//===--------- ScopInfo.cpp - Create Scops from LLVM IR ------------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // Create a polyhedral description for a static control flow region. // // The pass creates a polyhedral description of the Scops detected by the Scop // detection derived from their LLVM-IR code. // // This represantation is shared among several tools in the polyhedral // community, which are e.g. Cloog, Pluto, Loopo, Graphite. // //===----------------------------------------------------------------------===// #include "polly/ScopInfo.h" #include "polly/TempScopInfo.h" #include "polly/LinkAllPasses.h" #include "polly/Support/GICHelper.h" #include "polly/Support/ScopHelper.h" #include "llvm/Analysis/LoopInfo.h" #include "llvm/Analysis/ScalarEvolutionExpressions.h" #include "llvm/Analysis/RegionIterator.h" #include "llvm/Assembly/Writer.h" #include "llvm/ADT/Statistic.h" #include "llvm/ADT/SetVector.h" #include "llvm/Support/CommandLine.h" #define DEBUG_TYPE "polly-scops" #include "llvm/Support/Debug.h" #include "isl/constraint.h" #include "isl/set.h" #include "isl/map.h" #include "isl/aff.h" #include "isl/printer.h" #include "isl/local_space.h" #include #include #include using namespace llvm; using namespace polly; STATISTIC(ScopFound, "Number of valid Scops"); STATISTIC(RichScopFound, "Number of Scops containing a loop"); /// Convert an int into a string. static std::string convertInt(int number) { if (number == 0) return "0"; std::string temp = ""; std::string returnvalue = ""; while (number > 0) { temp += number % 10 + 48; number /= 10; } for (unsigned i = 0; i < temp.length(); i++) returnvalue+=temp[temp.length() - i - 1]; return returnvalue; } /// Translate a SCEVExpression into an isl_pw_aff object. struct SCEVAffinator : public SCEVVisitor { private: isl_ctx *ctx; int NbLoopSpaces; const Scop *scop; /// baseAdress is set if we analyze a memory access. It holds the base address /// of this memory access. const Value *baseAddress; public: static isl_pw_aff *getPwAff(const ScopStmt *stmt, const SCEV *scev, const Value *baseAddress) { SCEVAffinator Affinator(stmt, baseAddress); return Affinator.visit(scev); } isl_pw_aff *visit(const SCEV *scev) { // In case the scev is contained in our list of parameters, we do not // further analyze this expression, but create a new parameter in the // isl_pw_aff. This allows us to treat subexpressions that we cannot // translate into an piecewise affine expression, as constant parameters of // the piecewise affine expression. int i = 0; for (Scop::const_param_iterator PI = scop->param_begin(), PE = scop->param_end(); PI != PE; ++PI) { if (*PI == scev) { isl_id *ID = isl_id_alloc(ctx, ("p" + convertInt(i)).c_str(), (void *) scev); isl_space *Space = isl_space_set_alloc(ctx, 1, NbLoopSpaces); Space = isl_space_set_dim_id(Space, isl_dim_param, 0, ID); isl_set *Domain = isl_set_universe(isl_space_copy(Space)); isl_aff *Affine = isl_aff_zero_on_domain( isl_local_space_from_space(Space)); Affine = isl_aff_add_coefficient_si(Affine, isl_dim_param, 0, 1); return isl_pw_aff_alloc(Domain, Affine); } i++; } return SCEVVisitor::visit(scev); } SCEVAffinator(const ScopStmt *stmt, const Value *baseAddress) : ctx(stmt->getIslCtx()), NbLoopSpaces(stmt->getNumIterators()), scop(stmt->getParent()), baseAddress(baseAddress) {}; __isl_give isl_pw_aff *visitConstant(const SCEVConstant *Constant) { ConstantInt *Value = Constant->getValue(); isl_int v; isl_int_init(v); // LLVM does not define if an integer value is interpreted as a signed or // unsigned value. Hence, without further information, it is unknown how // this value needs to be converted to GMP. At the moment, we only support // signed operations. So we just interpret it as signed. Later, there are // two options: // // 1. We always interpret any value as signed and convert the values on // demand. // 2. We pass down the