, Pred, SetRVal(GetState(Pred), Ex, NonLVal::MakeVal(getBasicVals(), amt, Ex->getType()))); } void GRExprEngine::VisitUnaryOperator(UnaryOperator* U, NodeTy* Pred, NodeSet& Dst, bool asLVal) { switch (U->getOpcode()) { default: break; case UnaryOperator::Deref: { Expr* Ex = U->getSubExpr()->IgnoreParens(); NodeSet Tmp; Visit(Ex, Pred, Tmp); for (NodeSet::iterator I=Tmp.begin(), E=Tmp.end(); I!=E; ++I) { const GRState* St = GetState(*I); RVal location = GetRVal(St, Ex); if (asLVal) MakeNode(Dst, U, *I, SetRVal(St, U, location)); else EvalLoad(Dst, U, *I, St, location); } return; } case UnaryOperator::Real: { Expr* Ex = U->getSubExpr()->IgnoreParens(); NodeSet Tmp; Visit(Ex, Pred, Tmp); for (NodeSet::iterator I=Tmp.begin(), E=Tmp.end(); I!=E; ++I) { // FIXME: We don't have complex RValues yet. if (Ex->getType()->isAnyComplexType()) { // Just report "Unknown." Dst.Add(*I); continue; } // For all other types, UnaryOperator::Real is an identity operation. assert (U->getType() == Ex->getType()); const GRState* St = GetState(*I); MakeNode(Dst, U, *I, SetRVal(St, U, GetRVal(St, Ex))); } return; } case UnaryOperator::Imag: { Expr* Ex = U->getSubExpr()->IgnoreParens(); NodeSet Tmp; Visit(Ex, Pred, Tmp); for (NodeSet::iterator I=Tmp.begin(), E=Tmp.end(); I!=E; ++I) { // FIXME: We don't have complex RValues yet. if (Ex->getType()->isAnyComplexType()) { // Just report "Unknown." Dst.Add(*I); continue; } // For all other types, UnaryOperator::Float returns 0. assert (Ex->getType()->isIntegerType()); const GRState* St = GetState(*I); RVal X = NonLVal::MakeVal(getBasicVals(), 0, Ex->getType()); MakeNode(Dst, U, *I, SetRVal(St, U, X)); } return; } // FIXME: Just report "Unknown" for OffsetOf. case UnaryOperator::OffsetOf: Dst.Add(Pred); return; case UnaryOperator::Plus: assert (!asLVal); // FALL-THROUGH. case UnaryOperator::Extension: { // Unary "+" is a no-op, similar to a parentheses. We still have places // where it may be a block-level expression, so we need to // generate an extra node that just propagates the value of the // subexpression. Expr* Ex = U->getSubExpr()->IgnoreParens(); NodeSet Tmp; Visit(Ex, Pred, Tmp); for (NodeSet::iterator I=Tmp.begin(), E=Tmp.end(); I!=E; ++I) { const GRState* St = GetState(*I); MakeNode(Dst, U, *I, SetRVal(St, U, GetRVal(St, Ex))); } return; } case UnaryOperator::AddrOf: { assert (!asLVal); Expr* Ex = U->getSubExpr()->IgnoreParens(); NodeSet Tmp; VisitLVal(Ex, Pred, Tmp); for (NodeSet::iterator I=Tmp.begin(), E=Tmp.end(); I!=E; ++I) { const GRState* St = GetState(*I); RVal V = GetRVal(St, Ex); St = SetRVal(St, U, V); MakeNode(Dst, U, *I, St); } return; } case UnaryOperator::LNot: case UnaryOperator::Minus: case UnaryOperator::Not: { assert (!asLVal); Expr* Ex = U->getSubExpr()->IgnoreParens(); NodeSet Tmp; Visit(Ex, Pred, Tmp); for (NodeSet::iterator I=Tmp.begin(), E=Tmp.end(); I!=E; ++I) { const GRState* St = GetState(*I); // Get the value of the subexpression. RVal V = GetRVal(St, Ex); // Perform promotions. // FIXME: This is the right thing to do, but it currently breaks // a bunch of tests. // V = EvalCast(V, U->getType()); if (V.isUnknownOrUndef()) { MakeNode(Dst, U, *I, SetRVal(St, U, V)); continue; } switch (U->getOpcode()) { default: assert(false && "Invalid Opcode."); break; case UnaryOperator::Not: // FIXME: Do we need to handle promotions? St = SetRVal(St, U, EvalComplement(cast(V))); break; case