//===--- CGExprConstant.cpp - Emit LLVM Code from Constant Expressions ----===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This contains code to emit Constant Expr nodes as LLVM code. // //===----------------------------------------------------------------------===// #include "CodeGenFunction.h" #include "CodeGenModule.h" #include "CGObjCRuntime.h" #include "clang/AST/APValue.h" #include "clang/AST/ASTContext.h" #include "clang/AST/RecordLayout.h" #include "clang/AST/StmtVisitor.h" #include "clang/Basic/Builtins.h" #include "llvm/Constants.h" #include "llvm/Function.h" #include "llvm/GlobalVariable.h" #include "llvm/Support/Compiler.h" #include "llvm/Target/TargetData.h" using namespace clang; using namespace CodeGen; namespace { class VISIBILITY_HIDDEN ConstStructBuilder { CodeGenModule &CGM; CodeGenFunction *CGF; bool Packed; unsigned NextFieldOffsetInBytes; std::vector Elements; ConstStructBuilder(CodeGenModule &CGM, CodeGenFunction *CGF) : CGM(CGM), CGF(CGF), Packed(false), NextFieldOffsetInBytes(0) { } bool AppendField(const FieldDecl *Field, uint64_t FieldOffset, const Expr *InitExpr) { uint64_t FieldOffsetInBytes = FieldOffset / 8; assert(NextFieldOffsetInBytes <= FieldOffsetInBytes && "Field offset mismatch!"); // Emit the field. llvm::Constant *C = CGM.EmitConstantExpr(InitExpr, Field->getType(), CGF); if (!C) return false; unsigned FieldAlignment = getAlignment(C); // Round up the field offset to the alignment of the field type. uint64_t AlignedNextFieldOffsetInBytes = llvm::RoundUpToAlignment(NextFieldOffsetInBytes, FieldAlignment); if (AlignedNextFieldOffsetInBytes > FieldOffsetInBytes) { std::vector PackedElements; assert(!Packed && "Alignment is wrong even with a packed struct!"); // Convert the struct to a packed struct. uint64_t ElementOffsetInBytes = 0; for (unsigned i = 0, e = Elements.size(); i != e; ++i) { llvm::Constant *C = Elements[i]; unsigned ElementAlign = CGM.getTargetData().getABITypeAlignment(C->getType()); uint64_t AlignedElementOffsetInBytes = llvm::RoundUpToAlignment(ElementOffsetInBytes, ElementAlign); if (AlignedElementOffsetInBytes > ElementOffsetInBytes) { // We need some padding. uint64_t NumBytes = AlignedElementOffsetInBytes - ElementOffsetInBytes; const llvm::Type *Ty = llvm::Type::Int8Ty; if (NumBytes > 1) Ty = llvm::ArrayType::get(Ty, NumBytes); llvm::Constant *Padding = llvm::Constant::getNullValue(Ty); PackedElements.push_back(Padding); ElementOffsetInBytes += getSizeInBytes(Padding); } PackedElements.push_back(C); ElementOffsetInBytes += getSizeInBytes(C); } assert(ElementOffsetInBytes == NextFieldOffsetInBytes && "Packing the struct changed its size!"); Elements = PackedElements; Packed = true; AlignedNextFieldOffsetInBytes = NextFieldOffsetInBytes; } if (AlignedNextFieldOffsetInBytes < FieldOffsetInBytes) { // We need to append padding. AppendPadding(FieldOffsetInBytes - NextFieldOffsetInBytes); assert(NextFieldOffsetInBytes == FieldOffsetInBytes && "Did not add enough padding!"); AlignedNextFieldOffsetInBytes = NextFieldOffsetInBytes; } // Add the field. Elements.push_back(C); NextFieldOffsetInBytes = AlignedNextFieldOffsetInBytes + getSizeInBytes(C); return true; } bool AppendBitField(const FieldDecl *Field, uint64_t FieldOffset, const Expr *InitExpr) { llvm::ConstantInt *CI = cast_or_null(CGM.EmitConstantExpr(InitExpr, Field->getType(), CGF)); // FIXME: Can this