//===-- ValueObject.cpp -----------------------------------------*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// #include "lldb/Core/ValueObject.h" // C Includes #include // C++ Includes // Other libraries and framework includes #include "llvm/Support/raw_ostream.h" #include "clang/AST/Type.h" // Project includes #include "lldb/Core/DataBufferHeap.h" #include "lldb/Core/StreamString.h" #include "lldb/Core/ValueObjectChild.h" #include "lldb/Core/ValueObjectConstResult.h" #include "lldb/Core/ValueObjectDynamicValue.h" #include "lldb/Core/ValueObjectList.h" #include "lldb/Core/ValueObjectMemory.h" #include "lldb/Host/Endian.h" #include "lldb/Symbol/ClangASTType.h" #include "lldb/Symbol/ClangASTContext.h" #include "lldb/Symbol/Type.h" #include "lldb/Target/ExecutionContext.h" #include "lldb/Target/LanguageRuntime.h" #include "lldb/Target/Process.h" #include "lldb/Target/RegisterContext.h" #include "lldb/Target/Target.h" #include "lldb/Target/Thread.h" using namespace lldb; using namespace lldb_private; static lldb::user_id_t g_value_obj_uid = 0; //---------------------------------------------------------------------- // ValueObject constructor //---------------------------------------------------------------------- ValueObject::ValueObject (ValueObject &parent) : UserID (++g_value_obj_uid), // Unique identifier for every value object m_parent (&parent), m_update_point (parent.GetUpdatePoint ()), m_name (), m_data (), m_value (), m_error (), m_value_str (), m_old_value_str (), m_location_str (), m_summary_str (), m_object_desc_str (), m_manager(parent.GetManager()), m_children (), m_synthetic_children (), m_dynamic_value (NULL), m_deref_valobj(NULL), m_format (eFormatDefault), m_value_is_valid (false), m_value_did_change (false), m_children_count_valid (false), m_old_value_valid (false), m_pointers_point_to_load_addrs (false), m_is_deref_of_parent (false) { m_manager->ManageObject(this); } //---------------------------------------------------------------------- // ValueObject constructor //---------------------------------------------------------------------- ValueObject::ValueObject (ExecutionContextScope *exe_scope) : UserID (++g_value_obj_uid), // Unique identifier for every value object m_parent (NULL), m_update_point (exe_scope), m_name (), m_data (), m_value (), m_error (), m_value_str (), m_old_value_str (), m_location_str (), m_summary_str (), m_object_desc_str (), m_manager(), m_children (), m_synthetic_children (), m_dynamic_value (NULL), m_deref_valobj(NULL), m_format (eFormatDefault), m_value_is_valid (false), m_value_did_change (false), m_children_count_valid (false), m_old_value_valid (false), m_pointers_point_to_load_addrs (false), m_is_deref_of_parent (false) { m_manager = new ValueObjectManager(); m_manager->ManageObject (this); } //---------------------------------------------------------------------- // Destructor //---------------------------------------------------------------------- ValueObject::~ValueObject () { } bool ValueObject::UpdateValueIfNeeded () { // If this is a constant value, then our success is predicated on whether // we have an error or not if (GetIsConstant()) return m_error.Success(); bool first_update = m_update_point.IsFirstEvaluation(); if (m_update_point.NeedsUpdating()) { m_update_point.SetUpdated(); // Save the old value using swap to avoid a string copy which // also will clear our m_value_str if (m_value_str.empty()) { m_old_value_valid = false; } else { m_old_value_valid = true; m_old_value_str.swap (m_value_str); m_value_str.clear(); } m_location_str.clear(); m_summary_str.clear(); m_object_desc_str.clear(); const bool value_was_valid = GetValueIsValid(); SetValueDidChange (false); m_error.Clear(); // Call the pure virtual function to update the value bool success = UpdateValue (); SetValueIsValid (success); if (first_update) SetValueDidChange (false); else if (!m_value_did_change && success == false) { // The value wasn't gotten successfully, so we mark this // as changed if the value used to be valid and now isn't SetValueDidChange (value_was_valid); } } return m_error.Success(); } DataExtractor & ValueObject::GetDataExtractor () { UpdateValueIfNeeded(); return m_data; } const Error & ValueObject::GetError() const { return m_error; } const ConstString & ValueObject::GetName() const { return m_name; } const char * ValueObject::GetLocationAsCString () { if (UpdateValueIfNeeded()) { if (m_location_str.empty()) { StreamString sstr; switch (m_value.GetValueType()) { default: break; case Value::eValueTypeScalar: if (m_value.GetContextType() == Value::eContextTypeRegisterInfo) { RegisterInfo *reg_info = m_value.GetRegisterInfo(); if (reg_info) { if (reg_info->name) m_location_str = reg_info->name; else if (reg_info->alt_name) m_location_str = reg_info->alt_name; break; } } m_location_str = "scalar"; break; case Value::eValueTypeLoadAddress: case Value::eValueTypeFileAddress: case Value::eValueTypeHostAddress: { uint32_t addr_nibble_size = m_data.GetAddressByteSize() * 2; sstr.Printf("0x%*.