//=- X86SchedHaswell.td - X86 Haswell Scheduling -------------*- tablegen -*-=// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file defines the machine model for Haswell to support instruction // scheduling and other instruction cost heuristics. // //===----------------------------------------------------------------------===// def HaswellModel : SchedMachineModel { // All x86 instructions are modeled as a single micro-op, and HW can decode 4 // instructions per cycle. let IssueWidth = 4; let MicroOpBufferSize = 192; // Based on the reorder buffer. let LoadLatency = 4; let MispredictPenalty = 16; // Based on the LSD (loop-stream detector) queue size and benchmarking data. let LoopMicroOpBufferSize = 50; // FIXME: SSE4 and AVX are unimplemented. This flag is set to allow // the scheduler to assign a default model to unrecognized opcodes. let CompleteModel = 0; } let SchedModel = HaswellModel in { // Haswell can issue micro-ops to 8 different ports in one cycle. // Ports 0, 1, 5, and 6 handle all computation. // Port 4 gets the data half of stores. Store data can be available later than // the store address, but since we don't model the latency of stores, we can // ignore that. // Ports 2 and 3 are identical. They handle loads and the address half of // stores. Port 7 can handle address calculations. def HWPort0 : ProcResource<1>; def HWPort1 : ProcResource<1>; def HWPort2 : ProcResource<1>; def HWPort3 : ProcResource<1>; def HWPort4 : ProcResource<1>; def HWPort5 : ProcResource<1>; def HWPort6 : ProcResource<1>; def HWPort7 : ProcResource<1>; // Many micro-ops are capable of issuing on multiple ports. def HWPort23 : ProcResGroup<[HWPort2, HWPort3]>; def HWPort237 : ProcResGroup<[HWPort2, HWPort3, HWPort7]>; def HWPort05 : ProcResGroup<[HWPort0, HWPort5]>; def HWPort06 : ProcResGroup<[HWPort0, HWPort6]>; def HWPort15 : ProcResGroup<[HWPort1, HWPort5]>; def HWPort16 : ProcResGroup<[HWPort1, HWPort6]>; def HWPort015 : ProcResGroup<[HWPort0, HWPort1, HWPort5]>; def HWPort056: ProcResGroup<[HWPort0, HWPort5, HWPort6]>; def HWPort0156: ProcResGroup<[HWPort0, HWPort1, HWPort5, HWPort6]>; // 60 Entry Unified Scheduler def HWPortAny : ProcResGroup<[HWPort0, HWPort1, HWPort2, HWPort3, HWPort4, HWPort5, HWPort6, HWPort7]> { let BufferSize=60; } // Integer division issued on port 0. def HWDivider : ProcResource<1>; // Loads are 4 cycles, so ReadAfterLd registers needn't be available until 4 // cycles after the memory operand. def : ReadAdvance; // Many SchedWrites are defined in pairs with and without a folded load. // Instructions with folded loads are usually micro-fused, so they only appear // as two micro-ops when queued in the reservation station. // This multiclass defines the resource usage for variants with and without // folded loads. multiclass HWWriteResPair { // Register variant is using a single cycle on ExePort. def : WriteRes { let Latency = Lat; } // Memory