ever happen? if (!CI) return false; if (FieldOffset > NextFieldOffsetInBytes * 8) { // We need to add padding. uint64_t NumBytes = llvm::RoundUpToAlignment(FieldOffset - NextFieldOffsetInBytes * 8, 8) / 8; AppendPadding(NumBytes); } uint64_t FieldSize = Field->getBitWidth()->EvaluateAsInt(CGM.getContext()).getZExtValue(); llvm::APInt FieldValue = CI->getValue(); // Promote the size of FieldValue if necessary // FIXME: This should never occur, but currently it can because initializer // constants are cast to bool, and because clang is not enforcing bitfield // width limits. if (FieldSize > FieldValue.getBitWidth()) FieldValue.zext(FieldSize); // Truncate the size of FieldValue to the bit field size. if (FieldSize < FieldValue.getBitWidth()) FieldValue.trunc(FieldSize); if (FieldOffset < NextFieldOffsetInBytes * 8) { // Either part of the field or the entire field can go into the previous // byte. assert(!Elements.empty() && "Elements can't be empty!"); unsigned BitsInPreviousByte = NextFieldOffsetInBytes * 8 - FieldOffset; bool FitsCompletelyInPreviousByte = BitsInPreviousByte >= FieldValue.getBitWidth(); llvm::APInt Tmp = FieldValue; if (!FitsCompletelyInPreviousByte) { unsigned NewFieldWidth = FieldSize - BitsInPreviousByte; if (CGM.getTargetData().isBigEndian()) { Tmp = Tmp.lshr(NewFieldWidth); Tmp.trunc(BitsInPreviousByte); // We want the remaining high bits. FieldValue.trunc(NewFieldWidth); } else { Tmp.trunc(BitsInPreviousByte); // We want the remaining low bits. FieldValue = FieldValue.lshr(BitsInPreviousByte); FieldValue.trunc(NewFieldWidth); } } Tmp.zext(8); if (CGM.getTargetData().isBigEndian()) { if (FitsCompletelyInPreviousByte) Tmp = Tmp.shl(BitsInPreviousByte - FieldValue.getBitWidth()); } else { Tmp = Tmp.shl(8 - BitsInPreviousByte); } // Or in the bits that go into the previous byte. Tmp |= cast(Elements.back())->getValue(); Elements.back() = llvm::ConstantInt::get(CGM.getLLVMContext(), Tmp); if (FitsCompletelyInPreviousByte) return true; } while (FieldValue.getBitWidth() > 8) { llvm::APInt Tmp; if (CGM.getTargetData().isBigEndian()) { // We want the high bits. Tmp = FieldValue; Tmp = Tmp.lshr(Tmp.getBitWidth() - 8); Tmp.trunc(8); } else { // We want the low bits. Tmp = FieldValue; Tmp.trunc(8); FieldValue = FieldValue.lshr(8); } Elements.push_back(llvm::ConstantInt::get(CGM.getLLVMContext(), Tmp)); NextFieldOffsetInBytes++; FieldValue.trunc(FieldValue.getBitWidth() - 8); } assert(FieldValue.getBitWidth() > 0 && "Should have at least one bit left!"); assert(FieldValue.getBitWidth() <= 8 && "Should not have more than a byte left!"); if (FieldValue.getBitWidth() < 8) { if (CGM.getTargetData().isBigEndian()) { unsigned BitWidth = FieldValue.getBitWidth(); FieldValue.zext(8); FieldValue = FieldValue << (8 - BitWidth); } else FieldValue.zext(8); } // Append the last element. Elements.push_back(llvm::ConstantInt::get(CGM.getLLVMContext(), FieldValue)); NextFieldOffsetInBytes++; return true; } void AppendPadding(uint64_t NumBytes) { if (!NumBytes) return; const llvm::Type *Ty = llvm::Type::Int8Ty; if (NumBytes > 1) Ty = llvm::ArrayType::get(Ty, NumBytes); llvm::Constant *C = llvm::Constant::getNullValue(Ty); Elements.push_back(C); assert(getAlignment(C) == 1 && "Padding must have 1 byte alignment!"); NextFieldOffsetInBytes += getSizeInBytes(C); } void AppendTailPadding(uint64_t RecordSize) { assert(RecordSize % 8 == 