signedness of the calculation and use it to interpret // this constant correctly. MPZ_from_APInt(v, Value->getValue(), /* isSigned */ true); isl_space *Space = isl_space_set_alloc(ctx, 0, NbLoopSpaces); isl_local_space *ls = isl_local_space_from_space(isl_space_copy(Space)); isl_aff *Affine = isl_aff_zero_on_domain(ls); isl_set *Domain = isl_set_universe(Space); Affine = isl_aff_add_constant(Affine, v); isl_int_clear(v); return isl_pw_aff_alloc(Domain, Affine); } __isl_give isl_pw_aff *visitTruncateExpr(const SCEVTruncateExpr* Expr) { assert(0 && "Not yet supported"); } __isl_give isl_pw_aff *visitZeroExtendExpr(const SCEVZeroExtendExpr * Expr) { assert(0 && "Not yet supported"); } __isl_give isl_pw_aff *visitSignExtendExpr(const SCEVSignExtendExpr* Expr) { // Assuming the value is signed, a sign extension is basically a noop. // TODO: Reconsider this as soon as we support unsigned values. return visit(Expr->getOperand()); } __isl_give isl_pw_aff *visitAddExpr(const SCEVAddExpr* Expr) { isl_pw_aff *Sum = visit(Expr->getOperand(0)); for (int i = 1, e = Expr->getNumOperands(); i < e; ++i) { isl_pw_aff *NextSummand = visit(Expr->getOperand(i)); Sum = isl_pw_aff_add(Sum, NextSummand); } // TODO: Check for NSW and NUW. return Sum; } __isl_give isl_pw_aff *visitMulExpr(const SCEVMulExpr* Expr) { isl_pw_aff *Product = visit(Expr->getOperand(0)); for (int i = 1, e = Expr->getNumOperands(); i < e; ++i) { isl_pw_aff *NextOperand = visit(Expr->getOperand(i)); if (!isl_pw_aff_is_cst(Product) && !isl_pw_aff_is_cst(NextOperand)) { isl_pw_aff_free(Product); isl_pw_aff_free(NextOperand); return NULL; } Product = isl_pw_aff_mul(Product, NextOperand); } // TODO: Check for NSW and NUW. return Product; } __isl_give isl_pw_aff *visitUDivExpr(const SCEVUDivExpr* Expr) { assert(0 && "Not yet supported"); } int getLoopDepth(const Loop *L) { Loop *outerLoop = scop->getRegion().outermostLoopInRegion(const_cast(L)); return L->getLoopDepth() - outerLoop->getLoopDepth(); } __isl_give isl_pw_aff *visitAddRecExpr(const SCEVAddRecExpr* Expr) { assert(Expr->isAffine() && "Only affine AddRecurrences allowed"); isl_pw_aff *Start = visit(Expr->getStart()); isl_pw_aff *Step = visit(Expr->getOperand(1)); isl_space *Space = isl_space_set_alloc(ctx, 0, NbLoopSpaces); isl_local_space *LocalSpace = isl_local_space_from_space(Space); int loopDimension = getLoopDepth(Expr->getLoop()); isl_aff *LAff = isl_aff_set_coefficient_si( isl_aff_zero_on_domain (LocalSpace), isl_dim_in, loopDimension, 1); isl_pw_aff *LPwAff = isl_pw_aff_from_aff(LAff); // TODO: Do we need to check for NSW and NUW? return isl_pw_aff_add(Start, isl_pw_aff_mul(Step, LPwAff)); } __isl_give isl_pw_aff *visitSMaxExpr(const SCEVSMaxExpr* Expr) { isl_pw_aff *Max = visit(Expr->getOperand(0)); for (int i = 1, e = Expr->getNumOperands(); i < e; ++i) { isl_pw_aff *NextOperand = visit(Expr->getOperand(i)); Max = isl_pw_aff_max(Max, NextOperand); } return Max; } __isl_give isl_pw_aff *visitUMaxExpr(const SCEVUMaxExpr* Expr) { assert(0 && "Not yet supported"); } __isl_give isl_pw_aff *visitUnknown(const SCEVUnknown* Expr) { Value *Value = Expr->getValue(); isl_space *Space; /// If baseAddress is set, we ignore its Value object in the scev and do not /// add it to the isl_pw_aff. This is because it is regarded as defining the /// name of an array, in contrast to its array subscript. if (baseAddress != Value) { isl_id *ID = isl_id_alloc(ctx, Value->getNameStr().c_str(), Value); Space = isl_space_set_alloc(ctx, 1, NbLoopSpaces); Space = isl_space_set_dim_id(Space, isl_dim_param, 0, ID); } else { Space = isl_space_set_alloc(ctx, 0, NbLoopSpaces); } isl_set *Domain = isl_set_universe(isl_space_copy(Space)); isl_aff *Affine = isl_aff_zero_on_domain(isl_local_space_from_space(Space)); if (baseAddress != Value) Affine = isl_aff_add_coefficient_si(Affine, isl_dim_param, 0, 1); return