variant also uses a cycle on port 2/3 and adds 4 cycles to the // latency. def : WriteRes { let Latency = !add(Lat, 4); } } // A folded store needs a cycle on port 4 for the store data, but it does not // need an extra port 2/3 cycle to recompute the address. def : WriteRes; // Store_addr on 237. // Store_data on 4. def : WriteRes; def : WriteRes { let Latency = 4; } def : WriteRes; def : WriteRes; defm : HWWriteResPair; defm : HWWriteResPair; def : WriteRes { let Latency = 3; } defm : HWWriteResPair; defm : HWWriteResPair; // This is for simple LEAs with one or two input operands. // The complex ones can only execute on port 1, and they require two cycles on // the port to read all inputs. We don't model that. def : WriteRes; // This is quite rough, latency depends on the dividend. def : WriteRes { let Latency = 25; let ResourceCycles = [1, 10]; } def : WriteRes { let Latency = 29; let ResourceCycles = [1, 1, 10]; } // Scalar and vector floating point. defm : HWWriteResPair; defm : HWWriteResPair; defm : HWWriteResPair; // 10-14 cycles. defm : HWWriteResPair; defm : HWWriteResPair; defm : HWWriteResPair; defm : HWWriteResPair; defm : HWWriteResPair; defm : HWWriteResPair; defm : HWWriteResPair; defm : HWWriteResPair; def : WriteRes { let Latency = 2; let ResourceCycles = [2]; } def : WriteRes { let Latency = 6; let ResourceCycles = [2, 1]; } // Vector integer operations. defm : HWWriteResPair; defm : HWWriteResPair; defm : HWWriteResPair; defm : HWWriteResPair; defm : HWWriteResPair; defm : HWWriteResPair; defm : HWWriteResPair; def : WriteRes { let Latency = 2; let ResourceCycles = [2]; } def : WriteRes { let Latency = 6; let ResourceCycles = [2, 1]; } def : WriteRes { let Latency = 2; let ResourceCycles = [2, 1]; } def : WriteRes { let Latency = 6; let ResourceCycles = [2, 1, 1]; } def : WriteRes { let Latency = 6; let ResourceCycles = [1, 2]; } def : WriteRes { let Latency = 6; let ResourceCycles = [1, 1, 2]; } // String instructions. // Packed Compare Implicit Length Strings, Return Mask def : WriteRes { let Latency = 10; let ResourceCycles = [3]; } def : WriteRes { let Latency = 10; let ResourceCycles = [3, 1]; } // Packed Compare Explicit Length Strings, Return Mask def : WriteRes { let Latency = 10; let ResourceCycles = [3, 2, 4]; } def : WriteRes { let Latency = 10; let ResourceCycles = [6, 2, 1]; } // Packed Compare Implicit Length Strings, Return Index def : WriteRes { let Latency = 11; let ResourceCycles = [3]; } def : WriteRes { let Latency = 11; let ResourceCycles = [3, 1]; } // Packed Compare Explicit Length Strings, Return Index def : WriteRes { let Latency = 11; let ResourceCycles = [6, 2]; } def : WriteRes { let Latency = 11; let ResourceCycles = [3, 2, 2, 1]; } // AES Instructions. def : WriteRes { let Latency = 7; let ResourceCycles = [1]; } def : WriteRes { let Latency = 7; let ResourceCycles = [1, 1]; } def : WriteRes { let Latency = 14; let