*llx", addr_nibble_size, addr_nibble_size, m_value.GetScalar().ULongLong(LLDB_INVALID_ADDRESS)); m_location_str.swap(sstr.GetString()); } break; } } } return m_location_str.c_str(); } Value & ValueObject::GetValue() { return m_value; } const Value & ValueObject::GetValue() const { return m_value; } bool ValueObject::ResolveValue (Scalar &scalar) { ExecutionContext exe_ctx; ExecutionContextScope *exe_scope = GetExecutionContextScope(); if (exe_scope) exe_scope->CalculateExecutionContext(exe_ctx); scalar = m_value.ResolveValue(&exe_ctx, GetClangAST ()); return scalar.IsValid(); } bool ValueObject::GetValueIsValid () const { return m_value_is_valid; } void ValueObject::SetValueIsValid (bool b) { m_value_is_valid = b; } bool ValueObject::GetValueDidChange () { GetValueAsCString (); return m_value_did_change; } void ValueObject::SetValueDidChange (bool value_changed) { m_value_did_change = value_changed; } ValueObjectSP ValueObject::GetChildAtIndex (uint32_t idx, bool can_create) { ValueObjectSP child_sp; if (UpdateValueIfNeeded()) { if (idx < GetNumChildren()) { // Check if we have already made the child value object? if (can_create && m_children[idx] == NULL) { // No we haven't created the child at this index, so lets have our // subclass do it and cache the result for quick future access. m_children[idx] = CreateChildAtIndex (idx, false, 0); } if (m_children[idx] != NULL) return m_children[idx]->GetSP(); } } return child_sp; } uint32_t ValueObject::GetIndexOfChildWithName (const ConstString &name) { bool omit_empty_base_classes = true; return ClangASTContext::GetIndexOfChildWithName (GetClangAST(), GetClangType(), name.GetCString(), omit_empty_base_classes); } ValueObjectSP ValueObject::GetChildMemberWithName (const ConstString &name, bool can_create) { // when getting a child by name, it could be buried inside some base // classes (which really aren't part of the expression path), so we // need a vector of indexes that can get us down to the correct child ValueObjectSP child_sp; if (UpdateValueIfNeeded()) { std::vector child_indexes; clang::ASTContext *clang_ast = GetClangAST(); void *clang_type = GetClangType(); bool omit_empty_base_classes = true; const size_t num_child_indexes = ClangASTContext::GetIndexOfChildMemberWithName (clang_ast, clang_type, name.GetCString(), omit_empty_base_classes, child_indexes); if (num_child_indexes > 0) { std::vector::const_iterator pos = child_indexes.begin (); std::vector::const_iterator end = child_indexes.end (); child_sp = GetChildAtIndex(*pos, can_create); for (++pos; pos != end; ++pos) { if (child_sp) { ValueObjectSP new_child_sp(child_sp->GetChildAtIndex (*pos, can_create)); child_sp = new_child_sp; } else { child_sp.reset(); } } } } return child_sp; } uint32_t ValueObject::GetNumChildren () { if (!m_children_count_valid) { SetNumChildren (CalculateNumChildren()); } return m_children.size(); } void ValueObject::SetNumChildren (uint32_t num_children) { m_children_count_valid = true; m_children.resize(num_children); } void ValueObject::SetName (const char *name) { m_name.SetCString(name); } void ValueObject::SetName (const ConstString &name) { m_name = name; } ValueObject * ValueObject::CreateChildAtIndex (uint32_t idx, bool synthetic_array_member, int32_t synthetic_index) { ValueObject *valobj = NULL; if (UpdateValueIfNeeded()) { bool omit_empty_base_classes = true; std::string child_name_str; uint32_t child_byte_size = 0; int32_t child_byte_offset = 0; uint32_t child_bitfield_bit_size = 0; uint32_t child_bitfield_bit_offset = 0; bool child_is_base_class = false; bool child_is_deref_of_parent = false; const bool transparent_pointers = synthetic_array_member == false; clang::ASTContext *clang_ast = GetClangAST(); clang_type_t clang_type = GetClangType(); clang_type_t child_clang_type; child_clang_type = ClangASTContext::GetChildClangTypeAtIndex (clang_ast, GetName().GetCString(), clang_type, idx, transparent_pointers, omit_empty_base_classes, child_name_str, child_byte_size, child_byte_offset, child_bitfield_bit_size, child_bitfield_bit_offset, child_is_base_class, child_is_deref_of_parent); if (child_clang_type && child_byte_size) { if (synthetic_index) child_byte_offset += child_byte_size * synthetic_index; ConstString child_name; if (!child_name_str.empty()) child_name.SetCString (child_name_str.c_str()); valobj = new ValueObjectChild (*this, clang_ast, child_clang_type, child_name, child_byte_size, child_byte_offset, child_bitfield_bit_size, child_bitfield_bit_offset, child_is_base_class, child_is_deref_of_parent); if (m_pointers_point_to_load_addrs) valobj->SetPointersPointToLoadAddrs (m_pointers_point_to_load_addrs); } } return valobj; } const char * ValueObject::GetSummaryAsCString () { if (UpdateValueIfNeeded ()) { if (m_summary_str.empty()) { clang_type_t clang_type = GetClangType(); // See if this is a pointer to a C string? if (clang_type) { StreamString sstr; clang_type_t elem_or_pointee_clang_type; const Flags type_flags (ClangASTContext::GetTypeInfo (clang_type, GetClangAST(), &elem_or_pointee_clang_type)); ExecutionContextScope *exe_scope = GetExecutionContextScope(); if (exe_scope) { if (type_flags.AnySet (ClangASTContext::eTypeIsArray | ClangASTContext::eTypeIsPointer) && ClangASTContext::IsCharType (elem_or_pointee_clang_type)) { Process *process = exe_scope->CalculateProcess(); if (process != NULL) { lldb::addr_t cstr_address = LLDB_INVALID_ADDRESS; AddressType cstr_address_type = eAddressTypeInvalid; size_t cstr_len = 0; if (type_flags.Test (ClangASTContext::eTypeIsArray)) { // We have an array cstr_len = ClangASTContext::GetArraySize (clang_type); cstr_address = GetAddressOf (cstr_address_type, true); } else { // We have a pointer cstr_address = GetPointerValue (cstr_address_type, true); } if (cstr_address != LLDB_INVALID_ADDRESS) { DataExtractor data; size_t bytes_read = 0; std::vector data_buffer; Error error; if (cstr_len > 0) { data_buffer.resize(cstr_len); data.SetData (&data_buffer.front(), data_buffer.size(), lldb::endian::InlHostByteOrder()); bytes_read = process->ReadMemory (cstr_address, &data_buffer.front(), cstr_len, error); if (bytes_read > 0) { sstr << '"'; data.Dump (&sstr, 0, // Start offset in "data" eFormatChar, // Print as characters 1, // Size of item (1 byte for a char!) bytes_read, // How many bytes to print? UINT32_MAX, // num per line LLDB_INVALID_ADDRESS,// base address 0, // bitfield bit size 0); // bitfield bit offset sstr << '"'; } } else { const size_t k_max_buf_size = 256; data_buffer.resize (k_max_buf_size + 1); // NULL terminate in case we don't get the entire C string data_buffer.back() = '\0'; sstr << '"'; data.SetData (&data_buffer.front(), data_buffer.size(), endian::InlHostByteOrder()); while ((bytes_read = process->ReadMemory (cstr_address, &data_buffer.front(), k_max_buf_size, error)) > 0) { size_t len = strlen(&data_buffer.front()); if (len == 0) break; if (len > bytes_read) len = bytes_read; data.Dump (&sstr, 0, // Start offset in "data" eFormatChar, // Print as characters 1, // Size of item (1 byte for a char!) len, // How many bytes to print? UINT32_MAX, // num per line LLDB_INVALID_ADDRESS,// base address 0, // bitfield bit size 0); // bitfield bit offset if (len < k_max_buf_size) break; cstr_address += k_max_buf_size; } sstr << '"'; } } } if (sstr.GetSize() > 0) m_summary_str.assign (sstr.GetData(), sstr.GetSize()); } else if (ClangASTContext::IsFunctionPointerType (clang_type)) { AddressType func_ptr_address_type = eAddressTypeInvalid; lldb::addr_t func_ptr_address = GetPointerValue (func_ptr_address_type, true); if (func_ptr_address != 0 && func_ptr_address != LLDB_INVALID_ADDRESS) { switch (func_ptr_address_type) { case eAddressTypeInvalid: case eAddressTypeFile: break; case eAddressTypeLoad: { Address so_addr; Target *target = exe_scope->CalculateTarget(); if (target && target->GetSectionLoadList().IsEmpty() == false) { if (target->GetSectionLoadList().ResolveLoadAddress(func_ptr_address, so_addr)) { so_addr.Dump (&sstr, exe_scope, Address::DumpStyleResolvedDescription, Address::DumpStyleSectionNameOffset); } } } break; case eAddressTypeHost: break; } } if (sstr.GetSize() > 0) { m_summary_str.assign (1, '('); m_summary_str.append (sstr.GetData(), sstr.GetSize()); m_summary_str.append (1, ')'); } } } } } } if (m_summary_str.empty()) return NULL; return m_summary_str.c_str(); } const char * ValueObject::GetObjectDescription () { if (!m_object_desc_str.empty()) return m_object_desc_str.c_str(); if (!UpdateValueIfNeeded ()) return NULL; ExecutionContextScope *exe_scope = GetExecutionContextScope(); if (exe_scope == NULL) return NULL; Process *process = exe_scope->CalculateProcess(); if (process == NULL) return NULL; StreamString s; lldb::LanguageType language = GetObjectRuntimeLanguage(); LanguageRuntime *runtime = process->GetLanguageRuntime(language); if (runtime == NULL) { // Aw, hell, if the things a pointer, or even just an integer, let's try ObjC anyway... clang_type_t opaque_qual_type = GetClangType(); if (opaque_qual_type != NULL) { bool is_signed; if (ClangASTContext::IsIntegerType (opaque_qual_type, is_signed) || ClangASTContext::IsPointerType (opaque_qual_type)) { runtime = process->GetLanguageRuntime(lldb::eLanguageTypeObjC); } } } if (runtime && runtime->GetObjectDescription(s, *this)) { m_object_desc_str.append (s.GetData()); } if (m_object_desc_str.empty()) return NULL; else return m_object_desc_str.c_str(); } const char * ValueObject::GetValueAsCString () { // If our byte size is zero this is an aggregate type that has children if (ClangASTContext::IsAggregateType (GetClangType()) == false) { if (UpdateValueIfNeeded()) { if (m_value_str.empty()) { const Value::ContextType context_type = m_value.GetContextType(); switch (context_type) { case Value::eContextTypeClangType: case Value::eContextTypeLLDBType: case Value::eContextTypeVariable: { clang_type_t clang_type = GetClangType (); if (clang_type) { StreamString sstr; Format format = GetFormat(); if (format == eFormatDefault) format = ClangASTType::GetFormat(clang_type); if (ClangASTType::DumpTypeValue (GetClangAST(), // The clang AST clang_type, // The clang type to display &sstr, format, // Format to display this type with m_data, // Data to extract from 0, // Byte offset into "m_data" GetByteSize(), // Byte size of item in "m_data" GetBitfieldBitSize(), // Bitfield bit size GetBitfieldBitOffset())) // Bitfield bit offset m_value_str.swap(sstr.GetString()); else m_value_str.clear(); } } break; case Value::eContextTypeRegisterInfo: { const RegisterInfo *reg_info = m_value.GetRegisterInfo(); if (reg_info) { StreamString reg_sstr; m_data.Dump(®_sstr, 0, reg_info->format, reg_info->byte_size, 1, UINT32_MAX, LLDB_INVALID_ADDRESS, 0, 0); m_value_str.swap(reg_sstr.GetString()); } } break; default: break; } } if (!m_value_did_change && m_old_value_valid) { // The value was gotten successfully, so we consider the // value as changed if the value string differs SetValueDidChange (m_old_value_str != m_value_str); } } } if (m_value_str.empty()) return NULL; return m_value_str.c_str(); } addr_t ValueObject::GetAddressOf (AddressType &address_type, bool scalar_is_load_address) { if (!UpdateValueIfNeeded()) return LLDB_INVALID_ADDRESS; switch (m_value.GetValueType()) { case Value::eValueTypeScalar: if (scalar_is_load_address) { address_type = eAddressTypeLoad; return m_value.GetScalar().ULongLong(LLDB_INVALID_ADDRESS); } break; case Value::eValueTypeLoadAddress: case Value::eValueTypeFileAddress: case Value::eValueTypeHostAddress: { address_type = m_value.GetValueAddressType (); return m_value.GetScalar().ULongLong(LLDB_INVALID_ADDRESS); } break; } address_type = eAddressTypeInvalid; return LLDB_INVALID_ADDRESS; } addr_t ValueObject::GetPointerValue (AddressType &address_type, bool scalar_is_load_address) { lldb::addr_t address = LLDB_INVALID_ADDRESS; address_type = eAddressTypeInvalid; if (!UpdateValueIfNeeded()) return address; switch (m_value.GetValueType()) { case Value::eValueTypeScalar: if (scalar_is_load_address) { address = m_value.GetScalar().ULongLong(LLDB_INVALID_ADDRESS); address_type = eAddressTypeLoad; } break; case Value::eValueTypeLoadAddress: case Value::eValueTypeFileAddress: case Value::eValueTypeHostAddress: { uint32_t data_offset = 0; address = m_data.GetPointer(&data_offset); address_type = m_value.GetValueAddressType(); if (address_type == eAddressTypeInvalid) address_type = eAddressTypeLoad; } break; } if (m_pointers_point_to_load_addrs) address_type = eAddressTypeLoad; return address; } bool ValueObject::SetValueFromCString (const char *value_str) { // Make sure our value is up to date first so that our location and location // type is valid. if (!UpdateValueIfNeeded()) return false; uint32_t count = 0; lldb::Encoding encoding = ClangASTType::GetEncoding (GetClangType(), count); char *end = NULL; const size_t byte_size = GetByteSize(); switch (encoding) { case eEncodingInvalid: return false; case eEncodingUint: if (byte_size > sizeof(unsigned long long)) { return false; } else { unsigned long long ull_val = strtoull(value_str, &end, 0); if (end && *end != '\0') return false; m_value = ull_val; // Limit the bytes in our m_data appropriately. m_value.GetScalar().GetData (m_data, byte_size); } break; case eEncodingSint: if (byte_size > sizeof(long long)) { return false; } else { long long sll_val = strtoll(value_str, &end, 0); if (end && *end != '\0') return false; m_value = sll_val; // Limit the bytes in our m_data appropriately. m_value.GetScalar().GetData (m_data, byte_size); } break; case eEncodingIEEE754: { const off_t byte_offset = GetByteOffset(); uint8_t *dst = const_cast(m_data.PeekData(byte_offset, byte_size)); if (dst != NULL) { // We are decoding a float into host byte order below, so make // sure m_data knows what it contains. m_data.SetByteOrder(lldb::endian::InlHostByteOrder()); const size_t converted_byte_size = ClangASTContext::ConvertStringToFloatValue ( GetClangAST(), GetClangType(), value_str, dst, byte_size); if (converted_byte_size == byte_size) { } } } break; case eEncodingVector: return false; default: return false; } // If we have made it here the value is in m_data and we should write it // out to the target return Write (); } bool ValueObject::Write () { // Clear the update ID so the next time we try and read the value // we try and read it again. m_update_point.SetNeedsUpdate(); // TODO: when Value has a method to write a value back, call it from here. return false; } lldb::LanguageType ValueObject::GetObjectRuntimeLanguage () { clang_type_t opaque_qual_type = GetClangType(); if (opaque_qual_type == NULL) return lldb::eLanguageTypeC; // If the type is a reference, then resolve it to what it refers to first: clang::QualType qual_type (clang::QualType::getFromOpaquePtr(opaque_qual_type).getNonReferenceType()); if (qual_type->isAnyPointerType()) { if (qual_type->isObjCObjectPointerType()) return lldb::eLanguageTypeObjC; clang::QualType pointee_type (qual_type->getPointeeType()); if (pointee_type->getCXXRecordDeclForPointerType() != NULL) return lldb::eLanguageTypeC_plus_plus; if (pointee_type->isObjCObjectOrInterfaceType()) return lldb::eLanguageTypeObjC; if (pointee_type->isObjCClassType()) return lldb::eLanguageTypeObjC; } else { if (ClangASTContext::IsObjCClassType (opaque_qual_type)) return lldb::eLanguageTypeObjC; if (ClangASTContext::IsCXXClassType (opaque_qual_type)) return lldb::eLanguageTypeC_plus_plus; } return lldb::eLanguageTypeC; } void ValueObject::AddSyntheticChild (const ConstString &key, ValueObject *valobj) { m_synthetic_children[key] = valobj; } ValueObjectSP ValueObject::GetSyntheticChild (const ConstString &key) const { ValueObjectSP synthetic_child_sp; std::map::const_iterator pos = m_synthetic_children.find (key); if (pos != m_synthetic_children.end()) synthetic_child_sp = pos->second->GetSP(); return synthetic_child_sp; } bool ValueObject::IsPointerType () { return ClangASTContext::IsPointerType (GetClangType()); } bool ValueObject::IsIntegerType (bool &is_signed) { return ClangASTContext::IsIntegerType (GetClangType(), is_signed); } bool ValueObject::IsPointerOrReferenceType () { return ClangASTContext::IsPointerOrReferenceType(GetClangType()); } ValueObjectSP ValueObject::GetSyntheticArrayMemberFromPointer (int32_t index, bool can_create) { ValueObjectSP synthetic_child_sp; if (IsPointerType ()) { char index_str[64]; snprintf(index_str, sizeof(index_str), "[%i]", index); ConstString index_const_str(index_str); // Check if we have already created a synthetic array member in this // valid object. If we have we will re-use it. synthetic_child_sp = GetSyntheticChild (index_const_str); if (!synthetic_child_sp) { ValueObject *synthetic_child; // We haven't made a synthetic array member for INDEX yet, so // lets make one and cache it for any future reference. synthetic_child = CreateChildAtIndex(0, true, index); // Cache the value if we got one back... if (synthetic_child) { AddSyntheticChild(index_const_str, synthetic_child); synthetic_child_sp = synthetic_child->GetSP(); } } } return synthetic_child_sp; } void ValueObject::CalculateDynamicValue (lldb::DynamicValueType use_dynamic) { if (use_dynamic == lldb::eNoDynamicValues) return; if (!m_dynamic_value && !IsDynamic()) { Process *process = m_update_point.GetProcess(); bool worth_having_dynamic_value = false; // FIXME: Process should have some kind of "map over Runtimes" so we don't have to // hard code this everywhere. lldb::LanguageType known_type = GetObjectRuntimeLanguage(); if (known_type != lldb::eLanguageTypeUnknown && known_type != lldb::eLanguageTypeC) { LanguageRuntime *runtime = process->GetLanguageRuntime (known_type); if (runtime) worth_having_dynamic_value = runtime->CouldHaveDynamicValue(*this); } else { LanguageRuntime *cpp_runtime = process->GetLanguageRuntime (lldb::eLanguageTypeC_plus_plus); if (cpp_runtime) worth_having_dynamic_value = cpp_runtime->CouldHaveDynamicValue(*this); if (!worth_having_dynamic_value) { LanguageRuntime *objc_runtime = process->GetLanguageRuntime (lldb::eLanguageTypeObjC); if (objc_runtime) worth_having_dynamic_value = objc_runtime->CouldHaveDynamicValue(*this); } } if (worth_having_dynamic_value) m_dynamic_value = new ValueObjectDynamicValue (*this, use_dynamic); // if (worth_having_dynamic_value) // printf ("Adding dynamic value %s (%p) to (%p) - manager %p.\n", m_name.GetCString(), m_dynamic_value, this, m_manager); } } ValueObjectSP ValueObject::GetDynamicValue (DynamicValueType use_dynamic) { if (use_dynamic == lldb::eNoDynamicValues) return ValueObjectSP(); if (!IsDynamic() && m_dynamic_value == NULL) { CalculateDynamicValue(use_dynamic); } if (m_dynamic_value) return m_dynamic_value->GetSP(); else return ValueObjectSP(); } bool ValueObject::GetBaseClassPath (Stream &s) { if (IsBaseClass()) { bool parent_had_base_class = GetParent() && GetParent()->GetBaseClassPath (s); clang_type_t clang_type = GetClangType(); std::string cxx_class_name; bool this_had_base_class = ClangASTContext::GetCXXClassName (clang_type, cxx_class_name); if (this_had_base_class) { if (parent_had_base_class) s.PutCString("::"); s.PutCString(cxx_class_name.c_str()); } return parent_had_base_class || this_had_base_class; } return false; } ValueObject * ValueObject::GetNonBaseClassParent() { if (GetParent()) { if (GetParent()->IsBaseClass()) return GetParent()->GetNonBaseClassParent(); else return GetParent(); } return NULL; } void ValueObject::GetExpressionPath (Stream &s, bool qualify_cxx_base_classes) { const bool is_deref_of_parent = IsDereferenceOfParent (); if (is_deref_of_parent) s.PutCString("*("); if (GetParent()) GetParent()->GetExpressionPath (s, qualify_cxx_base_classes); if (!IsBaseClass()) { if (!is_deref_of_parent) { ValueObject *non_base_class_parent = GetNonBaseClassParent(); if (non_base_class_parent) { clang_type_t non_base_class_parent_clang_type = non_base_class_parent->GetClangType(); if (non_base_class_parent_clang_type) { const uint32_t non_base_class_parent_type_info = ClangASTContext::GetTypeInfo (non_base_class_parent_clang_type, NULL, NULL); if (non_base_class_parent_type_info & ClangASTContext::eTypeIsPointer) { s.PutCString("->"); } else if ((non_base_class_parent_type_info & ClangASTContext::eTypeHasChildren) && !