0 && "Invalid record size!"); uint64_t RecordSizeInBytes = RecordSize / 8; assert(NextFieldOffsetInBytes <= RecordSizeInBytes && "Size mismatch!"); unsigned NumPadBytes = RecordSizeInBytes - NextFieldOffsetInBytes; AppendPadding(NumPadBytes); } bool Build(const InitListExpr *ILE) { RecordDecl *RD = ILE->getType()->getAs()->getDecl(); const ASTRecordLayout &Layout = CGM.getContext().getASTRecordLayout(RD); unsigned FieldNo = 0; unsigned ElementNo = 0; for (RecordDecl::field_iterator Field = RD->field_begin(), FieldEnd = RD->field_end(); ElementNo < ILE->getNumInits() && Field != FieldEnd; ++Field, ++FieldNo) { if (Field->isBitField()) { if (!Field->getIdentifier()) continue; if (!AppendBitField(*Field, Layout.getFieldOffset(FieldNo), ILE->getInit(ElementNo))) return false; } else { if (!AppendField(*Field, Layout.getFieldOffset(FieldNo), ILE->getInit(ElementNo))) return false; } ElementNo++; } uint64_t LayoutSizeInBytes = Layout.getSize() / 8; if (NextFieldOffsetInBytes > LayoutSizeInBytes) { // If the struct is bigger than the size of the record type, // we must have a flexible array member at the end. assert(RD->hasFlexibleArrayMember() && "Must have flexible array member if struct is bigger than type!"); // No tail padding is necessary. return true; } // Append tail padding if necessary. AppendTailPadding(Layout.getSize()); assert(Layout.getSize() / 8 == NextFieldOffsetInBytes && "Tail padding mismatch!"); return true; } unsigned getAlignment(const llvm::Constant *C) const { if (Packed) return 1; return CGM.getTargetData().getABITypeAlignment(C->getType()); } uint64_t getSizeInBytes(const llvm::Constant *C) const { return CGM.getTargetData().getTypeAllocSize(C->getType()); } public: static llvm::Constant *BuildStruct(CodeGenModule &CGM, CodeGenFunction *CGF, const InitListExpr *ILE) { ConstStructBuilder Builder(CGM, CGF); if (!Builder.Build(ILE)) return 0; llvm::Constant *Result = llvm::ConstantStruct::get(Builder.Elements, Builder.Packed); assert(llvm::RoundUpToAlignment(Builder.NextFieldOffsetInBytes, Builder.getAlignment(Result)) == Builder.getSizeInBytes(Result) && "Size mismatch!"); return Result; } }; class VISIBILITY_HIDDEN ConstExprEmitter : public StmtVisitor { CodeGenModule &CGM; CodeGenFunction *CGF; llvm::LLVMContext &VMContext; public: ConstExprEmitter(CodeGenModule &cgm, CodeGenFunction *cgf) : CGM(cgm), CGF(cgf), VMContext(cgm.getLLVMContext()) { } //===--------------------------------------------------------------------===// // Visitor Methods //===--------------------------------------------------------------------===// llvm::Constant *VisitStmt(Stmt *S) { return 0; } llvm::Constant *VisitParenExpr(ParenExpr *PE) { return Visit(PE->getSubExpr()); } llvm::Constant *VisitCompoundLiteralExpr(CompoundLiteralExpr *E) { return Visit(E->getInitializer()); } llvm::Constant *VisitCastExpr(CastExpr* E) { // GCC cast to union extension if (E->getType()->isUnionType()) { const llvm::Type *Ty = ConvertType(E->getType()); Expr *SubExpr = E->getSubExpr(); llvm::Constant *C = CGM.EmitConstantExpr(SubExpr, SubExpr->getType(), CGF); if (!C) return 0; // Build a struct with the union sub-element as the first member, // and padded to the appropriate size std::vector Elts; std::vector Types; Elts.push_back(C); Types.push_back(C->getType()); unsigned CurSize = CGM.getTargetData().getTypeAllocSize(C->getType()); unsigned