ResourceCycles = [2]; } def : WriteRes { let Latency = 14; let ResourceCycles = [2, 1]; } def : WriteRes { let Latency = 10; let ResourceCycles = [2, 8]; } def : WriteRes { let Latency = 10; let ResourceCycles = [2, 7, 1]; } // Carry-less multiplication instructions. def : WriteRes { let Latency = 7; let ResourceCycles = [2, 1]; } def : WriteRes { let Latency = 7; let ResourceCycles = [2, 1, 1]; } def : WriteRes { let Latency = 100; } def : WriteRes { let Latency = 100; } def : WriteRes; def : WriteRes; //================ Exceptions ================// //-- Specific Scheduling Models --// def WriteP1_Lat3 : SchedWriteRes<[HWPort1]> { let Latency = 3; } def WriteP1_Lat3Ld : SchedWriteRes<[HWPort1, HWPort23]> { let Latency = 7; } def Write2P0156_Lat2 : SchedWriteRes<[HWPort0156]> { let Latency = 2; let ResourceCycles = [2]; } def Write2P0156_Lat2Ld : SchedWriteRes<[HWPort0156, HWPort23]> { let Latency = 6; let ResourceCycles = [2, 1]; } def Write2P237_P4 : SchedWriteRes<[HWPort237, HWPort4]> { let Latency = 1; let ResourceCycles = [2, 1]; } def WriteP06 : SchedWriteRes<[HWPort06]>; def Write2P06 : SchedWriteRes<[HWPort06]> { let Latency = 1; let NumMicroOps = 2; let ResourceCycles = [2]; } def WriteP15 : SchedWriteRes<[HWPort15]>; def WriteP15Ld : SchedWriteRes<[HWPort15, HWPort23]> { let Latency = 4; } def Write3P06_Lat2 : SchedWriteRes<[HWPort06]> { let Latency = 2; let NumMicroOps = 3; let ResourceCycles = [3]; } def WriteP0156_P23 : SchedWriteRes<[HWPort0156, HWPort23]> { let NumMicroOps = 2; } def WriteP0156_2P237_P4 : SchedWriteRes<[HWPort0156, HWPort237, HWPort4]> { let Latency = 1; let ResourceCycles = [1, 2, 1]; } def Write2P0156_2P237_P4 : SchedWriteRes<[HWPort0156, HWPort237, HWPort4]> { let Latency = 1; let ResourceCycles = [2, 2, 1]; } def Write2P0156_P23 : SchedWriteRes<[HWPort0156, HWPort23]> { let NumMicroOps = 3; let ResourceCycles = [2, 1]; } def Write3P0156_2P237_P4 : SchedWriteRes<[HWPort0156, HWPort237, HWPort4]> { let Latency = 1; let ResourceCycles = [3, 2, 1]; } // Notation: // - r: register. // - mm: 64 bit mmx register. // - x = 128 bit xmm register. // - (x)mm = mmx or xmm register. // - y = 256 bit ymm register. // - v = any vector register. // - m = memory. //=== Integer Instructions ===// //-- Move instructions --// // MOV. // r16,m. def : InstRW<[WriteALULd], (instregex "MOV16rm")>; // MOVSX, MOVZX. // r,m. def : InstRW<[WriteLoad], (instregex "MOV(S|Z)X32rm(8|16)")>; // CMOVcc. // r,r. def : InstRW<[Write2P0156_Lat2], (instregex "CMOV(O|NO|B|AE|E|NE|BE|A|S|NS|P|NP|L|GE|LE|G)(16|32|64)rr")>; // r,m. def : InstRW<[Write2P0156_Lat2Ld, ReadAfterLd], (instregex "CMOV(O|NO|B|AE|E|NE|BE|A|S|NS|P|NP|L|GE|LE|G)(16|32|64)rm")>; // XCHG. // r,r. def WriteXCHG : SchedWriteRes<[HWPort0156]> { let Latency = 2; let ResourceCycles = [3]; } def : InstRW<[WriteXCHG], (instregex "XCHG(8|16|32|64)rr", "XCHG(16|32|64)ar")>; // r,m. def WriteXCHGrm : SchedWriteRes<[]> { let