//===- IslAst.cpp - isl code generator interface --------------------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // The isl code generator interface takes a Scop and generates a isl_ast. This // ist_ast can either be returned directly or it can be pretty printed to // stdout. // // A typical isl_ast output looks like this: // // for (c2 = max(0, ceild(n + m, 2); c2 <= min(511, floord(5 * n, 3)); c2++) { // bb2(c2); // } // //===----------------------------------------------------------------------===// #include "polly/CodeGen/CodeGeneration.h" #include "polly/CodeGen/IslAst.h" #include "polly/Dependences.h" #include "polly/LinkAllPasses.h" #include "polly/Options.h" #include "polly/ScopInfo.h" #include "polly/Support/GICHelper.h" #include "llvm/Support/Debug.h" #include "isl/union_map.h" #include "isl/list.h" #include "isl/ast_build.h" #include "isl/set.h" #include "isl/map.h" #include "isl/aff.h" #define DEBUG_TYPE "polly-ast" using namespace llvm; using namespace polly; using IslAstUserPayload = IslAstInfo::IslAstUserPayload; static cl::opt PollyParallel("polly-parallel", cl::desc("Generate thread parallel code (isl codegen only)"), cl::init(false), cl::ZeroOrMore, cl::cat(PollyCategory)); static cl::opt UseContext("polly-ast-use-context", cl::desc("Use context"), cl::Hidden, cl::init(false), cl::ZeroOrMore, cl::cat(PollyCategory)); static cl::opt DetectParallel("polly-ast-detect-parallel", cl::desc("Detect parallelism"), cl::Hidden, cl::init(false), cl::ZeroOrMore, cl::cat(PollyCategory)); namespace polly { class IslAst { public: IslAst(Scop *Scop, Dependences &D); ~IslAst(); /// Print a source code representation of the program. void pprint(llvm::raw_ostream &OS); __isl_give isl_ast_node *getAst(); /// @brief Get the run-time conditions for the Scop. __isl_give isl_ast_expr *getRunCondition(); private: Scop *S; isl_ast_node *Root; isl_ast_expr *RunCondition; void buildRunCondition(__isl_keep isl_ast_build *Build); }; } // End namespace polly. /// @brief Free an IslAstUserPayload object pointed to by @p Ptr static void freeIslAstUserPayload(void *Ptr) { delete ((IslAstInfo::IslAstUserPayload *)Ptr); } IslAstInfo::IslAstUserPayload::~IslAstUserPayload() { isl_ast_build_free(Build); isl_pw_aff_free(MinimalDependenceDistance); } /// @brief Temporary information used when building the ast. struct AstBuildUserInfo { /// @brief Construct and initialize the helper struct for AST creation. AstBuildUserInfo() : Deps(nullptr), InParallelFor(false), LastForNodeId(nullptr) {} /// @brief The dependence information used for the parallelism check. Dependences *Deps; /// @brief Flag to indicate that we are inside a parallel for node. bool InParallelFor; /// @brief The last iterator id created for the current SCoP. isl_id *LastForNodeId; }; /// @brief Print a string @p str in a single line using @p Printer. static isl_printer *printLine(__isl_take isl_printer *Printer, const std::string &str, __isl_keep isl_pw_aff *PWA = nullptr) { Printer = isl_printer_start_line(Printer); Printer = isl_printer_print_str(Printer, str.c_str()); if (PWA) Printer = isl_printer_print_pw_aff(Printer, PWA); return isl_printer_end_line(Printer); } /// @brief Return all broken reductions as a string of clauses (OpenMP style). static const std::string getBrokenReductionsStr(__isl_keep isl_ast_node *Node) { IslAstInfo::MemoryAccessSet *BrokenReductions; std::string str; BrokenReductions = IslAstInfo::getBrokenReductions(Node); if (!BrokenReductions || BrokenReductions->empty()) return ""; // Map each type of reduction to a comma separated list of the base addresses. std::map Clauses; for (MemoryAccess *MA : *BrokenReductions) if (MA->isWrite()) Clauses[MA->getReductionType()] += ", " + MA->getBaseAddr()->getName().str(); // Now print the reductions sorted by type. Each type will cause a clause // like: reduction (+ : sum0, sum1, sum2) for (const auto &ReductionClause : Clauses) { str += " reduction ("; str += MemoryAccess::getReductionOperatorStr(ReductionClause.first); // Remove the first two symbols (", ") to make the output look pretty. str += " : " + ReductionClause.second.substr(2) + ")"; } return str; } /// @brief Callback executed for each for node in the ast in order to print it. static isl_printer *cbPrintFor(__isl_take isl_printer *Printer, __isl_take isl_ast_print_options *Options, __isl_keep isl_ast_node *Node, void *) { isl_pw_aff *DD = IslAstInfo::getMinimalDependenceDistance(Node); const std::string BrokenReductionsStr = getBrokenReductionsStr(Node); const std::string KnownParallelStr = "#pragma known-parallel"; const std::string DepDisPragmaStr = "#pragma minimal dependence distance: "; const std::string SimdPragmaStr = "#pragma simd"; const std::string OmpPragmaStr = "#pragma omp parallel for"; if (DD) Printer = printLine(Printer, DepDisPragmaStr, DD); if (IslAstInfo::isInnermostParallel(Node)) Printer = printLine(Printer, SimdPragmaStr + BrokenReductionsStr); if (IslAstInfo::isExecutedInParallel(Node)) Printer = printLine(Printer, OmpPragmaStr); else if (IslAstInfo::isOutermostParallel(Node)) Printer = printLine(Printer, KnownParallelStr + BrokenReductionsStr); isl_pw_aff_free(DD); return isl_ast_node_for_print(Node, Printer, Options); } /// @brief Check if the current scheduling dimension is parallel /// /// In case the dimension is parallel we also check if any reduction /// dependences is broken when we exploit this parallelism. If so, /// @p IsReductionParallel will be set to true. The reduction dependences we use /// to check are actually the union of the transitive closure of the initial /// reduction dependences together with their reveresal. Even though these /// dependences connect all iterations with each other (thus they are cyclic) /// we can perform the parallelism check as we are only interested in a zero /// (or non-zero) dependence distance on the dimension in question. static bool astScheduleDimIsParallel(__isl_keep isl_ast_build *Build, Dependences *D, IslAstUserPayload *NodeInfo) { if (!D->hasValidDependences()) return false; isl_union_map *Schedule = isl_ast_build_get_schedule(Build); isl_union_map *Deps = D->getDependences( Dependences::TYPE_RAW | Dependences::TYPE_WAW | Dependences::TYPE_WAR); if (!D->isParallel(Schedule, Deps, &NodeInfo->MinimalDependenceDistance) && !isl_union_map_free(Schedule)) return false; isl_union_map *RedDeps = D->getDependences(Dependences::TYPE_TC_RED); if (!D->isParallel(Schedule, RedDeps)) NodeInfo->IsReductionParallel = true; if (!NodeInfo->IsReductionParallel && !isl_union_map_free(Schedule)) return true; // Annotate reduction parallel nodes with the memory accesses which caused the // reduction dependences parallel execution of the node conflicts with. for (const auto &MaRedPair : D->getReductionDependences()) { if (!MaRedPair.second) continue; RedDeps = isl_union_map_from_map(isl_map_copy(MaRedPair.second)); if (!D->isParallel(Schedule, RedDeps)) NodeInfo->BrokenReductions.insert(MaRedPair.first); } isl_union_map_free(Schedule); return