TotalSize = CGM.getTargetData().getTypeAllocSize(Ty); assert(CurSize <= TotalSize && "Union size mismatch!"); if (unsigned NumPadBytes = TotalSize - CurSize) { const llvm::Type *Ty = llvm::Type::Int8Ty; if (NumPadBytes > 1) Ty = llvm::ArrayType::get(Ty, NumPadBytes); Elts.push_back(llvm::Constant::getNullValue(Ty)); Types.push_back(Ty); } llvm::StructType* STy = llvm::StructType::get(Types, false); return llvm::ConstantStruct::get(STy, Elts); } // Explicit and implicit no-op casts QualType Ty = E->getType(), SubTy = E->getSubExpr()->getType(); if (CGM.getContext().hasSameUnqualifiedType(Ty, SubTy)) { return Visit(E->getSubExpr()); } return 0; } llvm::Constant *VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE) { return Visit(DAE->getExpr()); } llvm::Constant *EmitArrayInitialization(InitListExpr *ILE) { std::vector Elts; const llvm::ArrayType *AType = cast(ConvertType(ILE->getType())); unsigned NumInitElements = ILE->getNumInits(); // FIXME: Check for wide strings // FIXME: Check for NumInitElements exactly equal to 1?? if (NumInitElements > 0 && (isa(ILE->getInit(0)) || isa(ILE->getInit(0))) && ILE->getType()->getArrayElementTypeNoTypeQual()->isCharType()) return Visit(ILE->getInit(0)); const llvm::Type *ElemTy = AType->getElementType(); unsigned NumElements = AType->getNumElements(); // Initialising an array requires us to automatically // initialise any elements that have not been initialised explicitly unsigned NumInitableElts = std::min(NumInitElements, NumElements); // Copy initializer elements. unsigned i = 0; bool RewriteType = false; for (; i < NumInitableElts; ++i) { Expr *Init = ILE->getInit(i); llvm::Constant *C = CGM.EmitConstantExpr(Init, Init->getType(), CGF); if (!C) return 0; RewriteType |= (C->getType() != ElemTy); Elts.push_back(C); } // Initialize remaining array elements. // FIXME: This doesn't handle member pointers correctly! for (; i < NumElements; ++i) Elts.push_back(llvm::Constant::getNullValue(ElemTy)); if (RewriteType) { // FIXME: Try to avoid packing the array std::vector Types; for (unsigned i = 0; i < Elts.size(); ++i) Types.push_back(Elts[i]->getType()); const llvm::StructType *SType = llvm::StructType::get(Types, true); return llvm::ConstantStruct::get(SType, Elts); } return llvm::ConstantArray::get(AType, Elts); } void InsertBitfieldIntoStruct(std::vector& Elts, FieldDecl* Field, Expr* E) { // Calculate the value to insert llvm::Constant *C = CGM.EmitConstantExpr(E, Field->getType(), CGF); if (!C) return; llvm::ConstantInt *CI = dyn_cast(C); if (!CI) { CGM.ErrorUnsupported(E, "bitfield initialization"); return; } llvm::APInt V = CI->getValue(); // Calculate information about the relevant field const llvm::Type* Ty = CI->getType(); const llvm::TargetData &TD = CGM.getTypes().getTargetData(); unsigned size = TD.getTypeAllocSizeInBits(Ty); CodeGenTypes::BitFieldInfo Info = CGM.getTypes().getBitFieldInfo(Field); unsigned FieldOffset = Info.FieldNo * size; FieldOffset += Info.Start; // Find where to start the insertion // FIXME: This is O(n^2) in the number of bit-fields! // FIXME: This won't work if the struct isn't completely packed! unsigned offset = 0, i = 0; while (offset < (FieldOffset & -8)) offset += TD.getTypeAllocSizeInBits(Elts[i++]->getType()); // Advance over 0 sized elements (must terminate in bounds since // the bitfield must have a size). while (TD.getTypeAllocSizeInBits(Elts[i]->getType()) == 