Latency = 21; let NumMicroOps = 8; } def : InstRW<[WriteXCHGrm], (instregex "XCHG(8|16|32|64)rm")>; // XLAT. def WriteXLAT : SchedWriteRes<[]> { let Latency = 7; let NumMicroOps = 3; } def : InstRW<[WriteXLAT], (instregex "XLAT")>; // PUSH. // m. def : InstRW<[Write2P237_P4], (instregex "PUSH(16|32)rmm")>; // PUSHF. def WritePushF : SchedWriteRes<[HWPort1, HWPort4, HWPort237, HWPort06]> { let NumMicroOps = 4; } def : InstRW<[WritePushF], (instregex "PUSHF(16|32)")>; // PUSHA. def WritePushA : SchedWriteRes<[]> { let NumMicroOps = 19; } def : InstRW<[WritePushA], (instregex "PUSHA(16|32)")>; // POP. // m. def : InstRW<[Write2P237_P4], (instregex "POP(16|32)rmm")>; // POPF. def WritePopF : SchedWriteRes<[]> { let NumMicroOps = 9; } def : InstRW<[WritePopF], (instregex "POPF(16|32)")>; // POPA. def WritePopA : SchedWriteRes<[]> { let NumMicroOps = 18; } def : InstRW<[WritePopA], (instregex "POPA(16|32)")>; // LAHF SAHF. def : InstRW<[WriteP06], (instregex "(S|L)AHF")>; // BSWAP. // r32. def WriteBSwap32 : SchedWriteRes<[HWPort15]>; def : InstRW<[WriteBSwap32], (instregex "BSWAP32r")>; // r64. def WriteBSwap64 : SchedWriteRes<[HWPort06, HWPort15]> { let NumMicroOps = 2; } def : InstRW<[WriteBSwap64], (instregex "BSWAP64r")>; // MOVBE. // r16,m16 / r64,m64. def : InstRW<[Write2P0156_Lat2Ld], (instregex "MOVBE(16|64)rm")>; // r32, m32. def WriteMoveBE32rm : SchedWriteRes<[HWPort15, HWPort23]> { let NumMicroOps = 2; } def : InstRW<[WriteMoveBE32rm], (instregex "MOVBE32rm")>; // m16,r16. def WriteMoveBE16mr : SchedWriteRes<[HWPort06, HWPort237, HWPort4]> { let NumMicroOps = 3; } def : InstRW<[WriteMoveBE16mr], (instregex "MOVBE16mr")>; // m32,r32. def WriteMoveBE32mr : SchedWriteRes<[HWPort15, HWPort237, HWPort4]> { let NumMicroOps = 3; } def : InstRW<[WriteMoveBE32mr], (instregex "MOVBE32mr")>; // m64,r64. def WriteMoveBE64mr : SchedWriteRes<[HWPort06, HWPort15, HWPort237, HWPort4]> { let NumMicroOps = 4; } def : InstRW<[WriteMoveBE64mr], (instregex "MOVBE64mr")>; //-- Arithmetic instructions --// // ADD SUB. // m,r/i. def : InstRW<[Write2P0156_2P237_P4], (instregex "(ADD|SUB)(8|16|32|64)m(r|i)", "(ADD|SUB)(8|16|32|64)mi8", "(ADD|SUB)64mi32")>; // ADC SBB. // r,r/i. def : InstRW<[Write2P0156_Lat2], (instregex "(ADC|SBB)(8|16|32|64)r(r|i)", "(ADC|SBB)(16|32|64)ri8", "(ADC|SBB)64ri32", "(ADC|SBB)(8|16|32|64)rr_REV")>; // r,m. def : InstRW<[Write2P0156_Lat2Ld, ReadAfterLd], (instregex "(ADC|SBB)(8|16|32|64)rm")>; // m,r/i. def : InstRW<[Write3P0156_2P237_P4], (instregex "(ADC|SBB)(8|16|32|64)m(r|i)", "(ADC|SBB)(16|32|64)mi8", "(ADC|SBB)64mi32")>; // INC DEC NOT NEG. // m. def : InstRW<[WriteP0156_2P237_P4], (instregex "(INC|DEC|NOT|NEG)(8|16|32|64)m", "(INC|DEC)64(16|32)m")>; // MUL IMUL. // r16. def WriteMul16 : SchedWriteRes<[HWPort1, HWPort0156]> { let Latency = 4; let NumMicroOps = 4; } def : InstRW<[WriteMul16], (instregex "IMUL16r", "MUL16r")>; // m16. def