(non_base_class_parent_type_info & ClangASTContext::eTypeIsArray)) { s.PutChar('.'); } } } const char *name = GetName().GetCString(); if (name) { if (qualify_cxx_base_classes) { if (GetBaseClassPath (s)) s.PutCString("::"); } s.PutCString(name); } } } if (is_deref_of_parent) s.PutChar(')'); } void ValueObject::DumpValueObject ( Stream &s, ValueObject *valobj, const char *root_valobj_name, uint32_t ptr_depth, uint32_t curr_depth, uint32_t max_depth, bool show_types, bool show_location, bool use_objc, lldb::DynamicValueType use_dynamic, bool scope_already_checked, bool flat_output ) { if (valobj && valobj->UpdateValueIfNeeded ()) { if (use_dynamic != lldb::eNoDynamicValues) { ValueObject *dynamic_value = valobj->GetDynamicValue(use_dynamic).get(); if (dynamic_value) valobj = dynamic_value; } clang_type_t clang_type = valobj->GetClangType(); const Flags type_flags (ClangASTContext::GetTypeInfo (clang_type, NULL, NULL)); const char *err_cstr = NULL; const bool has_children = type_flags.Test (ClangASTContext::eTypeHasChildren); const bool has_value = type_flags.Test (ClangASTContext::eTypeHasValue); const bool print_valobj = flat_output == false || has_value; if (print_valobj) { if (show_location) { s.Printf("%s: ", valobj->GetLocationAsCString()); } s.Indent(); // Always show the type for the top level items. if (show_types || (curr_depth == 0 && !flat_output)) s.Printf("(%s) ", valobj->GetTypeName().AsCString("")); if (flat_output) { // If we are showing types, also qualify the C++ base classes const bool qualify_cxx_base_classes = show_types; valobj->GetExpressionPath(s, qualify_cxx_base_classes); s.PutCString(" ="); } else { const char *name_cstr = root_valobj_name ? root_valobj_name : valobj->GetName().AsCString(""); s.Printf ("%s =", name_cstr); } if (!scope_already_checked && !valobj->IsInScope()) { err_cstr = "error: out of scope"; } } const char *val_cstr = NULL; if (err_cstr == NULL) { val_cstr = valobj->GetValueAsCString(); err_cstr = valobj->GetError().AsCString(); } if (err_cstr) { s.Printf (" error: %s\n", err_cstr); } else { const bool is_ref = type_flags.Test (ClangASTContext::eTypeIsReference); if (print_valobj) { const char *sum_cstr = valobj->GetSummaryAsCString(); if (val_cstr) s.Printf(" %s", val_cstr); if (sum_cstr) s.Printf(" %s", sum_cstr); if (use_objc) { const char *object_desc = valobj->GetObjectDescription(); if (object_desc) s.Printf(" %s\n", object_desc); else s.Printf (" [no Objective-C description available]\n"); return; } } if (curr_depth < max_depth) { // We will show children for all concrete types. We won't show // pointer contents unless a pointer depth has been specified. // We won't reference contents unless the reference is the // root object (depth of zero). bool print_children = true; // Use a new temporary pointer depth in case we override the // current pointer depth below... uint32_t curr_ptr_depth = ptr_depth; const bool is_ptr = type_flags.Test (ClangASTContext::eTypeIsPointer); if (is_ptr || is_ref) { // We have a pointer or reference whose value is an address. // Make sure that address is not NULL AddressType ptr_address_type; if (valobj->GetPointerValue (ptr_address_type, true) == 0) print_children = false; else if (is_ref && curr_depth == 0) { // If this is the root object (depth is zero) that we are showing // and it is a reference, and no pointer depth has been supplied // print out what it references. Don't do this at deeper depths // otherwise we can end up with infinite recursion... curr_ptr_depth = 1; } if (curr_ptr_depth == 0) print_children = false; } if (print_children) { const uint32_t num_children = valobj->GetNumChildren(); if (num_children) { if (flat_output) { if (print_valobj) s.EOL(); } else { if (print_valobj) s.PutCString(is_ref ? ": {\n" : " {\n"); s.IndentMore(); } for (uint32_t idx=0; idxGetChildAtIndex(idx, true)); if (child_sp.get()) { DumpValueObject (s, child_sp.get(), NULL, (is_ptr || is_ref) ? curr_ptr_depth - 1 : curr_ptr_depth, curr_depth + 1, max_depth, show_types, show_location, false, use_dynamic, true, flat_output); } } if (!flat_output) { s.IndentLess(); s.Indent("}\n"); } } else if (has_children) { // Aggregate, no children... if (print_valobj) s.PutCString(" {}\n"); } else { if (print_valobj) s.EOL(); } } else { s.EOL(); } } else { if (has_children && print_valobj) { s.PutCString("{...