//===--- Preprocess.cpp - C Language Family Preprocessor Implementation ---===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file implements the Preprocessor interface. // //===----------------------------------------------------------------------===// // // Options to support: // -H - Print the name of each header file used. // -d[MDNI] - Dump various things. // -fworking-directory - #line's with preprocessor's working dir. // -fpreprocessed // -dependency-file,-M,-MM,-MF,-MG,-MP,-MT,-MQ,-MD,-MMD // -W* // -w // // Messages to emit: // "Multiple include guards may be useful for:\n" // //===----------------------------------------------------------------------===// #include "clang/Lex/Preprocessor.h" #include "clang/Lex/HeaderSearch.h" #include "clang/Lex/MacroInfo.h" #include "clang/Lex/Pragma.h" #include "clang/Lex/ScratchBuffer.h" #include "clang/Basic/Diagnostic.h" #include "clang/Basic/SourceManager.h" #include "clang/Basic/TargetInfo.h" #include "llvm/ADT/APFloat.h" #include "llvm/ADT/SmallVector.h" #include "llvm/Support/MemoryBuffer.h" #include "llvm/Support/Streams.h" using namespace clang; //===----------------------------------------------------------------------===// PreprocessorFactory::~PreprocessorFactory() {} Preprocessor::Preprocessor(Diagnostic &diags, const LangOptions &opts, TargetInfo &target, SourceManager &SM, HeaderSearch &Headers, IdentifierInfoLookup* IILookup) : Diags(diags), Features(opts), Target(target), FileMgr(Headers.getFileMgr()), SourceMgr(SM), HeaderInfo(Headers), Identifiers(opts, IILookup), CurPPLexer(0), CurDirLookup(0), Callbacks(0) { ScratchBuf = new ScratchBuffer(SourceMgr); // Clear stats. NumDirectives = NumDefined = NumUndefined = NumPragma = 0; NumIf = NumElse = NumEndif = 0; NumEnteredSourceFiles = 0; NumMacroExpanded = NumFnMacroExpanded = NumBuiltinMacroExpanded = 0; NumFastMacroExpanded = NumTokenPaste = NumFastTokenPaste = 0; MaxIncludeStackDepth = 0; NumSkipped = 0; // Default to discarding comments. KeepComments = false; KeepMacroComments = false; // Macro expansion is enabled. DisableMacroExpansion = false; InMacroArgs = false; NumCachedTokenLexers = 0; CachedLexPos = 0; // "Poison" __VA_ARGS__, which can only appear in the expansion of a macro. // This gets unpoisoned where it is allowed. (Ident__VA_ARGS__ = getIdentifierInfo("__VA_ARGS__"))->setIsPoisoned(); // Initialize the pragma handlers. PragmaHandlers = new PragmaNamespace(0); RegisterBuiltinPragmas(); // Initialize builtin macros like __LINE__ and friends. RegisterBuiltinMacros(); } Preprocessor::~Preprocessor() { assert(BacktrackPositions.empty() && "EnableBacktrack/Backtrack imbalance!"); while (!IncludeMacroStack.empty()) { delete IncludeMacroStack.back().TheLexer; delete IncludeMacroStack.back().TheTokenLexer; IncludeMacroStack.pop_back(); } // Free any macro definitions. for (llvm::DenseMap::iterator I = Macros.begin(), E = Macros.end(); I != E; ++I) { // We don't need to free the MacroInfo objects directly. These // will be released when the BumpPtrAllocator 'BP' object gets // destroyed. We still need to run the dstor, however, to free // memory alocated by MacroInfo. I->second->~MacroInfo(); I->first->setHasMacroDefinition(false); } // Free any cached macro expanders. for (unsigned i = 0, e = NumCachedTokenLexers; i != e; ++i) delete TokenLexerCache[i]; // Release pragma information. delete PragmaHandlers; // Delete the scratch buffer info. delete