UnaryOperator::Minus: // FIXME: Do we need to handle promotions? St = SetRVal(St, U, EvalMinus(U, cast(V))); break; case UnaryOperator::LNot: // C99 6.5.3.3: "The expression !E is equivalent to (0==E)." // // Note: technically we do "E == 0", but this is the same in the // transfer functions as "0 == E". if (isa(V)) { lval::ConcreteInt X(getBasicVals().getZeroWithPtrWidth()); RVal Result = EvalBinOp(BinaryOperator::EQ, cast(V), X); St = SetRVal(St, U, Result); } else { nonlval::ConcreteInt X(getBasicVals().getValue(0, Ex->getType())); #if 0 RVal Result = EvalBinOp(BinaryOperator::EQ, cast(V), X); St = SetRVal(St, U, Result); #else EvalBinOp(Dst, U, BinaryOperator::EQ, cast(V), X, *I); continue; #endif } break; } MakeNode(Dst, U, *I, St); } return; } case UnaryOperator::SizeOf: { QualType T = U->getSubExpr()->getType(); // FIXME: Add support for VLAs. if (!T.getTypePtr()->isConstantSizeType()) return; uint64_t size = getContext().getTypeSize(T) / 8; const GRState* St = GetState(Pred); St = SetRVal(St, U, NonLVal::MakeVal(getBasicVals(), size, U->getType())); MakeNode(Dst, U, Pred, St); return; } } // Handle ++ and -- (both pre- and post-increment). assert (U->isIncrementDecrementOp()); NodeSet Tmp; Expr* Ex = U->getSubExpr()->IgnoreParens(); VisitLVal(Ex, Pred, Tmp); for (NodeSet::iterator I = Tmp.begin(), E = Tmp.end(); I!=E; ++I) { const GRState* St = GetState(*I); RVal V1 = GetRVal(St, Ex); // Perform a load. NodeSet Tmp2; EvalLoad(Tmp2, Ex, *I, St, V1); for (NodeSet::iterator I2 = Tmp2.begin(), E2 = Tmp2.end(); I2!=E2; ++I2) { St = GetState(*I2); RVal V2 = GetRVal(St, Ex); // Propagate unknown and undefined values. if (V2.isUnknownOrUndef()) { MakeNode(Dst, U, *I2, SetRVal(St, U, V2)); continue; } // Handle all other values. BinaryOperator::Opcode Op = U->isIncrementOp() ? BinaryOperator::Add : BinaryOperator::Sub; RVal Result = EvalBinOp(Op, V2, MakeConstantVal(1U, U)); St = SetRVal(St, U, U->isPostfix() ? V2 : Result); // Perform the store. EvalStore(Dst, U, *I2, St, V1, Result); } } } void GRExprEngine::VisitAsmStmt(AsmStmt* A, NodeTy* Pred, NodeSet& Dst) { VisitAsmStmtHelperOutputs(A, A->begin_outputs(), A->end_outputs(), Pred, Dst); } void GRExprEngine::VisitAsmStmtHelperOutputs(AsmStmt* A, AsmStmt::outputs_iterator I, AsmStmt::outputs_iterator E, NodeTy* Pred, NodeSet& Dst) { if (I == E) { VisitAsmStmtHelperInputs(A, A->begin_inputs(), A->end_inputs(), Pred, Dst); return; } NodeSet Tmp; VisitLVal(*I, Pred, Tmp); ++I; for (NodeSet::iterator NI = Tmp.begin(), NE = Tmp.end(); NI != NE; ++NI) VisitAsmStmtHelperOutputs(A, I, E, *NI, Dst); } void GRExprEngine::VisitAsmStmtHelperInputs(AsmStmt* A, AsmStmt::inputs_iterator I, AsmStmt::inputs_iterator E, NodeTy* Pred, NodeSet& Dst) { if (I == E) { // We have processed both the inputs and the outputs. All of the outputs // should evaluate to LVals. Nuke all of their values. // FIXME: Some day in the future it would be nice to allow a "plug-in" // which interprets the inline asm and stores proper results in the // outputs. const GRState* St = GetState(Pred); for (AsmStmt::outputs_iterator OI = A->begin_outputs(), OE = A->end_outputs(); OI != OE; ++OI) { RVal X = GetRVal(St, *OI); assert (!isa(X)); // Should be an Lval, or unknown, undef. if (isa(X)) St = SetRVal(St, cast(X), UnknownVal()); } MakeNode(Dst, A, Pred, St); return; } NodeSet Tmp; Visit(*I, Pred, Tmp); ++I; for (NodeSet::iterator NI = Tmp.begin(), NE = Tmp.end(); NI != NE; ++NI) VisitAsmStmtHelperInputs(A, I, E, *NI, Dst); } void GRExprEngine::EvalReturn(NodeSet& Dst, ReturnStmt* S, NodeTy* Pred) { assert (Builder && "GRStmtNodeBuilder must be defined."); unsigned size = Dst.size(); SaveAndRestore OldSink(Builder->BuildSinks); SaveOr OldHasGen(Builder->HasGeneratedNode); getTF().EvalReturn(Dst, *this, *Builder, S, Pred); // Handle the case where no nodes where generated. if (!Builder->BuildSinks && Dst.size() == size && !Builder->HasGeneratedNode) MakeNode(Dst, S, Pred, GetState(Pred)); } void GRExprEngine::VisitReturnStmt(ReturnStmt* S, NodeTy* Pred, NodeSet& Dst) { Expr* R = S->getRetValue(); if (!R) { EvalReturn(Dst, S, Pred); return; } NodeSet DstRet; QualType T = R->getType(); if (T->isPointerLikeType()) { // Check if any of the return values return the address of a stack variable. NodeSet Tmp; Visit(R, Pred, Tmp); for (NodeSet::iterator I=Tmp.begin(), E=Tmp.end(); I!=E; ++I) { RVal X = GetRVal((*I)->getState(), R); if (isa(X)) { // Determine if the value is on the stack. const MemRegion* R = cast(&X)->getRegion(); if (R && getStateManager().hasStackStorage(R)) { // Create a special node representing the v NodeTy* RetStackNode = Builder->generateNode(S, GetState(*I), *I); if (RetStackNode) { RetStackNode->markAsSink(); RetsStackAddr.insert(RetStackNode); } continue; } } DstRet.Add(*I); } } else Visit(R, Pred, DstRet); for (NodeSet::iterator I=DstRet.begin(), E=DstRet.end(); I!=E; ++I) EvalReturn(Dst, S, *I); } //===----------------------------------------------------------------------===// // Transfer functions: Binary operators. //===----------------------------------------------------------------------===// bool GRExprEngine::CheckDivideZero(Expr* Ex, const GRState* St, NodeTy* Pred, RVal Denom) { // Divide by undefined? (potentially zero) if (Denom.isUndef()) { NodeTy* DivUndef = Builder->generateNode(Ex, St, Pred); if (DivUndef) { DivUndef->markAsSink(); ExplicitBadDivides.insert(DivUndef); } return true; } // Check for divide/remainder-by-zero. // First, "assume" that the denominator is 0 or undefined. bool isFeasibleZero = false; const GRState* ZeroSt = Assume(St, Denom, false, isFeasibleZero); // Second, "assume" that the denominator cannot be 0. bool isFeasibleNotZero = false; St = Assume(St, Denom, true, isFeasibleNotZero); // Create the node for the divide-by-zero (if it occurred). if (isFeasibleZero) if (NodeTy* DivZeroNode = Builder->generateNode(Ex, ZeroSt, Pred)) { DivZeroNode->markAsSink(); if (isFeasibleNotZero) ImplicitBadDivides.insert(DivZeroNode); else ExplicitBadDivides.insert(DivZeroNode); } return !isFeasibleNotZero; } void GRExprEngine::VisitBinaryOperator(BinaryOperator* B, GRExprEngine::NodeTy* Pred, GRExprEngine::NodeSet& Dst) { NodeSet Tmp1; Expr* LHS = B->getLHS()->IgnoreParens(); Expr* RHS = B->getRHS()->IgnoreParens(); if (B->isAssignmentOp()) VisitLVal(LHS, Pred, Tmp1); else Visit(LHS, Pred, Tmp1); for (NodeSet::iterator I1=Tmp1.begin(), E1=Tmp1.end(); I1 != E1; ++I1) { RVal LeftV = GetRVal((*I1)->getState(), LHS); // Process the RHS. NodeSet Tmp2; Visit(RHS, *I1, Tmp2); // With both the LHS and RHS evaluated, process the operation itself. for (NodeSet::iterator I2=Tmp2.begin(), E2=Tmp2.end(); I2 != E2; ++I2) { const GRState* St = GetState(*I2); RVal RightV = GetRVal(St, RHS); BinaryOperator::Opcode