WriteMul16Ld : SchedWriteRes<[HWPort1, HWPort0156, HWPort23]> { let Latency = 8; let NumMicroOps = 5; } def : InstRW<[WriteMul16Ld], (instregex "IMUL16m", "MUL16m")>; // r32. def WriteMul32 : SchedWriteRes<[HWPort1, HWPort0156]> { let Latency = 4; let NumMicroOps = 3; } def : InstRW<[WriteMul32], (instregex "IMUL32r", "MUL32r")>; // m32. def WriteMul32Ld : SchedWriteRes<[HWPort1, HWPort0156, HWPort23]> { let Latency = 8; let NumMicroOps = 4; } def : InstRW<[WriteMul32Ld], (instregex "IMUL32m", "MUL32m")>; // r64. def WriteMul64 : SchedWriteRes<[HWPort1, HWPort6]> { let Latency = 3; let NumMicroOps = 2; } def : InstRW<[WriteMul64], (instregex "IMUL64r", "MUL64r")>; // m64. def WriteMul64Ld : SchedWriteRes<[HWPort1, HWPort6, HWPort23]> { let Latency = 7; let NumMicroOps = 3; } def : InstRW<[WriteMul64Ld], (instregex "IMUL64m", "MUL64m")>; // r16,r16. def WriteMul16rri : SchedWriteRes<[HWPort1, HWPort0156]> { let Latency = 4; let NumMicroOps = 2; } def : InstRW<[WriteMul16rri], (instregex "IMUL16rri", "IMUL16rri8")>; // r16,m16. def WriteMul16rmi : SchedWriteRes<[HWPort1, HWPort0156, HWPort23]> { let Latency = 8; let NumMicroOps = 3; } def : InstRW<[WriteMul16rmi], (instregex "IMUL16rmi", "IMUL16rmi8")>; // MULX. // r32,r32,r32. def WriteMulX32 : SchedWriteRes<[HWPort1, HWPort056]> { let Latency = 4; let NumMicroOps = 3; let ResourceCycles = [1, 2]; } def : InstRW<[WriteMulX32], (instregex "MULX32rr")>; // r32,r32,m32. def WriteMulX32Ld : SchedWriteRes<[HWPort1, HWPort056, HWPort23]> { let Latency = 8; let NumMicroOps = 4; let ResourceCycles = [1, 2, 1]; } def : InstRW<[WriteMulX32Ld], (instregex "MULX32rm")>; // r64,r64,r64. def WriteMulX64 : SchedWriteRes<[HWPort1, HWPort6]> { let Latency = 4; let NumMicroOps = 2; } def : InstRW<[WriteMulX64], (instregex "MULX64rr")>; // r64,r64,m64. def WriteMulX64Ld : SchedWriteRes<[HWPort1, HWPort6, HWPort23]> { let Latency = 8; let NumMicroOps = 3; } def : InstRW<[WriteMulX64Ld], (instregex "MULX64rm")>; // DIV. // r8. def WriteDiv8 : SchedWriteRes<[HWPort0, HWPort1, HWPort5, HWPort6]> { let Latency = 22; let NumMicroOps = 9; } def : InstRW<[WriteDiv8], (instregex "DIV8r")>; // r16. def WriteDiv16 : SchedWriteRes<[HWPort0, HWPort1, HWPort5, HWPort6]> { let Latency = 23; let NumMicroOps = 10; } def : InstRW<[WriteDiv16], (instregex "DIV16r")>; // r32. def WriteDiv32 : SchedWriteRes<[HWPort0, HWPort1, HWPort5, HWPort6]> { let Latency = 22; let NumMicroOps = 10; } def : InstRW<[WriteDiv32], (instregex "DIV32r")>; // r64. def WriteDiv64 : SchedWriteRes<[HWPort0, HWPort1, HWPort5, HWPort6]> { let Latency = 32; let NumMicroOps = 36; } def : InstRW<[WriteDiv64], (instregex "DIV64r")>; // IDIV. // r8. def WriteIDiv8 : SchedWriteRes<[HWPort0, HWPort1, HWPort5, HWPort6]> { let Latency = 23; let NumMicroOps = 9; } def : InstRW<[WriteIDiv8], (instregex "IDIV8r")>; // r16. def WriteIDiv16 : SchedWriteRes<[HWPort0, HWPort1, HWPort5, HWPort6]> { let