ScratchBuf; delete Callbacks; } void Preprocessor::DumpToken(const Token &Tok, bool DumpFlags) const { llvm::cerr << tok::getTokenName(Tok.getKind()) << " '" << getSpelling(Tok) << "'"; if (!DumpFlags) return; llvm::cerr << "\t"; if (Tok.isAtStartOfLine()) llvm::cerr << " [StartOfLine]"; if (Tok.hasLeadingSpace()) llvm::cerr << " [LeadingSpace]"; if (Tok.isExpandDisabled()) llvm::cerr << " [ExpandDisabled]"; if (Tok.needsCleaning()) { const char *Start = SourceMgr.getCharacterData(Tok.getLocation()); llvm::cerr << " [UnClean='" << std::string(Start, Start+Tok.getLength()) << "']"; } llvm::cerr << "\tLoc=<"; DumpLocation(Tok.getLocation()); llvm::cerr << ">"; } void Preprocessor::DumpLocation(SourceLocation Loc) const { SourceLocation LogLoc = SourceMgr.getInstantiationLoc(Loc); llvm::cerr << SourceMgr.getSourceName(LogLoc) << ':' << SourceMgr.getLineNumber(LogLoc) << ':' << SourceMgr.getColumnNumber(LogLoc); SourceLocation SpellingLoc = SourceMgr.getSpellingLoc(Loc); if (SpellingLoc != LogLoc) { llvm::cerr << " "; } } void Preprocessor::DumpMacro(const MacroInfo &MI) const { llvm::cerr << "MACRO: "; for (unsigned i = 0, e = MI.getNumTokens(); i != e; ++i) { DumpToken(MI.getReplacementToken(i)); llvm::cerr << " "; } llvm::cerr << "\n"; } void Preprocessor::PrintStats() { llvm::cerr << "\n*** Preprocessor Stats:\n"; llvm::cerr << NumDirectives << " directives found:\n"; llvm::cerr << " " << NumDefined << " #define.\n"; llvm::cerr << " " << NumUndefined << " #undef.\n"; llvm::cerr << " #include/#include_next/#import:\n"; llvm::cerr << " " << NumEnteredSourceFiles << " source files entered.\n"; llvm::cerr << " " << MaxIncludeStackDepth << " max include stack depth\n"; llvm::cerr << " " << NumIf << " #if/#ifndef/#ifdef.\n"; llvm::cerr << " " << NumElse << " #else/#elif.\n"; llvm::cerr << " " << NumEndif << " #endif.\n"; llvm::cerr << " " << NumPragma << " #pragma.\n"; llvm::cerr << NumSkipped << " #if/#ifndef#ifdef regions skipped\n"; llvm::cerr << NumMacroExpanded << "/" << NumFnMacroExpanded << "/" << NumBuiltinMacroExpanded << " obj/fn/builtin macros expanded, " << NumFastMacroExpanded << " on the fast path.\n"; llvm::cerr << (NumFastTokenPaste+NumTokenPaste) << " token paste (##) operations performed, " << NumFastTokenPaste << " on the fast path.\n"; } //===----------------------------------------------------------------------===// // Token Spelling //===----------------------------------------------------------------------===// /// getSpelling() - Return the 'spelling' of this token. The spelling of a /// token are the characters used to represent the token in the source file /// after trigraph expansion and escaped-newline folding. In particular, this /// wants to get the true, uncanonicalized, spelling of things like digraphs /// UCNs, etc. std::string Preprocessor::getSpelling(const Token &Tok) const { assert((int)Tok.getLength() >= 0 && "Token character range is bogus!"); const char* TokStart; if (PTH) { if (unsigned Len = PTH->getSpelling(Tok.getLocation(), TokStart)) { assert(!Tok.needsCleaning()); return std::string(TokStart, TokStart+Len); } } // If this token contains nothing interesting, return it directly. TokStart = SourceMgr.getCharacterData(Tok.getLocation()); if (!Tok.needsCleaning()) return std::string(TokStart, TokStart+Tok.getLength()); std::string Result; Result.reserve(Tok.getLength()); // Otherwise, hard case, relex the characters into the