Op = B->getOpcode(); switch (Op) { case BinaryOperator::Assign: { // EXPERIMENTAL: "Conjured" symbols. if (RightV.isUnknown()) { unsigned Count = Builder->getCurrentBlockCount(); SymbolID Sym = SymMgr.getConjuredSymbol(B->getRHS(), Count); RightV = LVal::IsLValType(B->getRHS()->getType()) ? cast(lval::SymbolVal(Sym)) : cast(nonlval::SymbolVal(Sym)); } // Simulate the effects of a "store": bind the value of the RHS // to the L-Value represented by the LHS. EvalStore(Dst, B, LHS, *I2, SetRVal(St, B, RightV), LeftV, RightV); continue; } case BinaryOperator::Div: case BinaryOperator::Rem: // Special checking for integer denominators. if (RHS->getType()->isIntegerType() && CheckDivideZero(B, St, *I2, RightV)) continue; // FALL-THROUGH. default: { if (B->isAssignmentOp()) break; // Process non-assignements except commas or short-circuited // logical expressions (LAnd and LOr). RVal Result = EvalBinOp(Op, LeftV, RightV); if (Result.isUnknown()) { Dst.Add(*I2); continue; } if (Result.isUndef() && !LeftV.isUndef() && !RightV.isUndef()) { // The operands were *not* undefined, but the result is undefined. // This is a special node that should be flagged as an error. if (NodeTy* UndefNode = Builder->generateNode(B, St, *I2)) { UndefNode->markAsSink(); UndefResults.insert(UndefNode); } continue; } // Otherwise, create a new node. MakeNode(Dst, B, *I2, SetRVal(St, B, Result)); continue; } } assert (B->isCompoundAssignmentOp()); if (Op >= BinaryOperator::AndAssign) ((int&) Op) -= (BinaryOperator::AndAssign - BinaryOperator::And); else ((int&) Op) -= BinaryOperator::MulAssign; // Perform a load (the LHS). This performs the checks for // null dereferences, and so on. NodeSet Tmp3; RVal location = GetRVal(St, LHS); EvalLoad(Tmp3, LHS, *I2, St, location); for (NodeSet::iterator I3=Tmp3.begin(), E3=Tmp3.end(); I3!=E3; ++I3) { St = GetState(*I3); RVal V = GetRVal(St, LHS); // Propagate undefined values (left-side). if (V.isUndef()) { EvalStore(Dst, B, LHS, *I3, SetRVal(St, B, V), location, V); continue; } // Propagate unknown values (left and right-side). if (RightV.isUnknown() || V.isUnknown()) { EvalStore(Dst, B, LHS, *I3, SetRVal(St, B, UnknownVal()), location, UnknownVal()); continue; } // At this point: // // The LHS is not Undef/Unknown. // The RHS is not Unknown. // Get the computation type. QualType CTy = cast(B)->getComputationType(); // Perform promotions. V = EvalCast(V, CTy); RightV = EvalCast(RightV, CTy); // Evaluate operands and promote to result type. if ((Op == BinaryOperator::Div || Op == BinaryOperator::Rem) && RHS->getType()->isIntegerType()) { if (CheckDivideZero(B, St, *I3, RightV)) continue; } else if (RightV.isUndef()) { // Propagate undefined values (right-side). EvalStore(Dst, B, LHS, *I3, SetRVal(St, B, RightV), location, RightV); continue; } // Compute the result of the operation. RVal Result = EvalCast(EvalBinOp(Op, V, RightV), B->getType()); if (Result.isUndef()) { // The operands were not undefined, but the result is undefined. if (NodeTy* UndefNode = Builder->generateNode(B, St, *I3)) { UndefNode->markAsSink(); UndefResults.insert(UndefNode); } continue; } EvalStore(Dst, B, LHS, *I3, SetRVal(St, B, Result), location, Result); } } } } //===----------------------------------------------------------------------===// // Transfer-function Helpers. //===----------------------------------------------------------------------===// void GRExprEngine::EvalBinOp(ExplodedNodeSet& Dst, Expr* Ex, BinaryOperator::Opcode Op, NonLVal L, NonLVal R, ExplodedNode* Pred) { GRStateSet OStates; EvalBinOp(OStates, GetState(Pred), Ex, Op, L, R); for (GRStateSet::iterator I=OStates.begin(), E=OStates.end(); I!