0) ++i; // Promote the size of V if necessary // FIXME: This should never occur, but currently it can because initializer // constants are cast to bool, and because clang is not enforcing bitfield // width limits. if (Info.Size > V.getBitWidth()) V.zext(Info.Size); // Insert the bits into the struct // FIXME: This algorthm is only correct on X86! // FIXME: THis algorthm assumes bit-fields only have byte-size elements! unsigned bitsToInsert = Info.Size; unsigned curBits = std::min(8 - (FieldOffset & 7), bitsToInsert); unsigned byte = V.getLoBits(curBits).getZExtValue() << (FieldOffset & 7); do { llvm::Constant* byteC = llvm::ConstantInt::get(llvm::Type::Int8Ty, byte); Elts[i] = llvm::ConstantExpr::getOr(Elts[i], byteC); ++i; V = V.lshr(curBits); bitsToInsert -= curBits; if (!bitsToInsert) break; curBits = bitsToInsert > 8 ? 8 : bitsToInsert; byte = V.getLoBits(curBits).getZExtValue(); } while (true); } llvm::Constant *EmitStructInitialization(InitListExpr *ILE) { return ConstStructBuilder::BuildStruct(CGM, CGF, ILE); // FIXME: Remove the old struct builder once we're sure that the new one // works well enough! const llvm::StructType *SType = cast(ConvertType(ILE->getType())); RecordDecl *RD = ILE->getType()->getAs()->getDecl(); std::vector Elts; // Initialize the whole structure to zero. // FIXME: This doesn't handle member pointers correctly! for (unsigned i = 0; i < SType->getNumElements(); ++i) { const llvm::Type *FieldTy = SType->getElementType(i); Elts.push_back(llvm::Constant::getNullValue(FieldTy)); } // Copy initializer elements. Skip padding fields. unsigned EltNo = 0; // Element no in ILE bool RewriteType = false; for (RecordDecl::field_iterator Field = RD->field_begin(), FieldEnd = RD->field_end(); EltNo < ILE->getNumInits() && Field != FieldEnd; ++Field) { if (Field->isBitField()) { if (!Field->getIdentifier()) continue; InsertBitfieldIntoStruct(Elts, *Field, ILE->getInit(EltNo)); } else { unsigned FieldNo = CGM.getTypes().getLLVMFieldNo(*Field); llvm::Constant *C = CGM.EmitConstantExpr(ILE->getInit(EltNo), Field->getType(), CGF); if (!C) return 0; RewriteType |= (C->getType() != Elts[FieldNo]->getType()); Elts[FieldNo] = C; } EltNo++; } if (RewriteType) { // FIXME: Make this work for non-packed structs assert(SType->isPacked() && "Cannot recreate unpacked structs"); std::vector Types; for (unsigned i = 0; i < Elts.size(); ++i) Types.push_back(Elts[i]->getType()); SType = llvm::StructType::get(Types, true); } return llvm::ConstantStruct::get(SType, Elts); } llvm::Constant *EmitUnion(llvm::Constant *C, const llvm::Type *Ty) { if (!C) return 0; // Build a struct with the union sub-element as the first member, // and padded to the appropriate size std::vector Elts; std::vector Types; Elts.push_back(C); Types.push_back(C->getType()); unsigned CurSize = CGM.getTargetData().getTypeAllocSize(C->getType()); unsigned TotalSize = CGM.getTargetData().getTypeAllocSize(Ty); assert(CurSize <= TotalSize && "Union size mismatch!"); if (unsigned NumPadBytes = TotalSize - CurSize) { const llvm::Type *Ty = llvm::Type::Int8Ty; if (NumPadBytes > 1) Ty = llvm::ArrayType::get(Ty, NumPadBytes); Elts.push_back(llvm::Constant::getNullValue(Ty)); Types.push_back(Ty); } llvm::StructType* STy = llvm::StructType::get(Types, false); return llvm::ConstantStruct::get(STy, Elts); } llvm::Constant *EmitUnionInitialization(InitListExpr *ILE) { return ConstStructBuilder::BuildStruct(CGM, CGF, ILE); const llvm::Type *Ty = ConvertType(ILE->getType()); FieldDecl* curField = ILE->getInitializedFieldInUnion(); if (!curField) { // There's no field to initialize, so value-initialize the union. #ifndef NDEBUG // Make sure that it's really an empty and not a failure of // semantic analysis. RecordDecl *RD = ILE->getType()->getAs()->getDecl(); for (RecordDecl::field_iterator Field = RD->field_begin(), FieldEnd = RD->field_end(); Field != FieldEnd; ++Field) assert(Field->isUnnamedBitfield() && "Only unnamed bitfields allowed"); #endif return llvm::Constant::getNullValue(Ty); } if (curField->isBitField()) { // Create a dummy struct for bit-field insertion unsigned NumElts = CGM.getTargetData().getTypeAllocSize(Ty); llvm::Constant* NV = llvm::Constant::getNullValue(llvm::Type::Int8Ty); std::vector Elts(NumElts, NV); InsertBitfieldIntoStruct(Elts, curField, ILE->getInit(0)); const llvm::ArrayType *RetTy = llvm::ArrayType::get(NV->getType(), NumElts); return llvm::ConstantArray::get(RetTy, Elts); } llvm::Constant *InitElem; if (ILE->getNumInits() > 0) { Expr *Init = ILE->getInit(0); InitElem = CGM.EmitConstantExpr(Init, Init->getType(), CGF); } else { InitElem = CGM.EmitNullConstant(curField->getType()); } return EmitUnion(InitElem, Ty); } llvm::Constant *EmitVectorInitialization(InitListExpr *ILE) { const llvm::VectorType *VType = cast(ConvertType(ILE->getType())); const llvm::Type *ElemTy = VType->getElementType(); std::vector Elts; unsigned NumElements = VType->getNumElements(); unsigned NumInitElements = ILE->getNumInits(); unsigned NumInitableElts = std::min(NumInitElements, NumElements); // Copy initializer elements. unsigned i = 0; for (; i < NumInitableElts; ++i) { Expr *Init = ILE->getInit(i); llvm::Constant *C = CGM.EmitConstantExpr(Init, Init->getType(), CGF); if (!C) return 0; Elts.push_back(C); } for (; i < NumElements; ++i) Elts.push_back(llvm::Constant::getNullValue(ElemTy)); return llvm::ConstantVector::get(VType, Elts); } llvm::Constant *VisitImplicitValueInitExpr(ImplicitValueInitExpr* E) { return CGM.EmitNullConstant(E->getType()); } llvm::Constant *VisitInitListExpr(InitListExpr *ILE) { if (ILE->getType()->isScalarType()) { // We have a scalar in braces. Just use the first element. if (ILE->getNumInits() > 0) { Expr *Init = ILE->getInit(0); return CGM.EmitConstantExpr(Init, Init->getType(), CGF); } return CGM.EmitNullConstant(ILE->getType()); } if (ILE->getType()->isArrayType()) return EmitArrayInitialization(ILE); if (ILE->getType()->isStructureType()) return EmitStructInitialization(ILE); if (ILE->getType()->isUnionType()) return EmitUnionInitialization(ILE); if (ILE->getType()->isVectorType()) return EmitVectorInitialization(ILE); assert(0 && "Unable to handle InitListExpr"); // Get rid of control reaches end of void function warning. // Not reached. return 0; } llvm::Constant *VisitStringLiteral(StringLiteral *E) { assert(!E->getType()->isPointerType() && "Strings are always arrays"); // This must be a string initializing an array in a static initializer. // Don't emit it as the address of the string, emit the string data itself // as an inline array. return llvm::ConstantArray::get(CGM.GetStringForStringLiteral(E), false); } llvm::Constant *VisitObjCEncodeExpr(ObjCEncodeExpr *E) { // This must be an @encode initializing an array in a