string. for (const char *Ptr = TokStart, *End = TokStart+Tok.getLength(); Ptr != End; ) { unsigned CharSize; Result.push_back(Lexer::getCharAndSizeNoWarn(Ptr, CharSize, Features)); Ptr += CharSize; } assert(Result.size() != unsigned(Tok.getLength()) && "NeedsCleaning flag set on something that didn't need cleaning!"); return Result; } /// getSpelling - This method is used to get the spelling of a token into a /// preallocated buffer, instead of as an std::string. The caller is required /// to allocate enough space for the token, which is guaranteed to be at least /// Tok.getLength() bytes long. The actual length of the token is returned. /// /// Note that this method may do two possible things: it may either fill in /// the buffer specified with characters, or it may *change the input pointer* /// to point to a constant buffer with the data already in it (avoiding a /// copy). The caller is not allowed to modify the returned buffer pointer /// if an internal buffer is returned. unsigned Preprocessor::getSpelling(const Token &Tok, const char *&Buffer) const { assert((int)Tok.getLength() >= 0 && "Token character range is bogus!"); // If this token is an identifier, just return the string from the identifier // table, which is very quick. if (const IdentifierInfo *II = Tok.getIdentifierInfo()) { Buffer = II->getName(); return II->getLength(); } // If using PTH, try and get the spelling from the PTH file. if (PTH) { unsigned Len; if (CurPTHLexer) { Len = CurPTHLexer.get()->getSpelling(Tok.getLocation(), Buffer); } else { Len = PTH->getSpelling(Tok.getLocation(), Buffer); } // Did we find a spelling? If so return its length. Otherwise fall // back to the default behavior for getting the spelling by looking at // at the source code. if (Len) return Len; } // Otherwise, compute the start of the token in the input lexer buffer. const char *TokStart = SourceMgr.getCharacterData(Tok.getLocation()); // If this token contains nothing interesting, return it directly. if (!Tok.needsCleaning()) { Buffer = TokStart; return Tok.getLength(); } // Otherwise, hard case, relex the characters into the string. char *OutBuf = const_cast(Buffer); for (const char *Ptr = TokStart, *End = TokStart+Tok.getLength(); Ptr != End; ) { unsigned CharSize; *OutBuf++ = Lexer::getCharAndSizeNoWarn(Ptr, CharSize, Features); Ptr += CharSize; } assert(unsigned(OutBuf-Buffer) != Tok.getLength() && "NeedsCleaning flag set on something that didn't need cleaning!"); return OutBuf-Buffer; } /// CreateString - Plop the specified string into a scratch buffer and return a /// location for it. If specified, the source location provides a source /// location for the token. SourceLocation Preprocessor:: CreateString(const char *Buf, unsigned Len, SourceLocation SLoc) { if (SLoc.isValid()) return ScratchBuf->getToken(Buf, Len, SLoc); return ScratchBuf->getToken(Buf, Len); } /// AdvanceToTokenCharacter - Given a location that specifies the start of a /// token, return a new location that specifies a character within the token. SourceLocation Preprocessor::AdvanceToTokenCharacter(SourceLocation TokStart, unsigned CharNo) { // If they request the first char of the token, we're trivially done. If this // is a macro expansion, it doesn't make sense to point to a character within // the instantiation point (the name). We could point to the source // character, but without also pointing to instantiation info, this is // confusing. if (CharNo == 0 || TokStart.isMacroID()) return TokStart; // Figure out how many physical characters away the specified instantiation // character is. This needs to take into consideration newlines and // trigraphs. const char *TokPtr = SourceMgr.getCharacterData(TokStart); unsigned PhysOffset = 0; // The usual case is that tokens don't contain anything interesting. Skip // over the uninteresting characters. If a token only consists of simple // chars, this method is extremely fast. while (CharNo && Lexer::isObviouslySimpleCharacter(*TokPtr)) ++TokPtr, --CharNo, ++PhysOffset; // If we have a character that may be a trigraph or escaped newline, use a // lexer to parse it correctly. if (CharNo != 0) { // Skip over characters the remaining characters. for (; CharNo; --CharNo) { unsigned Size; Lexer::getCharAndSizeNoWarn(TokPtr, Size, Features); TokPtr += Size; PhysOffset += Size; } } return TokStart.getFileLocWithOffset(PhysOffset); } //===----------------------------------------------------------------------===// // Preprocessor Initialization Methods //===----------------------------------------------------------------------===// // Append a #define line to Buf for Macro. Macro should be of the form XXX, // in which case we emit "#define XXX 1" or "XXX=Y z W" in which case we emit // "#define XXX Y z W". To get a #define with no value, use "XXX=". static void DefineBuiltinMacro(std::vector &Buf, const char *Macro, const char *Command = "#define ") { Buf.insert(Buf.end(), Command, Command+strlen(Command)); if (const char *Equal = strchr(Macro, '=')) { // Turn the = into ' '. Buf.insert(Buf.end(), Macro, Equal); Buf.push_back(' '); Buf.insert(Buf.end(), Equal+1, Equal+strlen(Equal)); } else { // Push "macroname 1". Buf.insert(Buf.end(), Macro, Macro+strlen(Macro)); Buf.push_back(' '); Buf.push_back('1'); } Buf.push_back('\n'); } /// PickFP - This is used to pick a value based on the FP semantics of the /// specified FP model. template static T PickFP(const llvm::fltSemantics *Sem, T IEEESingleVal, T IEEEDoubleVal, T X87DoubleExtendedVal, T PPCDoubleDoubleVal) { if (Sem == &llvm::APFloat::IEEEsingle) return IEEESingleVal; if (Sem == &llvm::APFloat::IEEEdouble) return IEEEDoubleVal; if (Sem == &llvm::APFloat::x87DoubleExtended) return X87DoubleExtendedVal; assert(Sem == &llvm::APFloat::PPCDoubleDouble); return PPCDoubleDoubleVal; } static void DefineFloatMacros(std::vector &Buf, const char *Prefix, const llvm::fltSemantics *Sem) { const char *DenormMin, *Epsilon, *Max, *Min; DenormMin = PickFP(Sem, "1.40129846e-45F", "4.9406564584124654e-324", "3.64519953188247460253e-4951L", "4.94065645841246544176568792868221e-324L"); int Digits = PickFP(Sem, 6, 15, 18, 31); Epsilon = PickFP(Sem, "1.19209290e-7F", "2.2204460492503131e-16", "1.08420217248550443401e-19L", "4.94065645841246544176568792868221e-324L"); int HasInifinity = 1, HasQuietNaN = 1; int MantissaDigits = PickFP(Sem, 24, 53, 64, 106); int Min10Exp = PickFP(Sem, -37, -307, -4931, -291); int Max10Exp = PickFP(Sem, 38, 308, 4932, 308); int MinExp = PickFP(Sem, -125, -1021, -16381, -968); int MaxExp = PickFP(Sem, 128, 1024, 16384, 1024); Min = PickFP(Sem, "1.17549435e-38F", "2.2250738585072014e-308", "3.36210314311209350626e-4932L", "2.00416836000897277799610805135016e-292L"); Max = PickFP(Sem, "3.40282347e+38F", "1.7976931348623157e+308", "1.18973149535723176502e+4932L", "1.79769313486231580793728971405301e+308L"); char