=E; ++I) MakeNode(Dst, Ex, Pred, *I); } void GRExprEngine::EvalBinOp(GRStateSet& OStates, const GRState* St, Expr* Ex, BinaryOperator::Opcode Op, NonLVal L, NonLVal R) { GRStateSet::AutoPopulate AP(OStates, St); if (R.isValid()) getTF().EvalBinOpNN(OStates, StateMgr, St, Ex, Op, L, R); } //===----------------------------------------------------------------------===// // Visualization. //===----------------------------------------------------------------------===// #ifndef NDEBUG static GRExprEngine* GraphPrintCheckerState; static SourceManager* GraphPrintSourceManager; namespace llvm { template<> struct VISIBILITY_HIDDEN DOTGraphTraits : public DefaultDOTGraphTraits { static std::string getNodeAttributes(const GRExprEngine::NodeTy* N, void*) { if (GraphPrintCheckerState->isImplicitNullDeref(N) || GraphPrintCheckerState->isExplicitNullDeref(N) || GraphPrintCheckerState->isUndefDeref(N) || GraphPrintCheckerState->isUndefStore(N) || GraphPrintCheckerState->isUndefControlFlow(N) || GraphPrintCheckerState->isExplicitBadDivide(N) || GraphPrintCheckerState->isImplicitBadDivide(N) || GraphPrintCheckerState->isUndefResult(N) || GraphPrintCheckerState->isBadCall(N) || GraphPrintCheckerState->isUndefArg(N)) return "color=\"red\",style=\"filled\""; if (GraphPrintCheckerState->isNoReturnCall(N)) return "color=\"blue\",style=\"filled\""; return ""; } static std::string getNodeLabel(const GRExprEngine::NodeTy* N, void*) { std::ostringstream Out; // Program Location. ProgramPoint Loc = N->getLocation(); switch (Loc.getKind()) { case ProgramPoint::BlockEntranceKind: Out << "Block Entrance: B" << cast(Loc).getBlock()->getBlockID(); break; case ProgramPoint::BlockExitKind: assert (false); break; case ProgramPoint::PostLoadKind: case ProgramPoint::PostPurgeDeadSymbolsKind: case ProgramPoint::PostStmtKind: { const PostStmt& L = cast(Loc); Stmt* S = L.getStmt(); SourceLocation SLoc = S->getLocStart(); Out << S->getStmtClassName() << ' ' << (void*) S << ' '; llvm::raw_os_ostream OutS(Out); S->printPretty(OutS); OutS.flush(); if (SLoc.isFileID()) { Out << "\\lline=" << GraphPrintSourceManager->getLineNumber(SLoc) << " col=" << GraphPrintSourceManager->getColumnNumber(SLoc) << "\\l"; } if (GraphPrintCheckerState->isImplicitNullDeref(N)) Out << "\\|Implicit-Null Dereference.\\l"; else if (GraphPrintCheckerState->isExplicitNullDeref(N)) Out << "\\|Explicit-Null Dereference.\\l"; else if (GraphPrintCheckerState->isUndefDeref(N)) Out << "\\|Dereference of undefialied value.\\l"; else if (GraphPrintCheckerState->isUndefStore(N)) Out << "\\|Store to Undefined LVal."; else if (GraphPrintCheckerState->isExplicitBadDivide(N)) Out << "\\|Explicit divide-by zero or undefined value."; else if (GraphPrintCheckerState->isImplicitBadDivide(N)) Out << "\\|Implicit divide-by zero or undefined value."; else if (GraphPrintCheckerState->isUndefResult(N)) Out << "\\|Result of operation is undefined."; else if (GraphPrintCheckerState->isNoReturnCall(N)) Out << "\\|Call to function marked \"noreturn\"."; else if (GraphPrintCheckerState->isBadCall(N)) Out << "\\|Call to