}\n"); } } } } } ValueObjectSP ValueObject::CreateConstantValue (const ConstString &name) { ValueObjectSP valobj_sp; if (UpdateValueIfNeeded() && m_error.Success()) { ExecutionContextScope *exe_scope = GetExecutionContextScope(); if (exe_scope) { ExecutionContext exe_ctx; exe_scope->CalculateExecutionContext(exe_ctx); clang::ASTContext *ast = GetClangAST (); DataExtractor data; data.SetByteOrder (m_data.GetByteOrder()); data.SetAddressByteSize(m_data.GetAddressByteSize()); m_error = m_value.GetValueAsData (&exe_ctx, ast, data, 0); valobj_sp = ValueObjectConstResult::Create (exe_scope, ast, GetClangType(), name, data); } } if (!valobj_sp) { valobj_sp = ValueObjectConstResult::Create (NULL, m_error); } return valobj_sp; } lldb::ValueObjectSP ValueObject::Dereference (Error &error) { if (m_deref_valobj) return m_deref_valobj->GetSP(); const bool is_pointer_type = IsPointerType(); if (is_pointer_type) { bool omit_empty_base_classes = true; std::string child_name_str; uint32_t child_byte_size = 0; int32_t child_byte_offset = 0; uint32_t child_bitfield_bit_size = 0; uint32_t child_bitfield_bit_offset = 0; bool child_is_base_class = false; bool child_is_deref_of_parent = false; const bool transparent_pointers = false; clang::ASTContext *clang_ast = GetClangAST(); clang_type_t clang_type = GetClangType(); clang_type_t child_clang_type; child_clang_type = ClangASTContext::GetChildClangTypeAtIndex (clang_ast, GetName().GetCString(), clang_type, 0, transparent_pointers, omit_empty_base_classes, child_name_str, child_byte_size, child_byte_offset, child_bitfield_bit_size, child_bitfield_bit_offset, child_is_base_class, child_is_deref_of_parent); if (child_clang_type && child_byte_size) { ConstString child_name; if (!child_name_str.empty()) child_name.SetCString (child_name_str.c_str()); m_deref_valobj = new ValueObjectChild (*this, clang_ast, child_clang_type, child_name, child_byte_size, child_byte_offset, child_bitfield_bit_size, child_bitfield_bit_offset, child_is_base_class, child_is_deref_of_parent); } } if (m_deref_valobj) { error.Clear(); return m_deref_valobj->GetSP(); } else { StreamString strm; GetExpressionPath(strm, true); if (is_pointer_type) error.SetErrorStringWithFormat("dereference failed: (%s) %s", GetTypeName().AsCString(""), strm.GetString().c_str()); else error.SetErrorStringWithFormat("not a pointer type: (%s) %s", GetTypeName().AsCString(""), strm.GetString().c_str()); return ValueObjectSP(); } } lldb::ValueObjectSP ValueObject::AddressOf (Error &error) { if (m_addr_of_valobj_sp) return m_addr_of_valobj_sp; AddressType address_type = eAddressTypeInvalid; const bool scalar_is_load_address = false; lldb::addr_t addr = GetAddressOf (address_type, scalar_is_load_address); error.Clear(); if (addr != LLDB_INVALID_ADDRESS) { switch (address_type) { default: case eAddressTypeInvalid: { StreamString expr_path_strm; GetExpressionPath(expr_path_strm, true); error.SetErrorStringWithFormat("'%s' is not in memory", expr_path_strm.GetString().c_str()); } break; case eAddressTypeFile: case eAddressTypeLoad: case eAddressTypeHost: { clang::ASTContext *ast = GetClangAST(); clang_type_t clang_type = GetClangType(); if (ast && clang_type) { std::string name (1, '&'); name.append (m_name.AsCString("")); m_addr_of_valobj_sp = ValueObjectConstResult::Create (GetExecutionContextScope(), ast, ClangASTContext::CreatePointerType (ast, clang_type), ConstString (name.c_str()), addr, eAddressTypeInvalid, m_data.GetAddressByteSize()); } } break; } } return m_addr_of_valobj_sp; } lldb::ValueObjectSP ValueObject::CastPointerType (const char *name, ClangASTType &clang_ast_type) { lldb::ValueObjectSP valobj_sp; AddressType address_type; const bool scalar_is_load_address = true; lldb::addr_t ptr_value = GetPointerValue (address_type, scalar_is_load_address); if (ptr_value != LLDB_INVALID_ADDRESS) { Address ptr_addr (NULL, ptr_value); valobj_sp = ValueObjectMemory::Create (GetExecutionContextScope(), name, ptr_addr, clang_ast_type); } return valobj_sp; } lldb::ValueObjectSP ValueObject::CastPointerType (const char *name, TypeSP &type_sp) { lldb::ValueObjectSP valobj_sp; AddressType address_type; const bool scalar_is_load_address = true; lldb::addr_t ptr_value = GetPointerValue (address_type, scalar_is_load_address); if (ptr_value != LLDB_INVALID_ADDRESS) { Address ptr_addr (NULL, ptr_value); valobj_sp = ValueObjectMemory::Create (GetExecutionContextScope(), name, ptr_addr, type_sp); } return valobj_sp; } ValueObject::EvaluationPoint::EvaluationPoint () : m_thread_id (LLDB_INVALID_UID), m_stop_id (0) { } ValueObject::EvaluationPoint::EvaluationPoint (ExecutionContextScope *exe_scope, bool use_selected): m_needs_update (true), m_first_update (true), m_thread_id (LLDB_INVALID_UID), m_stop_id (0) { ExecutionContext exe_ctx; ExecutionContextScope *computed_exe_scope = exe_scope; // If use_selected is true, we may find a better scope, // and if so we want to cache that not the original. if (exe_scope) exe_scope->CalculateExecutionContext(exe_ctx); if (exe_ctx.target != NULL) { m_target_sp = exe_ctx.target->GetSP(); if (exe_ctx.process == NULL) m_process_sp = exe_ctx.target->GetProcessSP(); else m_process_sp = exe_ctx.process->GetSP(); if (m_process_sp != NULL) { m_stop_id = m_process_sp->GetStopID(); Thread *thread = NULL; if (exe_ctx.thread == NULL) { if (use_selected) { thread = m_process_sp->GetThreadList().GetSelectedThread().get(); if (thread) computed_exe_scope = thread; } } else thread = exe_ctx.thread; if (thread != NULL) { m_thread_id = thread->GetIndexID(); if (exe_ctx.frame == NULL) { if (use_selected) { StackFrame *frame = exe_ctx.thread->GetSelectedFrame().get(); if (frame) { m_stack_id = frame->GetStackID(); computed_exe_scope = frame; } } } else m_stack_id = exe_ctx.frame->GetStackID(); } } } m_exe_scope = computed_exe_scope; } ValueObject::EvaluationPoint::EvaluationPoint (const ValueObject::EvaluationPoint &rhs) : m_exe_scope (rhs.m_exe_scope), m_needs_update(true), m_first_update(true), m_target_sp (rhs.m_target_sp), m_process_sp (rhs.m_process_sp), m_thread_id (rhs.m_thread_id), m_stack_id (rhs.m_stack_id), m_stop_id (0) { } ValueObject::EvaluationPoint::~EvaluationPoint () { } ExecutionContextScope * ValueObject::EvaluationPoint::GetExecutionContextScope () { // We have to update before giving out the scope, or we could be handing out stale pointers. SyncWithProcessState(); return m_exe_scope; } // This function checks the EvaluationPoint against the current process state. If the current // state matches the evaluation point, or the evaluation point is already invalid, then we return // false, meaning "no change". If the current state is different, we update our state, and return // true meaning "yes, change". If we did see a change, we also set m_needs_update to true, so // future calls to NeedsUpdate will return true. bool ValueObject::EvaluationPoint::SyncWithProcessState() { // If we're already invalid, we don't need to do anything, and nothing has changed: if (m_stop_id == LLDB_INVALID_UID) { // Can't update with an invalid state. m_needs_update = false; return false; } // If we don't have a process nothing can change. if (!m_process_sp) return false; // If our stop id is the current stop ID, nothing has changed: uint32_t cur_stop_id = m_process_sp->GetStopID(); if (m_stop_id == cur_stop_id) return false; // If the current stop id is 0, either we haven't run yet, or the process state has been cleared. // In either case, we aren't going to be able to sync with the process state. if (cur_stop_id == 0) return false; m_stop_id = cur_stop_id; m_needs_update = true; m_exe_scope = m_process_sp.get(); // Something has changed, so we will return true. Now make sure the thread & frame still exist, and if either // doesn't, mark ourselves as invalid. if (m_thread_id != LLDB_INVALID_THREAD_ID) { Thread *our_thread = m_process_sp->GetThreadList().FindThreadByIndexID (m_thread_id).get(); if (our_thread == NULL) SetInvalid(); else { m_exe_scope = our_thread; if (m_stack_id.IsValid()) { StackFrame *our_frame = our_thread->GetFrameWithStackID (m_stack_id).get(); if (our_frame == NULL) SetInvalid(); else m_exe_scope = our_frame; } } } return true; } void ValueObject::EvaluationPoint::SetUpdated () { m_first_update = false; m_needs_update = false; if (m_process_sp) m_stop_id = m_process_sp->GetStopID(); } bool ValueObject::EvaluationPoint::SetContext (ExecutionContextScope *exe_scope) { if (!IsValid()) return false; bool needs_update = false; m_exe_scope = NULL; // The target has to be non-null, and the Target *target = exe_scope->CalculateTarget(); if (target != NULL) { Target *old_target = m_target_sp.get(); assert (target == old_target); Process *process = exe_scope->CalculateProcess(); if (process != NULL) { // FOR NOW - assume you can't update variable objects across process boundaries. Process *old_process = m_process_sp.get(); assert (process == old_process); lldb::user_id_t stop_id = process->GetStopID(); if (stop_id != m_stop_id) { needs_update = true; m_stop_id = stop_id; } // See if we're switching the thread or stack context. If no thread is given, this is // being evaluated in a global context. Thread *thread = exe_scope->CalculateThread(); if (thread != NULL) { lldb::user_id_t new_thread_index = thread->GetIndexID(); if (new_thread_index != m_thread_id) { needs_update = true; m_thread_id = new_thread_index; m_stack_id.Clear(); } StackFrame *new_frame = exe_scope->CalculateStackFrame(); if (new_frame != NULL) { if (new_frame->GetStackID() != m_stack_id) { needs_update = true; m_stack_id = new_frame->GetStackID(); } } else { m_stack_id.Clear(); needs_update = true; } } else { // If this had been given a thread, and now there is none, we should update. // Otherwise we don't have to do anything. if (m_thread_id != LLDB_INVALID_UID) { m_thread_id = LLDB_INVALID_UID; m_stack_id.Clear(); needs_update = true; } } } else { // If there is no process, then we don't need to update anything. // But if we're switching from having a process to not, we should try to update. if (m_process_sp.get() != NULL) { needs_update = true; m_process_sp.reset(); m_thread_id = LLDB_INVALID_UID; m_stack_id.Clear(); } } } else { // If there's no target, nothing can change so we don't need to update anything. // But if we're switching from having a target to not, we should try to update. if (m_target_sp.get() != NULL) { needs_update = true; m_target_sp.reset(); m_process_sp.reset(); m_thread_id = LLDB_INVALID_UID; m_stack_id.Clear(); } } if (!m_needs_update) m_needs_update = needs_update; return needs_update; }