true; } // This method is executed before the construction of a for node. It creates // an isl_id that is used to annotate the subsequently generated ast for nodes. // // In this function we also run the following analyses: // // - Detection of openmp parallel loops // static __isl_give isl_id *astBuildBeforeFor(__isl_keep isl_ast_build *Build, void *User) { AstBuildUserInfo *BuildInfo = (AstBuildUserInfo *)User; IslAstUserPayload *Payload = new IslAstUserPayload(); isl_id *Id = isl_id_alloc(isl_ast_build_get_ctx(Build), "", Payload); Id = isl_id_set_free_user(Id, freeIslAstUserPayload); BuildInfo->LastForNodeId = Id; // Test for parallelism only if we are not already inside a parallel loop if (!BuildInfo->InParallelFor) BuildInfo->InParallelFor = Payload->IsOutermostParallel = astScheduleDimIsParallel(Build, BuildInfo->Deps, Payload); return Id; } // This method is executed after the construction of a for node. // // It performs the following actions: // // - Reset the 'InParallelFor' flag, as soon as we leave a for node, // that is marked as openmp parallel. // static __isl_give isl_ast_node * astBuildAfterFor(__isl_take isl_ast_node *Node, __isl_keep isl_ast_build *Build, void *User) { isl_id *Id = isl_ast_node_get_annotation(Node); assert(Id && "Post order visit assumes annotated for nodes"); IslAstUserPayload *Payload = (IslAstUserPayload *)isl_id_get_user(Id); assert(Payload && "Post order visit assumes annotated for nodes"); AstBuildUserInfo *BuildInfo = (AstBuildUserInfo *)User; assert(!Payload->Build && "Build environment already set"); Payload->Build = isl_ast_build_copy(Build); Payload->IsInnermost = (Id == BuildInfo->LastForNodeId); // Innermost loops that are surrounded by parallel loops have not yet been // tested for parallelism. Test them here to ensure we check all innermost // loops for parallelism. if (Payload->IsInnermost && BuildInfo->InParallelFor) { if (Payload->IsOutermostParallel) Payload->IsInnermostParallel = true; else Payload->IsInnermostParallel = astScheduleDimIsParallel(Build, BuildInfo->Deps, Payload); } if (Payload->IsOutermostParallel) BuildInfo->InParallelFor = false; isl_id_free(Id); return Node; } static __isl_give isl_ast_node *AtEachDomain(__isl_take isl_ast_node *Node, __isl_keep isl_ast_build *Build, void *User) { assert(!isl_ast_node_get_annotation(Node) && "Node already annotated"); IslAstUserPayload *Payload = new IslAstUserPayload(); isl_id *Id = isl_id_alloc(isl_ast_build_get_ctx(Build), "", Payload); Id = isl_id_set_free_user(Id, freeIslAstUserPayload); Payload->Build = isl_ast_build_copy(Build); return isl_ast_node_set_annotation(Node, Id); } void IslAst::buildRunCondition(__isl_keep isl_ast_build *Build) { // The conditions that need to be checked at run-time for this scop are // available as an isl_set in the AssumedContext. We generate code for this // check as follows. First, we generate an isl_pw_aff that is 1, if a certain // combination of parameter values fulfills the conditions in the assumed // context, and that is 0 otherwise. We then translate this isl_pw_aff into // an isl_ast_expr. At run-time this expression can be evaluated and the // optimized scop can be executed conditionally according to the result of the // run-time check. isl_aff *Zero = isl_aff_zero_on_domain(isl_local_space_from_space(S->getParamSpace())); isl_aff *One = isl_aff_zero_on_domain(isl_local_space_from_space(S->getParamSpace())); One = isl_aff_add_constant_si(One, 1); isl_pw_aff *PwZero = isl_pw_aff_from_aff(Zero); isl_pw_aff *PwOne = isl_pw_aff_from_aff(One); PwOne = isl_pw_aff_intersect_domain(PwOne, S->getAssumedContext()); PwZero = isl_pw_aff_intersect_domain( PwZero, isl_set_complement(S->getAssumedContext())); isl_pw_aff *Cond = isl_pw_aff_union_max(PwOne, PwZero); RunCondition = isl_ast_build_expr_from_pw_aff(Build, Cond); // Create the alias checks from the minimal/maximal accesses in each alias // group. This operation is by construction quadratic in the number of // elements in each alias group. isl_ast_expr *NonAliasGroup, *MinExpr, *MaxExpr; for (const Scop::MinMaxVectorTy *MinMaxAccesses : S->getAliasGroups()) { auto AccEnd = MinMaxAccesses->end(); for (auto AccIt0 = MinMaxAccesses->begin(); AccIt0 != AccEnd; ++AccIt0) { for (auto AccIt1 = AccIt0 + 1; AccIt1 != AccEnd; ++AccIt1) { MinExpr = isl_ast_expr_address_of(isl_ast_build_access_from_pw_multi_aff( Build, isl_pw_multi_aff_copy(AccIt0->first))); MaxExpr = isl_ast_expr_address_of(isl_ast_build_access_from_pw_multi_aff( Build, isl_pw_multi_aff_copy(AccIt1->second))); NonAliasGroup = isl_ast_expr_le(MaxExpr, MinExpr); MinExpr = isl_ast_expr_address_of(isl_ast_build_access_from_pw_multi_aff( Build, isl_pw_multi_aff_copy(AccIt1->first))); MaxExpr = isl_ast_expr_address_of(isl_ast_build_access_from_pw_multi_aff( Build, isl_pw_multi_aff_copy(AccIt0->second))); NonAliasGroup = isl_ast_expr_or(NonAliasGroup, isl_ast_expr_le(MaxExpr, MinExpr)); RunCondition = isl_ast_expr_and(RunCondition, NonAliasGroup); } } } } IslAst::IslAst(Scop *Scop, Dependences &D) : S(Scop) { isl_ctx *Ctx = S->getIslCtx(); isl_options_set_ast_build_atomic_upper_bound(Ctx, true); isl_ast_build *Build; AstBuildUserInfo BuildInfo; if (UseContext) Build = isl_ast_build_from_context(S->getContext()); else Build = isl_ast_build_from_context(isl_set_universe(S->getParamSpace())); Build = isl_ast_build_set_at_each_domain(Build, AtEachDomain, nullptr); isl_union_map *Schedule = isl_union_map_intersect_domain(S->getSchedule(), S->getDomains()); if (PollyParallel || DetectParallel || PollyVectorizerChoice != VECTORIZER_NONE) { BuildInfo.Deps = &D; BuildInfo.InParallelFor = 0; Build = isl_ast_build_set_before_each_for(Build, &astBuildBeforeFor, &BuildInfo); Build = isl_ast_build_set_after_each_for(Build, &astBuildAfterFor, &BuildInfo); } buildRunCondition(Build); Root = isl_ast_build_ast_from_schedule(Build, Schedule); isl_ast_build_free(Build); } IslAst::~IslAst() { isl_ast_node_free(Root); isl_ast_expr_free(RunCondition); } __isl_give isl_ast_node *IslAst::getAst() { return isl_ast_node_copy(Root); } __isl_give isl_ast_expr *IslAst::getRunCondition() { return isl_ast_expr_copy(RunCondition); } void IslAstInfo::releaseMemory() { if (Ast) { delete Ast; Ast = nullptr; } } bool IslAstInfo::runOnScop(Scop &Scop) { if (Ast) delete Ast; S = &Scop; Dependences &D = getAnalysis(); Ast = new IslAst(&Scop, D); DEBUG(printScop(dbgs())); return false; } __isl_give isl_ast_node *IslAstInfo::getAst() const { return Ast->getAst(); } __isl_give isl_ast_expr *IslAstInfo::getRunCondition() const { return Ast->getRunCondition(); } IslAstUserPayload *IslAstInfo::getNodePayload(__isl_keep isl_ast_node *Node) { isl_id *Id = isl_ast_node_get_annotation(Node); if (!Id) return nullptr; IslAstUserPayload *Payload = (IslAstUserPayload *)isl_id_get_user(Id); isl_id_free(Id); return Payload; } bool IslAstInfo::isInnermost(__isl_keep isl_ast_node *Node) { IslAstUserPayload *Payload = getNodePayload(Node); return Payload && Payload->IsInnermost; } bool IslAstInfo::isParallel(__isl_keep isl_ast_node *Node) { return IslAstInfo::isInnermostParallel(Node) || IslAstInfo::isOutermostParallel(Node); } bool IslAstInfo::isInnermostParallel(__isl_keep isl_ast_node *Node) { IslAstUserPayload *Payload = getNodePayload(Node); return Payload && Payload->IsInnermostParallel; } bool IslAstInfo::isOutermostParallel(__isl_keep isl_ast_node *Node) { IslAstUserPayload *Payload = getNodePayload(Node); return Payload && Payload->IsOutermostParallel; } bool IslAstInfo::isReductionParallel(__isl_keep isl_ast_node *Node) { IslAstUserPayload *Payload = getNodePayload(Node); return Payload && Payload->IsReductionParallel; } bool IslAstInfo::isExecutedInParallel(__isl_keep isl_ast_node *Node) { return PollyParallel && isOutermostParallel(Node) && !isReductionParallel(Node); } isl_union_map *IslAstInfo::getSchedule(__isl_keep isl_ast_node *Node) { IslAstUserPayload *Payload = getNodePayload(Node); return Payload ? isl_ast_build_get_schedule(Payload->Build) : nullptr; } isl_pw_aff * IslAstInfo::getMinimalDependenceDistance(__isl_keep isl_ast_node *Node) { IslAstUserPayload *Payload = getNodePayload(Node); return Payload ? isl_pw_aff_copy(Payload->MinimalDependenceDistance) : nullptr; } IslAstInfo::MemoryAccessSet * IslAstInfo::getBrokenReductions(__isl_keep isl_ast_node *Node) { IslAstUserPayload *Payload = getNodePayload(Node); return Payload ? &Payload->BrokenReductions : nullptr; } isl_ast_build *IslAstInfo::getBuild(__isl_keep isl_ast_node *Node) { IslAstUserPayload *Payload = getNodePayload(Node); return Payload ? Payload->Build : nullptr; } void IslAstInfo::printScop(raw_ostream &OS) const { isl_ast_print_options *Options; isl_ast_node *RootNode = getAst(); isl_ast_expr *RunCondition = getRunCondition(); char *RtCStr, *AstStr; Scop &S = getCurScop(); Options = isl_ast_print_options_alloc(S.getIslCtx()); Options = isl_ast_print_options_set_print_for(Options, cbPrintFor, nullptr); isl_printer *P = isl_printer_to_str(S.getIslCtx()); P = isl_printer_print_ast_expr(P, RunCondition); RtCStr = isl_printer_get_str(P); P = isl_printer_flush(P); P = isl_printer_indent(P, 4); P = isl_printer_set_output_format(P, ISL_FORMAT_C); P = isl_ast_node_print(RootNode, P, Options); AstStr = isl_printer_get_str(P); Function *F = S.getRegion().getEntry()->getParent(); isl_union_map *Schedule = isl_union_map_intersect_domain(S.getSchedule(), S.getDomains()); OS << ":: isl ast :: " << F->getName() << " :: " << S.getRegion().getNameStr() << "\n"; DEBUG({ dbgs() << S.getContextStr() << "\n"; dbgs() << stringFromIslObj(Schedule); }); OS << "\nif (" << RtCStr << ")\n\n"; OS << AstStr << "\n"; OS << "else\n"; OS << " { /* original code */ }\n\n"; isl_ast_expr_free(RunCondition); isl_union_map_free(Schedule); isl_ast_node_free(RootNode); isl_printer_free(P); } void IslAstInfo::getAnalysisUsage(AnalysisUsage &AU) const { // Get the Common analysis usage of ScopPasses. ScopPass::getAnalysisUsage(AU); AU.addRequired(); AU.addRequired(); } char IslAstInfo::ID = 0; Pass *polly::createIslAstInfoPass() { return new IslAstInfo(); } INITIALIZE_PASS_BEGIN(IslAstInfo, "polly-ast", "Polly - Generate an AST of the SCoP (isl)", false, false); INITIALIZE_PASS_DEPENDENCY(ScopInfo); INITIALIZE_PASS_DEPENDENCY(Dependences); INITIALIZE_PASS_END(IslAstInfo, "polly-ast", "Polly - Generate an AST from the SCoP (isl)", false, false)