MacroBuf[60]; sprintf(MacroBuf, "__%s_DENORM_MIN__=%s", Prefix, DenormMin); DefineBuiltinMacro(Buf, MacroBuf); sprintf(MacroBuf, "__%s_DIG__=%d", Prefix, Digits); DefineBuiltinMacro(Buf, MacroBuf); sprintf(MacroBuf, "__%s_EPSILON__=%s", Prefix, Epsilon); DefineBuiltinMacro(Buf, MacroBuf); sprintf(MacroBuf, "__%s_HAS_INFINITY__=%d", Prefix, HasInifinity); DefineBuiltinMacro(Buf, MacroBuf); sprintf(MacroBuf, "__%s_HAS_QUIET_NAN__=%d", Prefix, HasQuietNaN); DefineBuiltinMacro(Buf, MacroBuf); sprintf(MacroBuf, "__%s_MANT_DIG__=%d", Prefix, MantissaDigits); DefineBuiltinMacro(Buf, MacroBuf); sprintf(MacroBuf, "__%s_MAX_10_EXP__=%d", Prefix, Max10Exp); DefineBuiltinMacro(Buf, MacroBuf); sprintf(MacroBuf, "__%s_MAX_EXP__=%d", Prefix, MaxExp); DefineBuiltinMacro(Buf, MacroBuf); sprintf(MacroBuf, "__%s_MAX__=%s", Prefix, Max); DefineBuiltinMacro(Buf, MacroBuf); sprintf(MacroBuf, "__%s_MIN_10_EXP__=(%d)", Prefix, Min10Exp); DefineBuiltinMacro(Buf, MacroBuf); sprintf(MacroBuf, "__%s_MIN_EXP__=(%d)", Prefix, MinExp); DefineBuiltinMacro(Buf, MacroBuf); sprintf(MacroBuf, "__%s_MIN__=%s", Prefix, Min); DefineBuiltinMacro(Buf, MacroBuf); } static void InitializePredefinedMacros(Preprocessor &PP, std::vector &Buf) { // Compiler version introspection macros. DefineBuiltinMacro(Buf, "__llvm__=1"); // LLVM Backend DefineBuiltinMacro(Buf, "__clang__=1"); // Clang Frontend // Currently claim to be compatible with GCC 4.2.1-5621. DefineBuiltinMacro(Buf, "__APPLE_CC__=5621"); DefineBuiltinMacro(Buf, "__GNUC_MINOR__=2"); DefineBuiltinMacro(Buf, "__GNUC_PATCHLEVEL__=1"); DefineBuiltinMacro(Buf, "__GNUC__=4"); DefineBuiltinMacro(Buf, "__GXX_ABI_VERSION=1002"); DefineBuiltinMacro(Buf, "__VERSION__=\"4.2.1 (Apple Computer, Inc. " "build 5621) (dot 3)\""); // Initialize language-specific preprocessor defines. // FIXME: Implement magic like cpp_init_builtins for things like __STDC__ // and __DATE__ etc. // These should all be defined in the preprocessor according to the // current language configuration. if (!PP.getLangOptions().Microsoft) DefineBuiltinMacro(Buf, "__STDC__=1"); if (PP.getLangOptions().AsmPreprocessor) DefineBuiltinMacro(Buf, "__ASSEMBLER__=1"); if (PP.getLangOptions().C99 && !PP.getLangOptions().CPlusPlus) DefineBuiltinMacro(Buf, "__STDC_VERSION__=199901L"); else if (0) // STDC94 ? DefineBuiltinMacro(Buf, "__STDC_VERSION__=199409L"); DefineBuiltinMacro(Buf, "__STDC_HOSTED__=1"); if (PP.getLangOptions().ObjC1) { DefineBuiltinMacro(Buf, "__OBJC__=1"); if (PP.getLangOptions().getGCMode() == LangOptions::NonGC) { DefineBuiltinMacro(Buf, "__weak="); DefineBuiltinMacro(Buf, "__strong="); } else { DefineBuiltinMacro(Buf, "__weak=__attribute__((objc_gc(weak)))"); DefineBuiltinMacro(Buf, "__strong=__attribute__((objc_gc(strong)))"); DefineBuiltinMacro(Buf, "__OBJC_GC__=1"); } if (PP.getLangOptions().NeXTRuntime) DefineBuiltinMacro(Buf, "__NEXT_RUNTIME__=1"); } // darwin_constant_cfstrings controls this. This is also dependent // on other things like the runtime I believe. This is set even for C code. DefineBuiltinMacro(Buf, "__CONSTANT_CFSTRINGS__=1"); if (PP.getLangOptions().ObjC2) DefineBuiltinMacro(Buf, "OBJC_NEW_PROPERTIES"); if (PP.getLangOptions().PascalStrings) DefineBuiltinMacro(Buf, "__PASCAL_STRINGS__"); if (PP.getLangOptions().Blocks) { DefineBuiltinMacro(Buf, "__block=__attribute__((__blocks__(byref)))"); DefineBuiltinMacro(Buf, "__BLOCKS__=1"); } if (PP.getLangOptions().CPlusPlus) { DefineBuiltinMacro(Buf, "__DEPRECATED=1"); DefineBuiltinMacro(Buf, "__EXCEPTIONS=1"); DefineBuiltinMacro(Buf, "__GNUG__=4"); DefineBuiltinMacro(Buf, "__GXX_WEAK__=1"); DefineBuiltinMacro(Buf, "__cplusplus=1"); DefineBuiltinMacro(Buf, "__private_extern__=extern"); } // Filter out some microsoft extensions when trying to parse in ms-compat // mode. if (PP.getLangOptions().Microsoft) { DefineBuiltinMacro(Buf, "_cdecl=__cdecl"); DefineBuiltinMacro(Buf, "__int8=char"); DefineBuiltinMacro(Buf, "__int16=short"); DefineBuiltinMacro(Buf, "__int32=int"); DefineBuiltinMacro(Buf, "__int64=long long"); } // Initialize target-specific preprocessor defines. const TargetInfo &TI = PP.getTargetInfo(); // Define type sizing macros based on the target properties. assert(TI.getCharWidth() == 8 && "Only support 8-bit char so far"); DefineBuiltinMacro(Buf, "__CHAR_BIT__=8"); DefineBuiltinMacro(Buf, "__SCHAR_MAX__=127"); assert(TI.getWCharWidth() == 32 && "Only support 32-bit wchar so far"); DefineBuiltinMacro(Buf, "__WCHAR_MAX__=2147483647"); DefineBuiltinMacro(Buf, "__WCHAR_TYPE__=int"); DefineBuiltinMacro(Buf, "__WINT_TYPE__=int"); assert(TI.getShortWidth() == 16 && "Only support 16-bit short so far"); DefineBuiltinMacro(Buf, "__SHRT_MAX__=32767"); if (TI.getIntWidth() == 32) DefineBuiltinMacro(Buf, "__INT_MAX__=2147483647"); else if (TI.getIntWidth() == 16) DefineBuiltinMacro(Buf, "__INT_MAX__=32767"); else assert(0 && "Unknown integer size"); if (TI.getLongLongWidth() == 64) DefineBuiltinMacro(Buf, "__LONG_LONG_MAX__=9223372036854775807LL"); else if (TI.getLongLongWidth() == 32) DefineBuiltinMacro(Buf, "__LONG_LONG_MAX__=2147483647L"); if (TI.getLongWidth() == 32) DefineBuiltinMacro(Buf, "__LONG_MAX__=2147483647L"); else if (TI.getLongWidth() == 64) DefineBuiltinMacro(Buf, "__LONG_MAX__=9223372036854775807L"); else if (TI.getLongWidth() == 16) DefineBuiltinMacro(Buf, "__LONG_MAX__=32767L"); else assert(0 && "Unknown long size"); char MacroBuf[60]; sprintf(MacroBuf, "__INTMAX_MAX__=%lld", (TI.getIntMaxType() == TargetInfo::UnsignedLongLong? (1LL << (TI.getLongLongWidth() - 1)) : ((1LL << (TI.getLongLongWidth() - 2)) - 1))); DefineBuiltinMacro(Buf, MacroBuf); if (TI.getIntMaxType() == TargetInfo::UnsignedLongLong) DefineBuiltinMacro(Buf, "__INTMAX_TYPE__=unsigned long long int"); else if (TI.getIntMaxType() == TargetInfo::SignedLongLong) DefineBuiltinMacro(Buf, "__INTMAX_TYPE__=long long int"); else if (TI.getIntMaxType() == TargetInfo::UnsignedLong) DefineBuiltinMacro(Buf, "__INTMAX_TYPE__=unsigned long int"); else if (TI.getIntMaxType() == TargetInfo::SignedLong) DefineBuiltinMacro(Buf, "__INTMAX_TYPE__=long int"); else if (TI.getIntMaxType() == TargetInfo::UnsignedInt) DefineBuiltinMacro(Buf, "__INTMAX_TYPE__=unsigned int"); else DefineBuiltinMacro(Buf, "__INTMAX_TYPE__=int"); if (TI.getUIntMaxType() == TargetInfo::UnsignedLongLong) DefineBuiltinMacro(Buf, "__UINTMAX_TYPE__=unsigned long long int"); else if (TI.getUIntMaxType() == TargetInfo::SignedLongLong) DefineBuiltinMacro(Buf, "__UINTMAX_TYPE__=long long int"); else if (TI.getUIntMaxType() == TargetInfo::UnsignedLong) DefineBuiltinMacro(Buf, "__UINTMAX_TYPE__=unsigned long int"); else if (TI.getUIntMaxType() == TargetInfo::SignedLong) DefineBuiltinMacro(Buf, "__UINTMAX_TYPE__=long int"); else if (TI.getUIntMaxType() == TargetInfo::UnsignedInt) DefineBuiltinMacro(Buf, "__UINTMAX_TYPE__=unsigned int"); else DefineBuiltinMacro(Buf, "__UINTMAX_TYPE__=int"); if (TI.getPtrDiffType(0) == TargetInfo::UnsignedLongLong) DefineBuiltinMacro(Buf, "__PTRDIFF_TYPE__=unsigned long long int"); else if (TI.getPtrDiffType(0) == TargetInfo::SignedLongLong) DefineBuiltinMacro(Buf, "__PTRDIFF_TYPE__=long long int"); else if (TI.getPtrDiffType(0) == TargetInfo::UnsignedLong) DefineBuiltinMacro(Buf, "__PTRDIFF_TYPE__=unsigned long int"); else if (TI.getPtrDiffType(0) == TargetInfo::SignedLong) DefineBuiltinMacro(Buf, "__PTRDIFF_TYPE__=long int"); else if (TI.getPtrDiffType(0) == TargetInfo::UnsignedInt) DefineBuiltinMacro(Buf, "__PTRDIFF_TYPE__=unsigned int"); else DefineBuiltinMacro(Buf, "__PTRDIFF_TYPE__=int"); if (TI.getSizeType() == TargetInfo::UnsignedLongLong) DefineBuiltinMacro(Buf, "__SIZE_TYPE__=unsigned long long int"); else if (TI.getSizeType() == TargetInfo::SignedLongLong) DefineBuiltinMacro(Buf, "__SIZE_TYPE__=long long int"); else if (TI.getSizeType() == TargetInfo::UnsignedLong) DefineBuiltinMacro(Buf, "__SIZE_TYPE__=unsigned long int"); else if (TI.getSizeType() == TargetInfo::SignedLong) DefineBuiltinMacro(Buf, "__SIZE_TYPE__=long int"); else if (TI.getSizeType() == TargetInfo::UnsignedInt) DefineBuiltinMacro(Buf, "__SIZE_TYPE__=unsigned int"); else if (TI.getSizeType() == TargetInfo::SignedInt) DefineBuiltinMacro(Buf, "__SIZE_TYPE__=int"); else DefineBuiltinMacro(Buf, "__SIZE_TYPE__=unsigned short"); DefineFloatMacros(Buf, "FLT", &TI.getFloatFormat()); DefineFloatMacros(Buf, "DBL", &TI.getDoubleFormat()); DefineFloatMacros(Buf, "LDBL", &TI.getLongDoubleFormat()); // Add __builtin_va_list typedef. { const char *VAList = TI.getVAListDeclaration(); Buf.insert(Buf.end(), VAList, VAList+strlen(VAList)); Buf.push_back('\n'); } if (const char *Prefix = TI.getUserLabelPrefix()) { sprintf(MacroBuf, "__USER_LABEL_PREFIX__=%s", Prefix); DefineBuiltinMacro(Buf, MacroBuf); } // Build configuration options. FIXME: these should be controlled by // command line options or something. DefineBuiltinMacro(Buf, "__DYNAMIC__=1"); DefineBuiltinMacro(Buf, "__FINITE_MATH_ONLY__=0"); DefineBuiltinMacro(Buf, "__NO_INLINE__=1"); DefineBuiltinMacro(Buf, "__PIC__=1"); // Macros to control C99 numerics and DefineBuiltinMacro(Buf, "__FLT_EVAL_METHOD__=0"); DefineBuiltinMacro(Buf, "__FLT_RADIX__=2"); sprintf(MacroBuf, "__DECIMAL_DIG__=%d", PickFP(&TI.getLongDoubleFormat(), -1/*FIXME*/, 17, 21, 33)); DefineBuiltinMacro(Buf, MacroBuf); // Get other target #defines. TI.getTargetDefines(Buf); // FIXME: Should emit a #line directive here. } /// EnterMainSourceFile - Enter the specified FileID as the main source file, /// which implicitly adds the builtin defines etc. void Preprocessor::EnterMainSourceFile() { FileID MainFileID = SourceMgr.getMainFileID(); // Enter the main file source buffer. EnterSourceFile(MainFileID, 0); // Tell the header info that the main file was entered. If the file is later // #imported, it won't be re-entered. if (const FileEntry *FE = SourceMgr.getFileEntryForID(MainFileID)) HeaderInfo.IncrementIncludeCount(FE); std::vector PrologFile; PrologFile.reserve(4080); // Install things like __POWERPC__, __GNUC__, etc into the macro table. InitializePredefinedMacros(*this, PrologFile); // Add on the predefines from the driver. PrologFile.insert(PrologFile.end(), Predefines.begin(), Predefines.end()); // Memory buffer must end with a null byte! PrologFile.push_back(0); // Now that we have emitted the predefined