static initializer. // Don't emit it as the address of the string, emit the string data itself // as an inline array. std::string Str; CGM.getContext().getObjCEncodingForType(E->getEncodedType(), Str); const ConstantArrayType *CAT = cast(E->getType()); // Resize the string to the right size, adding zeros at the end, or // truncating as needed. Str.resize(CAT->getSize().getZExtValue(), '\0'); return llvm::ConstantArray::get(Str, false); } llvm::Constant *VisitUnaryExtension(const UnaryOperator *E) { return Visit(E->getSubExpr()); } // Utility methods const llvm::Type *ConvertType(QualType T) { return CGM.getTypes().ConvertType(T); } public: llvm::Constant *EmitLValue(Expr *E) { switch (E->getStmtClass()) { default: break; case Expr::CompoundLiteralExprClass: { // Note that due to the nature of compound literals, this is guaranteed // to be the only use of the variable, so we just generate it here. CompoundLiteralExpr *CLE = cast(E); llvm::Constant* C = Visit(CLE->getInitializer()); // FIXME: "Leaked" on failure. if (C) C = new llvm::GlobalVariable(CGM.getModule(), C->getType(), E->getType().isConstQualified(), llvm::GlobalValue::InternalLinkage, C, ".compoundliteral"); return C; } case Expr::DeclRefExprClass: case Expr::QualifiedDeclRefExprClass: { NamedDecl *Decl = cast(E)->getDecl(); if (const FunctionDecl *FD = dyn_cast(Decl)) return CGM.GetAddrOfFunction(GlobalDecl(FD)); if (const VarDecl* VD = dyn_cast(Decl)) { // We can never refer to a variable with local storage. if (!VD->hasLocalStorage()) { if (VD->isFileVarDecl() || VD->hasExternalStorage()) return CGM.GetAddrOfGlobalVar(VD); else if (VD->isBlockVarDecl()) { assert(CGF && "Can't access static local vars without CGF"); return CGF->GetAddrOfStaticLocalVar(VD); } } } break; } case Expr::StringLiteralClass: return CGM.GetAddrOfConstantStringFromLiteral(cast(E)); case Expr::ObjCEncodeExprClass: return CGM.GetAddrOfConstantStringFromObjCEncode(cast(E)); case Expr::ObjCStringLiteralClass: { ObjCStringLiteral* SL = cast(E); llvm::Constant *C = CGM.getObjCRuntime().GenerateConstantString(SL); return llvm::ConstantExpr::getBitCast(C, ConvertType(E->getType())); } case Expr::PredefinedExprClass: { // __func__/__FUNCTION__ -> "". __PRETTY_FUNCTION__ -> "top level". std::string Str; if (cast(E)->getIdentType() == PredefinedExpr::PrettyFunction) Str = "top level"; return CGM.GetAddrOfConstantCString(Str, ".tmp"); } case Expr::AddrLabelExprClass: { assert(CGF && "Invalid address of label expression outside function."); unsigned id = CGF->GetIDForAddrOfLabel(cast(E)->getLabel()); llvm::Constant *C = llvm::ConstantInt::get(llvm::Type::Int32Ty, id); return llvm::ConstantExpr::getIntToPtr(C, ConvertType(E->getType())); } case Expr::CallExprClass: { CallExpr* CE = cast(E); if (CE->isBuiltinCall(CGM.getContext()) != Builtin::BI__builtin___CFStringMakeConstantString) break; const Expr *Arg = CE->getArg(0)->IgnoreParenCasts(); const StringLiteral *Literal = cast(Arg); // FIXME: need to deal with UCN conversion issues. return CGM.GetAddrOfConstantCFString(Literal); } case Expr::BlockExprClass: { std::string FunctionName; if (CGF) FunctionName = CGF->CurFn->getName(); else FunctionName = "global"; return CGM.GetAddrOfGlobalBlock(cast(E), FunctionName.c_str()); } } return 0; } }; } // end anonymous namespace. llvm::Constant *CodeGenModule::EmitConstantExpr(const Expr *E, QualType