Latency = 23; let NumMicroOps = 10; } def : InstRW<[WriteIDiv16], (instregex "IDIV16r")>; // r32. def WriteIDiv32 : SchedWriteRes<[HWPort0, HWPort1, HWPort5, HWPort6]> { let Latency = 22; let NumMicroOps = 9; } def : InstRW<[WriteIDiv32], (instregex "IDIV32r")>; // r64. def WriteIDiv64 : SchedWriteRes<[HWPort0, HWPort1, HWPort5, HWPort6]> { let Latency = 39; let NumMicroOps = 59; } def : InstRW<[WriteIDiv64], (instregex "IDIV64r")>; //-- Logic instructions --// // AND OR XOR. // m,r/i. def : InstRW<[Write2P0156_2P237_P4], (instregex "(AND|OR|XOR)(8|16|32|64)m(r|i)", "(AND|OR|XOR)(8|16|32|64)mi8", "(AND|OR|XOR)64mi32")>; // SHR SHL SAR. // m,i. def WriteShiftRMW : SchedWriteRes<[HWPort06, HWPort237, HWPort4]> { let NumMicroOps = 4; let ResourceCycles = [2, 1, 1]; } def : InstRW<[WriteShiftRMW], (instregex "S(A|H)(R|L)(8|16|32|64)m(i|1)")>; // r,cl. def : InstRW<[Write3P06_Lat2], (instregex "S(A|H)(R|L)(8|16|32|64)rCL")>; // m,cl. def WriteShiftClLdRMW : SchedWriteRes<[HWPort06, HWPort23, HWPort4]> { let NumMicroOps = 6; let ResourceCycles = [3, 2, 1]; } def : InstRW<[WriteShiftClLdRMW], (instregex "S(A|H)(R|L)(8|16|32|64)mCL")>; // ROR ROL. // r,1. def : InstRW<[Write2P06], (instregex "RO(R|L)(8|16|32|64)r1")>; // m,i. def WriteRotateRMW : SchedWriteRes<[HWPort06, HWPort237, HWPort4]> { let NumMicroOps = 5; let ResourceCycles = [2, 2, 1]; } def : InstRW<[WriteRotateRMW], (instregex "RO(R|L)(8|16|32|64)mi")>; // r,cl. def : InstRW<[Write3P06_Lat2], (instregex "RO(R|L)(8|16|32|64)rCL")>; // m,cl. def WriteRotateRMWCL : SchedWriteRes<[]> { let NumMicroOps = 6; } def : InstRW<[WriteRotateRMWCL], (instregex "RO(R|L)(8|16|32|64)mCL")>; // RCR RCL. // r,1. def WriteRCr1 : SchedWriteRes<[HWPort06, HWPort0156]> { let Latency = 2; let NumMicroOps = 3; let ResourceCycles = [2, 1]; } def : InstRW<[WriteRCr1], (instregex "RC(R|L)(8|16|32|64)r1")>; // m,1. def WriteRCm1 : SchedWriteRes<[]> { let NumMicroOps = 6; } def : InstRW<[WriteRCm1], (instregex "RC(R|L)(8|16|32|64)m1")>; // r,i. def WriteRCri : SchedWriteRes<[HWPort0156]> { let Latency = 6; let NumMicroOps = 8; } def : InstRW<[WriteRCri], (instregex "RC(R|L)(8|16|32|64)r(i|CL)")>; // m,i. def WriteRCmi : SchedWriteRes<[]> { let NumMicroOps = 11; } def : InstRW<[WriteRCmi], (instregex "RC(R|L)(8|16|32|64)m(i|CL)")>; // SHRD SHLD. // r,r,i. def WriteShDrr : SchedWriteRes<[HWPort1]> { let Latency = 3; } def : InstRW<[WriteShDrr], (instregex "SH(R|L)D(16|32|64)rri8")>; // m,r,i. def WriteShDmr : SchedWriteRes<[]> { let NumMicroOps = 5; } def : InstRW<[WriteShDmr], (instregex "SH(R|L)D(16|32|64)mri8")>; // r,r,cl. def WriteShlDCL : SchedWriteRes<[HWPort0156]> { let Latency = 3; let NumMicroOps = 4; } def : InstRW<[WriteShlDCL], (instregex "SHLD(16|32|64)rrCL")>; // r,r,cl. def WriteShrDCL : SchedWriteRes<[HWPort0156]> { let Latency = 4; let NumMicroOps = 4; } def : InstRW<[WriteShrDCL], (instregex "SHRD(16|32|64)rrCL")>; // m,r,cl. def