macros, #includes, etc into // PrologFile, preprocess it to populate the initial preprocessor state. llvm::MemoryBuffer *SB = llvm::MemoryBuffer::getMemBufferCopy(&PrologFile.front(),&PrologFile.back(), ""); assert(SB && "Cannot fail to create predefined source buffer"); FileID FID = SourceMgr.createFileIDForMemBuffer(SB); assert(!FID.isInvalid() && "Could not create FileID for predefines?"); // Start parsing the predefines. EnterSourceFile(FID, 0); } //===----------------------------------------------------------------------===// // Lexer Event Handling. //===----------------------------------------------------------------------===// /// LookUpIdentifierInfo - Given a tok::identifier token, look up the /// identifier information for the token and install it into the token. IdentifierInfo *Preprocessor::LookUpIdentifierInfo(Token &Identifier, const char *BufPtr) { assert(Identifier.is(tok::identifier) && "Not an identifier!"); assert(Identifier.getIdentifierInfo() == 0 && "Identinfo already exists!"); // Look up this token, see if it is a macro, or if it is a language keyword. IdentifierInfo *II; if (BufPtr && !Identifier.needsCleaning()) { // No cleaning needed, just use the characters from the lexed buffer. II = getIdentifierInfo(BufPtr, BufPtr+Identifier.getLength()); } else { // Cleaning needed, alloca a buffer, clean into it, then use the buffer. llvm::SmallVector IdentifierBuffer; IdentifierBuffer.resize(Identifier.getLength()); const char *TmpBuf = &IdentifierBuffer[0]; unsigned Size = getSpelling(Identifier, TmpBuf); II = getIdentifierInfo(TmpBuf, TmpBuf+Size); } Identifier.setIdentifierInfo(II); return II; } /// HandleIdentifier - This callback is invoked when the lexer reads an /// identifier. This callback looks up the identifier in the map and/or /// potentially macro expands it or turns it into a named token (like 'for'). void Preprocessor::HandleIdentifier(Token &Identifier) { assert(Identifier.getIdentifierInfo() && "Can't handle identifiers without identifier info!"); IdentifierInfo &II = *Identifier.getIdentifierInfo(); // If this identifier was poisoned, and if it was not produced from a macro // expansion, emit an error. if (II.isPoisoned() && CurPPLexer) { if (&II != Ident__VA_ARGS__) // We warn about __VA_ARGS__ with poisoning. Diag(Identifier, diag::err_pp_used_poisoned_id); else Diag(Identifier, diag::ext_pp_bad_vaargs_use); } // If this is a macro to be expanded, do it. if (MacroInfo *MI = getMacroInfo(&II)) { if (!DisableMacroExpansion && !Identifier.isExpandDisabled()) { if (MI->isEnabled()) { if (!HandleMacroExpandedIdentifier(Identifier, MI)) return; } else { // C99 6.10.3.4p2 says that a disabled macro may never again be // expanded, even if it's in a context where it could be expanded in the // future. Identifier.setFlag(Token::DisableExpand); } } } // C++ 2.11p2: If this is an alternative representation of a C++ operator, // then we act as if it is the actual operator and not the textual // representation of it. if (II.isCPlusPlusOperatorKeyword()) Identifier.setIdentifierInfo(0); // Change the kind of this identifier to the appropriate token kind, e.g. // turning "for" into a keyword. Identifier.setKind(II.getTokenID()); // If this is an extension token, diagnose its use. // We avoid diagnosing tokens that originate from macro definitions. if (II.isExtensionToken() && Features.C99 && !DisableMacroExpansion) Diag(Identifier, diag::ext_token_used); }