NULL/Undefined."; else if (GraphPrintCheckerState->isUndefArg(N)) Out << "\\|Argument in call is undefined"; break; } default: { const BlockEdge& E = cast(Loc); Out << "Edge: (B" << E.getSrc()->getBlockID() << ", B" << E.getDst()->getBlockID() << ')'; if (Stmt* T = E.getSrc()->getTerminator()) { SourceLocation SLoc = T->getLocStart(); Out << "\\|Terminator: "; llvm::raw_os_ostream OutS(Out); E.getSrc()->printTerminator(OutS); OutS.flush(); if (SLoc.isFileID()) { Out << "\\lline=" << GraphPrintSourceManager->getLineNumber(SLoc) << " col=" << GraphPrintSourceManager->getColumnNumber(SLoc); } if (isa(T)) { Stmt* Label = E.getDst()->getLabel(); if (Label) { if (CaseStmt* C = dyn_cast(Label)) { Out << "\\lcase "; llvm::raw_os_ostream OutS(Out); C->getLHS()->printPretty(OutS); OutS.flush(); if (Stmt* RHS = C->getRHS()) { Out << " .. "; RHS->printPretty(OutS); OutS.flush(); } Out << ":"; } else { assert (isa(Label)); Out << "\\ldefault:"; } } else Out << "\\l(implicit) default:"; } else if (isa(T)) { // FIXME } else { Out << "\\lCondition: "; if (*E.getSrc()->succ_begin() == E.getDst()) Out << "true"; else Out << "false"; } Out << "\\l"; } if (GraphPrintCheckerState->isUndefControlFlow(N)) { Out << "\\|Control-flow based on\\lUndefined value.\\l"; } } } Out << "\\|StateID: " << (void*) N->getState() << "\\|"; GRStateRef state(N->getState(), GraphPrintCheckerState->getStateManager()); state.printDOT(Out); Out << "\\l"; return Out.str(); } }; } // end llvm namespace #endif #ifndef NDEBUG template GRExprEngine::NodeTy* GetGraphNode(ITERATOR I) { return *I; } template <> GRExprEngine::NodeTy* GetGraphNode::iterator> (llvm::DenseMap::iterator I) { return I->first; } template static void AddSources(std::vector& Sources, ITERATOR I, ITERATOR E) { llvm::SmallSet CachedSources; for ( ; I != E; ++I ) { GRExprEngine::NodeTy* N = GetGraphNode(I); ProgramPoint P = N->getLocation(); if (CachedSources.count(P)) continue; CachedSources.insert(P); Sources.push_back(N); } } #endif void GRExprEngine::ViewGraph(bool trim) { #ifndef NDEBUG if (trim) { std::vector Src; // Fixme: Migrate over to the new way of adding nodes. AddSources(Src, null_derefs_begin(), null_derefs_end()); AddSources(Src, undef_derefs_begin(), undef_derefs_end()); AddSources(Src, explicit_bad_divides_begin(), explicit_bad_divides_end()); AddSources(Src, undef_results_begin(), undef_results_end()); AddSources(Src, bad_calls_begin(), bad_calls_end()); AddSources(Src, undef_arg_begin(), undef_arg_end()); AddSources(Src, undef_branches_begin(), undef_branches_end()); // The new way. for (BugTypeSet::iterator I=BugTypes.begin(), E=BugTypes.end(); I!=E; ++I) (*I)->GetErrorNodes(Src); ViewGraph(&Src[0], &Src[0]+Src.size()); } else { GraphPrintCheckerState = this; GraphPrintSourceManager = &getContext().getSourceManager(); llvm::ViewGraph(*G.roots_begin(), "GRExprEngine"); GraphPrintCheckerState = NULL; GraphPrintSourceManager = NULL; } #endif } void GRExprEngine::ViewGraph(NodeTy** Beg, NodeTy** End) { #ifndef NDEBUG GraphPrintCheckerState = this; GraphPrintSourceManager = &getContext().getSourceManager(); GRExprEngine::GraphTy* TrimmedG = G.Trim(Beg, End); if (!TrimmedG) llvm::cerr << "warning: Trimmed ExplodedGraph is empty.\n"; else { llvm::ViewGraph(*TrimmedG->roots_begin(), "TrimmedGRExprEngine"); delete TrimmedG; } GraphPrintCheckerState = NULL; GraphPrintSourceManager = NULL; #endif }