WriteShDmrCL : SchedWriteRes<[]> { let NumMicroOps = 7; } def : InstRW<[WriteShDmrCL], (instregex "SH(R|L)D(16|32|64)mrCL")>; // BT. // r,r/i. def : InstRW<[WriteShift], (instregex "BT(16|32|64)r(r|i8)")>; // m,r. def WriteBTmr : SchedWriteRes<[]> { let NumMicroOps = 10; } def : InstRW<[WriteBTmr], (instregex "BT(16|32|64)mr")>; // m,i. def : InstRW<[WriteShiftLd], (instregex "BT(16|32|64)mi8")>; // BTR BTS BTC. // r,r,i. def : InstRW<[WriteShift], (instregex "BT(R|S|C)(16|32|64)r(r|i8)")>; // m,r. def WriteBTRSCmr : SchedWriteRes<[]> { let NumMicroOps = 11; } def : InstRW<[WriteBTRSCmr], (instregex "BT(R|S|C)(16|32|64)mr")>; // m,i. def : InstRW<[WriteShiftLd], (instregex "BT(R|S|C)(16|32|64)mi8")>; // BSF BSR. // r,r. def : InstRW<[WriteP1_Lat3], (instregex "BS(R|F)(16|32|64)rr")>; // r,m. def : InstRW<[WriteP1_Lat3Ld], (instregex "BS(R|F)(16|32|64)rm")>; // SETcc. // r. def : InstRW<[WriteShift], (instregex "SET(O|NO|B|AE|E|NE|BE|A|S|NS|P|NP|L|GE|LE|G)r")>; // m. def WriteSetCCm : SchedWriteRes<[HWPort06, HWPort237, HWPort4]> { let NumMicroOps = 3; } def : InstRW<[WriteSetCCm], (instregex "SET(O|NO|B|AE|E|NE|BE|A|S|NS|P|NP|L|GE|LE|G)m")>; // CLD STD. def WriteCldStd : SchedWriteRes<[HWPort15, HWPort6]> { let NumMicroOps = 3; } def : InstRW<[WriteCldStd], (instregex "STD", "CLD")>; // LZCNT TZCNT. // r,r. def : InstRW<[WriteP1_Lat3], (instregex "(L|TZCNT)(16|32|64)rr")>; // r,m. def : InstRW<[WriteP1_Lat3Ld], (instregex "(L|TZCNT)(16|32|64)rm")>; // ANDN. // r,r. def : InstRW<[WriteP15], (instregex "ANDN(32|64)rr")>; // r,m. def : InstRW<[WriteP15Ld], (instregex "ANDN(32|64)rm")>; // BLSI BLSMSK BLSR. // r,r. def : InstRW<[WriteP15], (instregex "BLS(I|MSK|R)(32|64)rr")>; // r,m. def : InstRW<[WriteP15Ld], (instregex "BLS(I|MSK|R)(32|64)rm")>; // BEXTR. // r,r,r. def : InstRW<[Write2P0156_Lat2], (instregex "BEXTR(32|64)rr")>; // r,m,r. def : InstRW<[Write2P0156_Lat2Ld], (instregex "BEXTR(32|64)rm")>; // BZHI. // r,r,r. def : InstRW<[WriteP15], (instregex "BZHI(32|64)rr")>; // r,m,r. def : InstRW<[WriteP15Ld], (instregex "BZHI(32|64)rm")>; // PDEP PEXT. // r,r,r. def : InstRW<[WriteP1_Lat3], (instregex "PDEP(32|64)rr", "PEXT(32|64)rr")>; // r,m,r. def : InstRW<[WriteP1_Lat3Ld], (instregex "PDEP(32|64)rm", "PEXT(32|64)rm")>; //-- Control transfer instructions --// // J(E|R)CXZ. def WriteJCXZ : SchedWriteRes<[HWPort0156, HWPort6]> { let NumMicroOps = 2; } def : InstRW<[WriteJCXZ], (instregex "JCXZ", "JECXZ_(32|64)", "JRCXZ")>; // LOOP. def WriteLOOP : SchedWriteRes<[]> { let NumMicroOps = 7; } def : InstRW<[WriteLOOP], (instregex "LOOP")>; // LOOP(N)E def WriteLOOPE : SchedWriteRes<[]> { let NumMicroOps = 11; } def : InstRW<[WriteLOOPE], (instregex "LOOPE", "LOOPNE")>; // CALL. // r. def WriteCALLr : SchedWriteRes<[HWPort237, HWPort4, HWPort6]> { let NumMicroOps = 3; } def : InstRW<[WriteCALLr], (instregex "CALL(16|32)r")>; // m. def WriteCALLm : SchedWriteRes<[HWPort237, HWPort4, HWPort6]> { let NumMicroOps = 4; let ResourceCycles = [2, 1, 1]; } def : InstRW<[WriteCALLm], (instregex "CALL(16|32)m")>; // RET. def WriteRET : SchedWriteRes<[HWPort237, HWPort6]> { let NumMicroOps = 2; } def : InstRW<[WriteRET], (instregex "RET(L|Q|W)", "LRET(L|Q|W)")>; // i. def WriteRETI : SchedWriteRes<[HWPort23, HWPort6, HWPort015]> { let NumMicroOps = 4; let ResourceCycles = [1, 2, 1]; } def : InstRW<[WriteRETI], (instregex "RETI(L|Q|W)", "LRETI(L|Q|W)")>; // BOUND. // r,m. def WriteBOUND : SchedWriteRes<[]> { let NumMicroOps = 15; } def : InstRW<[WriteBOUND], (instregex "BOUNDS(16|32)rm")>; // INTO. def WriteINTO : SchedWriteRes<[]> { let NumMicroOps = 4; } def : InstRW<[WriteINTO], (instregex "INTO")>; //-- String instructions --// // LODSB/W. def : InstRW<[Write2P0156_P23], (instregex "LODS(B|W)")>; // LODSD/Q. def : InstRW<[WriteP0156_P23], (instregex "LODS(L|Q)")>; // STOS. def WriteSTOS : SchedWriteRes<[HWPort23, HWPort0156, HWPort4]> { let NumMicroOps = 3; } def : InstRW<[WriteSTOS], (instregex "STOS(B|L|Q|W)")>; // MOVS. def WriteMOVS : SchedWriteRes<[HWPort23, HWPort4, HWPort0156]> { let Latency = 4; let NumMicroOps = 5; let ResourceCycles = [2, 1, 2]; } def : InstRW<[WriteMOVS], (instregex "MOVS(B|L|Q|W)")>; // SCAS. def : InstRW<[Write2P0156_P23], (instregex "SCAS(B|W|L|Q)")>; // CMPS. def WriteCMPS : SchedWriteRes<[HWPort23, HWPort0156]> { let Latency = 4; let NumMicroOps = 5; let ResourceCycles = [2, 3]; } def : InstRW<[WriteCMPS], (instregex "CMPS(B|L|Q|W)")>; //-- Synchronization instructions --// // XADD. def WriteXADD : SchedWriteRes<[]> { let NumMicroOps = 5; } def : InstRW<[WriteXADD], (instregex "XADD(8|16|32|64)rm")>; // CMPXCHG. def WriteCMPXCHG : SchedWriteRes<[]> { let NumMicroOps = 6; } def : InstRW<[WriteCMPXCHG], (instregex "CMPXCHG(8|16|32|64)rm")>; // CMPXCHG8B. def WriteCMPXCHG8B : SchedWriteRes<[]> { let NumMicroOps = 15; } def : InstRW<[WriteCMPXCHG8B], (instregex "CMPXCHG8B")>; // CMPXCHG16B. def WriteCMPXCHG16B : SchedWriteRes<[]> { let NumMicroOps = 22; } def : InstRW<[WriteCMPXCHG16B], (instregex "CMPXCHG16B")>; //-- Other --// // PAUSE. def WritePAUSE : SchedWriteRes<[HWPort05, HWPort6]> { let NumMicroOps = 5; let ResourceCycles = [1, 3]; } def : InstRW<[WritePAUSE], (instregex "PAUSE")>; // LEAVE. def : InstRW<[Write2P0156_P23], (instregex "LEAVE")>; // XGETBV. def WriteXGETBV : SchedWriteRes<[]> { let NumMicroOps = 8; } def : InstRW<[WriteXGETBV], (instregex "XGETBV")>; // RDTSC. def WriteRDTSC : SchedWriteRes<[]> { let NumMicroOps = 15; } def : InstRW<[WriteRDTSC], (instregex "RDTSC")>; // RDPMC. def WriteRDPMC : SchedWriteRes<[]> { let NumMicroOps = 34; } def : InstRW<[WriteRDPMC], (instregex "RDPMC")>; // RDRAND. def WriteRDRAND : SchedWriteRes<[HWPort23, HWPort015]> { let NumMicroOps = 17; let ResourceCycles = [1, 16]; } def : InstRW<[WriteRDRAND], (instregex "RDRAND(16|32|64)r")>; } // SchedModel