DestType, CodeGenFunction *CGF) { Expr::EvalResult Result; bool Success = false; if (DestType->isReferenceType()) Success = E->EvaluateAsLValue(Result, Context); else Success = E->Evaluate(Result, Context); if (Success) { assert(!Result.HasSideEffects && "Constant expr should not have any side effects!"); switch (Result.Val.getKind()) { case APValue::Uninitialized: assert(0 && "Constant expressions should be initialized."); return 0; case APValue::LValue: { const llvm::Type *DestTy = getTypes().ConvertTypeForMem(DestType); llvm::Constant *Offset = llvm::ConstantInt::get(llvm::Type::Int64Ty, Result.Val.getLValueOffset()); llvm::Constant *C; if (const Expr *LVBase = Result.Val.getLValueBase()) { C = ConstExprEmitter(*this, CGF).EmitLValue(const_cast(LVBase)); // Apply offset if necessary. if (!Offset->isNullValue()) { const llvm::Type *Type = llvm::PointerType::getUnqual(llvm::Type::Int8Ty); llvm::Constant *Casted = llvm::ConstantExpr::getBitCast(C, Type); Casted = llvm::ConstantExpr::getGetElementPtr(Casted, &Offset, 1); C = llvm::ConstantExpr::getBitCast(Casted, C->getType()); } // Convert to the appropriate type; this could be an lvalue for // an integer. if (isa(DestTy)) return llvm::ConstantExpr::getBitCast(C, DestTy); return llvm::ConstantExpr::getPtrToInt(C, DestTy); } else { C = Offset; // Convert to the appropriate type; this could be an lvalue for // an integer. if (isa(DestTy)) return llvm::ConstantExpr::getIntToPtr(C, DestTy); // If the types don't match this should only be a truncate. if (C->getType() != DestTy) return llvm::ConstantExpr::getTrunc(C, DestTy); return C; } } case APValue::Int: { llvm::Constant *C = llvm::ConstantInt::get(VMContext, Result.Val.getInt()); if (C->getType() == llvm::Type::Int1Ty) { const llvm::Type *BoolTy = getTypes().ConvertTypeForMem(E->getType()); C = llvm::ConstantExpr::getZExt(C, BoolTy); } return C; } case APValue::ComplexInt: { llvm::Constant *Complex[2]; Complex[0] = llvm::ConstantInt::get(VMContext, Result.Val.getComplexIntReal()); Complex[1] = llvm::ConstantInt::get(VMContext, Result.Val.getComplexIntImag()); return llvm::ConstantStruct::get(Complex, 2); } case APValue::Float: return llvm::ConstantFP::get(VMContext, Result.Val.getFloat()); case APValue::ComplexFloat: { llvm::Constant *Complex[2]; Complex[0] = llvm::ConstantFP::get(VMContext, Result.Val.getComplexFloatReal()); Complex[1] = llvm::ConstantFP::get(VMContext, Result.Val.getComplexFloatImag()); return llvm::ConstantStruct::get(Complex, 2); } case APValue::Vector: { llvm::SmallVector Inits; unsigned NumElts = Result.Val.getVectorLength(); for (unsigned i = 0; i != NumElts; ++i) { APValue &Elt = Result.Val.getVectorElt(i); if (Elt.isInt()) Inits.push_back(llvm::ConstantInt::get(VMContext, Elt.getInt())); else Inits.push_back(llvm::ConstantFP::get(VMContext, Elt.getFloat())); } return llvm::ConstantVector::get(&Inits[0], Inits.size()); } } } llvm::Constant* C = ConstExprEmitter(*this, CGF).Visit(const_cast(E)); if (C && C->getType() == llvm::Type::Int1Ty) { const llvm::Type *BoolTy = getTypes().ConvertTypeForMem(E->getType()); C = llvm::ConstantExpr::getZExt(C, BoolTy); } return C; } llvm::Constant *CodeGenModule::EmitNullConstant(QualType T) { // Always return an LLVM null constant for now; this will change when we // get support for IRGen of member pointers. return llvm::Constant::getNullValue(getTypes().ConvertType(T)); }