isl_pw_aff_alloc(Domain, Affine); } }; //===----------------------------------------------------------------------===// MemoryAccess::~MemoryAccess() { isl_map_free(AccessRelation); isl_map_free(newAccessRelation); } static void replace(std::string& str, const std::string& find, const std::string& replace) { size_t pos = 0; while((pos = str.find(find, pos)) != std::string::npos) { str.replace(pos, find.length(), replace); pos += replace.length(); } } static void makeIslCompatible(std::string& str) { str.erase(0, 1); replace(str, ".", "_"); replace(str, "\"", "_"); } void MemoryAccess::setBaseName() { raw_string_ostream OS(BaseName); WriteAsOperand(OS, getBaseAddr(), false); BaseName = OS.str(); makeIslCompatible(BaseName); BaseName = "MemRef_" + BaseName; } isl_map *MemoryAccess::getAccessRelation() const { return isl_map_copy(AccessRelation); } std::string MemoryAccess::getAccessRelationStr() const { return stringFromIslObj(AccessRelation); } isl_map *MemoryAccess::getNewAccessRelation() const { return isl_map_copy(newAccessRelation); } isl_basic_map *MemoryAccess::createBasicAccessMap(ScopStmt *Statement) { isl_space *Space = isl_space_alloc(Statement->getIslCtx(), 0, Statement->getNumIterators(), 1); setBaseName(); Space = isl_space_set_tuple_name(Space, isl_dim_out, getBaseName().c_str()); Space = isl_space_set_tuple_name(Space, isl_dim_in, Statement->getBaseName()); return isl_basic_map_universe(Space); } MemoryAccess::MemoryAccess(const SCEVAffFunc &AffFunc, ScopStmt *Statement) { newAccessRelation = NULL; BaseAddr = AffFunc.getBaseAddr(); Type = AffFunc.isRead() ? Read : Write; statement = Statement; setBaseName(); isl_pw_aff *Affine = SCEVAffinator::getPwAff(Statement, AffFunc.OriginalSCEV, AffFunc.getBaseAddr()); // Devide the access function by the size of the elements in the array. // // A stride one array access in C expressed as A[i] is expressed in LLVM-IR // as something like A[i * elementsize]. This hides the fact that two // subsequent values of 'i' index two values that are stored next to each // other in memory. By this devision we make this characteristic obvious // again. isl_int v; isl_int_init(v); isl_int_set_si(v, AffFunc.getElemSizeInBytes()); Affine = isl_pw_aff_scale_down(Affine, v); isl_int_clear(v); AccessRelation = isl_map_from_pw_aff(Affine); AccessRelation = isl_map_set_tuple_name(AccessRelation, isl_dim_in, Statement->getBaseName()); AccessRelation = isl_map_set_tuple_name(AccessRelation, isl_dim_out, getBaseName().c_str()); isl_space *ParamSpace = Statement->getParent()->getParamSpace(); AccessRelation = isl_map_align_params(AccessRelation, ParamSpace); } MemoryAccess::MemoryAccess(const Value *BaseAddress, ScopStmt *Statement) { newAccessRelation = NULL; BaseAddr = BaseAddress; Type = Read; statement = Statement; isl_basic_map *BasicAccessMap = createBasicAccessMap(Statement); AccessRelation = isl_map_from_basic_map(BasicAccessMap); isl_space *ParamSpace = Statement->getParent()->getParamSpace(); AccessRelation = isl_map_align_params(AccessRelation, ParamSpace); } void MemoryAccess::print(raw_ostream &OS) const { OS.indent(12) << (isRead() ? "Read" : "Write") << "Access := \n"; OS.indent(16) << getAccessRelationStr() << ";\n"; } void MemoryAccess::dump() const { print(errs()); } // Create a map in the size of the provided set domain, that maps from the // one element of the provided set domain to another element of the provided // set domain. // The mapping is limited to all points that are equal in all but the last // dimension and for which the last dimension of the input is strict smaller // than the last dimension of the output. // // getEqualAndLarger(set[i0, i1, ..., iX]): // // set[i0, i1, ..., iX] -> set[o0, o1, ..., oX] // : i0 = o0, i1 = o1, ..., i(X-1) = o(X-1), iX < oX // static isl_map *getEqualAndLarger(isl_space *setDomain) { isl_space *mapDomain = isl_space_map_from_set(setDomain); isl_basic_map *bmap = isl_basic_map_universe(mapDomain); isl_local_space *MapLocalSpace = isl_local_space_from_space(mapDomain); // Set all but the last dimension to be equal for the input and output // // input[i0, i1, ..., iX] -> output[o0, o1, ..., oX] // : i0 = o0, i1 = o1, ..., i(X-1) = o(X-1) for (unsigned i = 0; i < isl_basic_map_n_in(bmap) - 1; ++i) { isl_int v; isl_int_init(v); isl_constraint *c = isl_equality_alloc(isl_local_space_copy(MapLocalSpace)); isl_int_set_si(v, 1); isl_constraint_set_coefficient(c, isl_dim_in, i, v); isl_int_set_si(v, -1); isl_constraint_set_coefficient(c, isl_dim_out, i, v); bmap = isl_basic_map_add_constraint(bmap, c); isl_int_clear(v); } // Set the last dimension of the input to be strict smaller than the // last dimension of the output. // // input[?,?,?,...,iX] -> output[?,?,?,...,oX] : iX < oX // unsigned lastDimension = isl_basic_map_n_in(bmap) - 1; isl_int v; isl_int_init(v); isl_constraint *c = isl_inequality_alloc(isl_local_space_copy(MapLocalSpace)); isl_int_set_si(v, -1); isl_constraint_set_coefficient(c, isl_dim_in, lastDimension, v); isl_int_set_si(v, 1); isl_constraint_set_coefficient(c, isl_dim_out, lastDimension, v); isl_int_set_si(v, -1); isl_constraint_set_constant(c, v); isl_int_clear(v); bmap = isl_basic_map_add_constraint(bmap, c); return isl_map_from_basic_map(bmap); } isl_set *MemoryAccess::getStride(const isl_set *domainSubset) const { isl_map *accessRelation = getAccessRelation(); isl_set *scatteringDomain = isl_set_copy(const_cast(domainSubset)); isl_map *scattering = getStatement()->getScattering(); scattering = isl_map_reverse(scattering); int difference = isl_map_n_in(scattering) - isl_set_n_dim(scatteringDomain); scattering = isl_map_project_out(scattering, isl_dim_in, isl_set_n_dim(scatteringDomain), difference); // Remove all names of the scattering dimensions, as the names may be lost // anyways during the project. This leads to consistent results. scattering = isl_map_set_tuple_name(scattering, isl_dim_in, ""); scatteringDomain = isl_set_set_tuple_name(scatteringDomain, ""); isl_map *nextScatt = getEqualAndLarger(isl_set_get_space(scatteringDomain)); nextScatt = isl_map_lexmin(nextScatt); scattering = isl_map_intersect_domain(scattering, scatteringDomain); nextScatt = isl_map_apply_range(nextScatt, isl_map_copy(scattering)); nextScatt = isl_map_apply_range(nextScatt, isl_map_copy(accessRelation)); nextScatt = isl_map_apply_domain(nextScatt, scattering); nextScatt = isl_map_apply_domain(nextScatt, accessRelation); return isl_map_deltas(nextScatt); } bool MemoryAccess::isStrideZero(const isl_set *domainSubset) const { isl_set *stride = getStride(domainSubset); isl_space *StrideSpace = isl_set_get_space(stride); isl_local_space *StrideLS = isl_local_space_from_space(StrideSpace); isl_constraint *c = isl_equality_alloc(StrideLS); isl_int v; isl_int_init(v); isl_int_set_si(v, 1); isl_constraint_set_coefficient(c, isl_dim_set, 0, v); isl_int_set_si(v, 0); isl_constraint_set_constant(c, v); isl_int_clear(v); isl_basic_set *bset = isl_basic_set_universe(isl_set_get_space(stride)); bset = isl_basic_set_add_constraint(bset, c); isl_set *strideZero = isl_set_from_basic_set(bset); bool isStrideZero = isl_set_is_equal(stride, strideZero); isl_set_free(strideZero); isl_set_free(stride); return isStrideZero; } bool MemoryAccess::isStrideOne(const isl_set *domainSubset) const { isl_set *stride = getStride(domainSubset); isl_space *StrideSpace = isl_set_get_space(stride); isl_local_space *StrideLSpace = isl_local_space_from_space(StrideSpace); isl_constraint *c = isl_equality_alloc(StrideLSpace); isl_int v; isl_int_init(v); isl_int_set_si(v, 1); isl_constraint_set_coefficient(c, isl_dim_set, 0, v); isl_int_set_si(v, -1); isl_constraint_set_constant(c, v); isl_int_clear(v); isl_basic_set *bset = isl_basic_set_universe(isl_set_get_space(stride)); bset = isl_basic_set_add_constraint(bset, c); isl_set *strideOne = isl_set_from_basic_set(bset); bool isStrideOne = isl_set_is_equal(stride, strideOne); isl_set_free(strideOne); isl_set_free(stride); return isStrideOne; } void MemoryAccess::setNewAccessRelation(isl_map *newAccess) { isl_map_free(newAccessRelation); newAccessRelation = newAccess; } //===----------------------------------------------------------------------===// isl_map *ScopStmt::getScattering() const { return isl_map_copy(Scattering); } void ScopStmt::setScattering(isl_map *NewScattering) { isl_map_free(Scattering); Scattering = NewScattering; } void ScopStmt::buildScattering(SmallVectorImpl &Scatter) { unsigned NumberOfIterators = getNumIterators(); unsigned ScatSpace = Parent.getMaxLoopDepth() * 2 + 1; isl_space *Space = isl_space_alloc(getIslCtx(), 0, NumberOfIterators, ScatSpace); Space = isl_space_set_tuple_name(Space, isl_dim_out, "scattering"); Space = isl_space_set_tuple_name(Space, isl_dim_in, getBaseName()); isl_local_space *LSpace = isl_local_space_from_space(isl_space_copy(Space)); isl_basic_map *bmap = isl_basic_map_universe(Space); isl_int v; isl_int_init(v); // Loop dimensions. for (unsigned i = 0; i < NumberOfIterators; ++i) { isl_constraint *c = isl_equality_alloc(isl_local_space_copy(LSpace)); isl_int_set_si(v, 1); isl_constraint_set_coefficient(c, isl_dim_out, 2 * i + 1, v); isl_int_set_si(v, -1); isl_constraint_set_coefficient(c, isl_dim_in, i, v); bmap = isl_basic_map_add_constraint(bmap, c); } // Constant dimensions for (unsigned i = 0; i < NumberOfIterators + 1; ++i) { isl_constraint *c = isl_equality_alloc(isl_local_space_copy(LSpace)); isl_int_set_si(v, -1); isl_constraint_set_coefficient(c, isl_dim_out, 2 * i, v); isl_int_set_si(v, Scatter[i]); isl_constraint_set_constant(c, v); bmap = isl_basic_map_add_constraint(bmap, c); } // Fill scattering dimensions. for (unsigned i = 2 * NumberOfIterators + 1; i < ScatSpace ; ++i) { isl_constraint *c = isl_equality_alloc(isl_local_space_copy(LSpace)); isl_int_set_si(v, 1); isl_constraint_set_coefficient(c, isl_dim_out, i, v); isl_int_set_si(v, 0); isl_constraint_set_constant(c, v); bmap = isl_basic_map_add_constraint(bmap, c); } isl_int_clear(v); Scattering = isl_map_from_basic_map(bmap); Scattering = isl_map_align_params(Scattering, Parent.getParamSpace()); } void ScopStmt::buildAccesses(TempScop &tempScop, const Region &CurRegion) { const AccFuncSetType *AccFuncs = tempScop.getAccessFunctions(BB); for (AccFuncSetType::const_iterator I = AccFuncs->begin(), E = AccFuncs->end(); I != E; ++I) { MemAccs.push_back(new MemoryAccess(I->first, this)); InstructionToAccess[I->second] = MemAccs.back(); } } isl_set *ScopStmt::toConditionSet(const Comparison &Comp, isl_space *space) const { isl_pw_aff *LHS = SCEVAffinator::getPwAff(this, Comp.getLHS()->OriginalSCEV, 0); isl_pw_aff *RHS = SCEVAffinator::getPwAff(this, Comp.getRHS()->OriginalSCEV, 0); isl_set *set; switch (Comp.getPred()) { case ICmpInst::ICMP_EQ: set = isl_pw_aff_eq_set(LHS, RHS); break; case ICmpInst::ICMP_NE: set = isl_pw_aff_ne_set(LHS, RHS); break; case ICmpInst::ICMP_SLT: set = isl_pw_aff_lt_set(LHS, RHS); break; case ICmpInst::ICMP_SLE: set = isl_pw_aff_le_set(LHS, RHS); break; case ICmpInst::ICMP_SGT: set = isl_pw_aff_gt_set(LHS, RHS); break; case ICmpInst::ICMP_SGE: set = isl_pw_aff_ge_set(LHS, RHS); break; case ICmpInst::ICMP_ULT: case ICmpInst::ICMP_UGT: case ICmpInst::ICMP_ULE: case ICmpInst::ICMP_UGE: llvm_unreachable("Unsigned comparisons not yet supported"); default: llvm_unreachable("Non integer predicate not supported"); } set = isl_set_set_tuple_name(set, isl_space_get_tuple_name(space, isl_dim_set)); return set; } isl_set *ScopStmt::toUpperLoopBound(const SCEVAffFunc &UpperBound, isl_space *Space, unsigned BoundedDimension) const { // FIXME: We should choose a consistent scheme of when to name the dimensions. isl_space *UnnamedSpace = isl_space_copy(Space); UnnamedSpace = isl_space_set_tuple_name(UnnamedSpace, isl_dim_set, 0); isl_local_space *LocalSpace = isl_local_space_from_space(UnnamedSpace); isl_aff *LAff = isl_aff_set_coefficient_si(isl_aff_zero_on_domain(LocalSpace), isl_dim_in, BoundedDimension, 1); isl_pw_aff *BoundedSpace = isl_pw_aff_from_aff(LAff); isl_pw_aff *Bound = SCEVAffinator::getPwAff(this, UpperBound.OriginalSCEV, 0); isl_set *set = isl_pw_aff_le_set(BoundedSpace, Bound); set = isl_set_set_tuple_name(set, isl_space_get_tuple_name(Space, isl_dim_set)); isl_space_free(Space); return set; } void ScopStmt::buildIterationDomainFromLoops(TempScop &tempScop) { isl_space *Space = isl_space_set_alloc(getIslCtx(), 0, getNumIterators()); Space = isl_space_set_tuple_name(Space, isl_dim_set, getBaseName()); Domain = isl_set_universe(isl_space_copy(Space)); Domain = isl_set_align_params(Domain, Parent.getParamSpace()); isl_int v; isl_int_init(v); isl_local_space *LocalSpace; LocalSpace = isl_local_space_from_space(isl_space_copy(Space)); for (int i = 0, e = getNumIterators(); i != e; ++i) { // Lower bound: IV >= 0. isl_basic_set *bset = isl_basic_set_universe(isl_space_copy(Space)); isl_constraint *c = isl_inequality_alloc(isl_local_space_copy(LocalSpace)); isl_int_set_si(v, 1); isl_constraint_set_coefficient(c, isl_dim_set, i, v); bset = isl_basic_set_add_constraint(bset, c); Domain = isl_set_intersect(Domain, isl_set_from_basic_set(bset)); // Upper bound: IV <= NumberOfIterations. const Loop *L = getLoopForDimension(i); const SCEVAffFunc &UpperBound = tempScop.getLoopBound(L); isl_set *UpperBoundSet = toUpperLoopBound(UpperBound, isl_space_copy(Space), i); Domain = isl_set_intersect(Domain, UpperBoundSet); } isl_local_space_free(LocalSpace); isl_space_free(Space); isl_int_clear(v); } void ScopStmt::addConditionsToDomain(TempScop &tempScop, const Region &CurRegion) { isl_space *Space = isl_set_get_space(Domain); const Region *TopR = tempScop.getMaxRegion().getParent(), *CurR = &CurRegion; const BasicBlock *CurEntry = BB; // Build BB condition constrains, by traveling up the region tree. do { assert(CurR && "We exceed the top region?"); // Skip when multiple regions share the same entry. if (CurEntry != CurR->getEntry()) { if (const BBCond *Cnd = tempScop.getBBCond(CurEntry)) for (BBCond::const_iterator I = Cnd->begin(), E = Cnd->end(); I != E; ++I) { isl_set *c = toConditionSet(*I, Space); Domain = isl_set_intersect(Domain, c); } } CurEntry = CurR->getEntry(); CurR = CurR->getParent(); } while (TopR != CurR); isl_space_free(Space); } void ScopStmt::buildIterationDomain(TempScop &tempScop, const Region &CurRegion) { buildIterationDomainFromLoops(tempScop); addConditionsToDomain(tempScop, CurRegion); } ScopStmt::ScopStmt(Scop &parent, TempScop &tempScop, const Region &CurRegion, BasicBlock &bb, SmallVectorImpl &NestLoops, SmallVectorImpl &Scatter) : Parent(parent), BB(&bb), IVS(NestLoops.size()) { // Setup the induction variables. for (unsigned i = 0, e = NestLoops.size(); i < e; ++i) { PHINode *PN = NestLoops[i]->getCanonicalInductionVariable(); assert(PN && "Non canonical IV in Scop!"); IVS[i] = std::make_pair(PN, NestLoops[i]); } raw_string_ostream OS(BaseName); WriteAsOperand(OS, &bb, false); BaseName = OS.str(); makeIslCompatible(BaseName); BaseName = "Stmt_" + BaseName; buildIterationDomain(tempScop, CurRegion); buildScattering(Scatter); buildAccesses(tempScop, CurRegion); } ScopStmt::ScopStmt(Scop &parent, SmallVectorImpl &Scatter) : Parent(parent), BB(NULL), IVS(0) { BaseName = "FinalRead"; // Build iteration domain. std::string IterationDomainString = "{[i0] : i0 = 0}"; Domain = isl_set_read_from_str(getIslCtx(), IterationDomainString.c_str()); Domain = isl_set_set_tuple_name(Domain, getBaseName()); Domain = isl_set_align_params(Domain, parent.getParamSpace()); // Build scattering. unsigned ScatSpace = Parent.getMaxLoopDepth() * 2 + 1; isl_space *Space = isl_space_alloc(getIslCtx(), 0, 1, ScatSpace); Space = isl_space_set_tuple_name(Space, isl_dim_out, "scattering"); Space = isl_space_set_tuple_name(Space, isl_dim_in, getBaseName()); isl_basic_map *bmap = isl_basic_map_universe(isl_space_copy(Space)); isl_int v; isl_int_init(v); isl_constraint *c = isl_equality_alloc(isl_local_space_from_space(Space)); isl_int_set_si(v, -1); isl_constraint_set_coefficient(c, isl_dim_out, 0, v); // TODO: This is incorrect. We should not use a very large number to ensure // that this statement is executed last. isl_int_set_si(v, 200000000); isl_constraint_set_constant(c, v); bmap = isl_basic_map_add_constraint(bmap, c); isl_int_clear(v); Scattering = isl_map_from_basic_map(bmap); Scattering = isl_map_align_params(Scattering, parent.getParamSpace()); // Build memory accesses, use SetVector to keep the order of memory accesses // and prevent the same memory access inserted more than once. SetVector BaseAddressSet; for (Scop::const_iterator SI = Parent.begin(), SE = Parent.end(); SI != SE; ++SI) { ScopStmt *Stmt = *SI; for (MemoryAccessVec::const_iterator I = Stmt->memacc_begin(), E = Stmt->memacc_end(); I != E; ++I) BaseAddressSet.insert((*I)->getBaseAddr()); } for (SetVector::iterator BI = BaseAddressSet.begin(), BE = BaseAddressSet.end(); BI != BE; ++BI) MemAccs.push_back(new MemoryAccess(*BI, this)); } std::string ScopStmt::getDomainStr() const { return stringFromIslObj(Domain); } std::string ScopStmt::getScatteringStr() const { return stringFromIslObj(Scattering); } unsigned ScopStmt::getNumParams() const { return Parent.getNumParams(); } unsigned ScopStmt::getNumIterators() const { // The final read has one dimension with one element. if (!BB) return 1; return IVS.size(); } unsigned ScopStmt::getNumScattering() const { return isl_map_dim(Scattering, isl_dim_out); } const char *ScopStmt::getBaseName() const { return BaseName.c_str(); } const PHINode *ScopStmt::getInductionVariableForDimension(unsigned Dimension) const { return IVS[Dimension].first; } const Loop *ScopStmt::getLoopForDimension(unsigned Dimension) const { return IVS[Dimension].second; } const SCEVAddRecExpr *ScopStmt::getSCEVForDimension(unsigned Dimension) const { PHINode *PN = const_cast(getInductionVariableForDimension(Dimension)); return cast(getParent()->getSE()->getSCEV(PN)); } isl_ctx *ScopStmt::getIslCtx() const { return Parent.getIslCtx(); } isl_set *ScopStmt::getDomain() const { return isl_set_copy(Domain); } ScopStmt::~ScopStmt() { while (!MemAccs.empty()) { delete MemAccs.back(); MemAccs.pop_back(); } isl_set_free(Domain); isl_map_free(Scattering); } void ScopStmt::print(raw_ostream &OS) const { OS << "\t" << getBaseName() << "\n"; OS.indent(12) << "Domain :=\n"; if (Domain) { OS.indent(16) << getDomainStr() << ";\n"; } else OS.indent(16) << "n/a\n"; OS.indent(12) << "Scattering :=\n"; if (Domain) { OS.indent(16) << getScatteringStr() << ";\n"; } else OS.indent(16) << "n/a\n"; for (MemoryAccessVec::const_iterator I = MemAccs.begin(), E = MemAccs.end(); I != E; ++I) (*I)->print(OS); } void ScopStmt::dump() const { print(dbgs()); } //===----------------------------------------------------------------------===// /// Scop class implement void Scop::buildContext(isl_ctx *IslCtx, ParamSetType *ParamSet) { isl_space *Space = isl_space_params_alloc(IslCtx, ParamSet->size()); int i = 0; for (ParamSetType::iterator PI = ParamSet->begin(), PE = ParamSet->end(); PI != PE; ++PI) { const SCEV *Parameter = *PI; Parameters.push_back(Parameter); std::string ParameterName = "p" + convertInt(i); isl_id *id = isl_id_alloc(IslCtx, ParameterName.c_str(), (void *) Parameter); Space = isl_space_set_dim_id(Space, isl_dim_param, i, id); i++; } // TODO: Insert relations between parameters. // TODO: Insert constraints on parameters. Context = isl_set_universe (Space); } Scop::Scop(TempScop &tempScop, LoopInfo &LI, ScalarEvolution &ScalarEvolution, isl_ctx *Context) : SE(&ScalarEvolution), R(tempScop.getMaxRegion()), MaxLoopDepth(tempScop.getMaxLoopDepth()) { buildContext(Context, &tempScop.getParamSet()); SmallVector NestLoops; SmallVector Scatter; Scatter.assign(MaxLoopDepth + 1, 0); // Build the iteration domain, access functions and scattering functions // traversing the region tree. buildScop(tempScop, getRegion(), NestLoops, Scatter, LI); Stmts.push_back(new ScopStmt(*this, Scatter)); assert(NestLoops.empty() && "NestLoops not empty at top level!"); } Scop::~Scop() { isl_set_free(Context); // Free the statements; for (iterator I = begin(), E = end(); I != E; ++I) delete *I; } std::string Scop::getContextStr() const { return stringFromIslObj(Context); } std::string Scop::getNameStr() const { std::string ExitName, EntryName; raw_string_ostream ExitStr(ExitName); raw_string_ostream EntryStr(EntryName); WriteAsOperand(EntryStr, R.getEntry(), false); EntryStr.str(); if (R.getExit()) { WriteAsOperand(ExitStr, R.getExit(), false); ExitStr.str(); } else ExitName = "FunctionExit"; return EntryName + "---" + ExitName; } __isl_give isl_set *Scop::getContext() const { return isl_set_copy(Context); } __isl_give isl_space *Scop::getParamSpace() const { return isl_set_get_space(this->Context); } void Scop::printContext(raw_ostream &OS) const { OS << "Context:\n"; if (!Context) { OS.indent(4) << "n/a\n\n"; return; } OS.indent(4) << getContextStr() << "\n"; } void Scop::printStatements(raw_ostream &OS) const { OS << "Statements {\n"; for (const_iterator SI = begin(), SE = end();SI != SE; ++SI) OS.indent(4) << (**SI); OS.indent(4) << "}\n"; } void Scop::print(raw_ostream &OS) const { printContext(OS.indent(4)); printStatements(OS.indent(4)); } void Scop::dump() const { print(dbgs()); } isl_ctx *Scop::getIslCtx() const { return isl_set_get_ctx(Context); } ScalarEvolution *Scop::getSE() const { return SE; } bool Scop::isTrivialBB(BasicBlock *BB, TempScop &tempScop) { if (tempScop.getAccessFunctions(BB)) return false; return true; } void Scop::buildScop(TempScop &tempScop, const Region &CurRegion, SmallVectorImpl &NestLoops, SmallVectorImpl &Scatter, LoopInfo &LI) { Loop *L = castToLoop(CurRegion, LI); if (L) NestLoops.push_back(L); unsigned loopDepth = NestLoops.size(); assert(Scatter.size() > loopDepth && "Scatter not big enough!"); for (Region::const_element_iterator I = CurRegion.element_begin(), E = CurRegion.element_end(); I != E; ++I) if (I->isSubRegion()) buildScop(tempScop, *(I->getNodeAs()), NestLoops, Scatter, LI); else { BasicBlock *BB = I->getNodeAs(); if (isTrivialBB(BB, tempScop)) continue; Stmts.push_back(new ScopStmt(*this, tempScop, CurRegion, *BB, NestLoops, Scatter)); // Increasing the Scattering function is OK for the moment, because // we are using a depth first iterator and the program is well structured. ++Scatter[loopDepth]; } if (!L) return; // Exiting a loop region. Scatter[loopDepth] = 0; NestLoops.pop_back(); ++Scatter[loopDepth-1]; } //===----------------------------------------------------------------------===// ScopInfo::ScopInfo() : RegionPass(ID), scop(0) { ctx = isl_ctx_alloc(); } ScopInfo::~ScopInfo() { clear(); isl_ctx_free(ctx); } void ScopInfo::getAnalysisUsage(AnalysisUsage &AU) const { AU.addRequired(); AU.addRequired(); AU.addRequired(); AU.addRequired(); AU.setPreservesAll(); } bool ScopInfo::runOnRegion(Region *R, RGPassManager &RGM) { LoopInfo &LI = getAnalysis(); ScalarEvolution &SE = getAnalysis(); TempScop *tempScop = getAnalysis().getTempScop(R); // This region is no Scop. if (!tempScop) { scop = 0; return false; } // Statistics. ++ScopFound; if (tempScop->getMaxLoopDepth() > 0) ++RichScopFound; scop = new Scop(*tempScop, LI, SE, ctx); return false; } char ScopInfo::ID = 0; static RegisterPass X("polly-scops", "Polly - Create polyhedral description of Scops"); Pass *polly::createScopInfoPass() { return new ScopInfo(); }