//===--- CGStmt.cpp - Emit LLVM Code from Statements ----------------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This contains code to emit Stmt nodes as LLVM code. // //===----------------------------------------------------------------------===// #include "CodeGenFunction.h" #include "clang/AST/AST.h" #include "clang/Basic/TargetInfo.h" #include "llvm/Constants.h" #include "llvm/DerivedTypes.h" #include "llvm/Function.h" #include "llvm/InlineAsm.h" #include "llvm/ADT/StringExtras.h" using namespace clang; using namespace CodeGen; //===----------------------------------------------------------------------===// // Statement Emission //===----------------------------------------------------------------------===// void CodeGenFunction::EmitStmt(const Stmt *S) { assert(S && "Null statement?"); switch (S->getStmtClass()) { default: // Must be an expression in a stmt context. Emit the value (to get // side-effects) and ignore the result. if (const Expr *E = dyn_cast(S)) { if (!hasAggregateLLVMType(E->getType())) EmitScalarExpr(E); else if (E->getType()->isAnyComplexType()) EmitComplexExpr(E); else EmitAggExpr(E, 0, false); } else { WarnUnsupported(S, "statement"); } break; case Stmt::NullStmtClass: break; case Stmt::CompoundStmtClass: EmitCompoundStmt(cast(*S)); break; case Stmt::LabelStmtClass: EmitLabelStmt(cast(*S)); break; case Stmt::GotoStmtClass: EmitGotoStmt(cast(*S)); break; case Stmt::IfStmtClass: EmitIfStmt(cast(*S)); break; case Stmt::WhileStmtClass: EmitWhileStmt(cast(*S)); break; case Stmt::DoStmtClass: EmitDoStmt(cast(*S)); break; case Stmt::ForStmtClass: EmitForStmt(cast(*S)); break; case Stmt::ReturnStmtClass: EmitReturnStmt(cast(*S)); break; case Stmt::DeclStmtClass: EmitDeclStmt(cast(*S)); break; case Stmt::BreakStmtClass: EmitBreakStmt(); break; case Stmt::ContinueStmtClass: EmitContinueStmt(); break; case Stmt::SwitchStmtClass: EmitSwitchStmt(cast(*S)); break; case Stmt::DefaultStmtClass: EmitDefaultStmt(cast(*S)); break; case Stmt::CaseStmtClass: EmitCaseStmt(cast(*S)); break; case Stmt::AsmStmtClass: EmitAsmStmt(cast(*S)); break; } } /// EmitCompoundStmt - Emit a compound statement {..} node. If GetLast is true, /// this captures the expression result of the last sub-statement and returns it /// (for use by the statement expression extension). RValue CodeGenFunction::EmitCompoundStmt(const CompoundStmt &S, bool GetLast, llvm::Value *AggLoc, bool isAggVol) { // FIXME: handle vla's etc. if (S.body_empty() || !isa(S.body_back())) GetLast = false; for (CompoundStmt::const_body_iterator I = S.body_begin(), E = S.body_end()-GetLast; I != E; ++I) EmitStmt(*I); if (!GetLast) return RValue::get(0); return EmitAnyExpr(cast(S.body_back()), AggLoc); } void CodeGenFunction::EmitBlock(llvm::BasicBlock *BB) { // Emit a branch from this block to the next one if this was a real block. If // this was just a fall-through block after a terminator, don't emit it. llvm::BasicBlock *LastBB = Builder.GetInsertBlock(); if (LastBB->getTerminator()) { // If the previous block is already terminated, don't touch it. } else if (LastBB->empty() && LastBB->getValueName() == 0) { // If the last block was an empty placeholder, remove it now. // TODO: cache and reuse these. Builder.GetInsertBlock()->eraseFromParent(); } else { // Otherwise, create a fall-through branch. Builder.CreateBr(BB); } CurFn->getBasicBlockList().push_back(BB); Builder.SetInsertPoint(BB); } void CodeGenFunction::EmitLabelStmt(const LabelStmt &S) { llvm::BasicBlock *NextBB = getBasicBlockForLabel(&S); EmitBlock(NextBB); EmitStmt(S.getSubStmt()); } void CodeGenFunction::EmitGotoStmt(const GotoStmt &S) { Builder.CreateBr(getBasicBlockForLabel(S.getLabel())); // Emit a block after the branch so that dead code after a goto has some place // to go. Builder.SetInsertPoint(llvm::BasicBlock::Create("", CurFn)); } void CodeGenFunction::EmitIfStmt(const IfStmt &S) { // C99 6.8.4.1: The first substatement is executed if the expression compares // unequal to 0. The condition must be a scalar type. llvm::Value *BoolCondVal = EvaluateExprAsBool(S.getCond()); llvm::BasicBlock *ContBlock = llvm::BasicBlock::Create("ifend"); llvm::BasicBlock *ThenBlock = llvm::BasicBlock::Create("ifthen"); llvm::BasicBlock *ElseBlock = ContBlock; if (S.getElse()) ElseBlock = llvm::BasicBlock::Create("ifelse"); // Insert the conditional branch. Builder.CreateCondBr(BoolCondVal, ThenBlock, ElseBlock); // Emit the 'then' code. EmitBlock(ThenBlock); EmitStmt(S.getThen()); llvm::BasicBlock *BB = Builder.GetInsertBlock(); if (isDummyBlock(BB)) { BB->eraseFromParent(); Builder.SetInsertPoint(ThenBlock); } else Builder.CreateBr(ContBlock); // Emit the 'else' code if present. if (const Stmt *Else = S.getElse()) { EmitBlock(ElseBlock); EmitStmt(Else); llvm::BasicBlock *BB = Builder.GetInsertBlock(); if (isDummyBlock(BB)) { BB->eraseFromParent(); Builder.SetInsertPoint(ElseBlock); } else Builder.CreateBr(ContBlock); } // Emit the continuation block for code after the if. EmitBlock(ContBlock); } void CodeGenFunction::EmitWhileStmt(const WhileStmt &S) { // Emit the header for the loop, insert it, which will create an uncond br to // it. llvm::BasicBlock *LoopHeader = llvm::BasicBlock::Create("whilecond"); EmitBlock(LoopHeader); // Evaluate the conditional in the while header. C99 6.8.5.1: The evaluation // of the controlling expression takes place before each execution of the loop // body. llvm::Value *BoolCondVal = EvaluateExprAsBool(S.getCond()); // while(1) is common, avoid extra exit blocks. Be sure // to correctly handle break/continue though. bool EmitBoolCondBranch = true; if (llvm::ConstantInt *C = dyn_cast(BoolCondVal)) if (C->isOne()) EmitBoolCondBranch = false; // Create an exit block for when the condition fails, create a block for the // body of the loop. llvm::BasicBlock *ExitBlock = llvm::BasicBlock::Create("whileexit"); llvm::BasicBlock *LoopBody = llvm::BasicBlock::Create("whilebody"); // As long as the condition is true, go to the loop body. if (EmitBoolCondBranch) Builder.CreateCondBr(BoolCondVal, LoopBody, ExitBlock); // Store the blocks to use for break and continue. BreakContinueStack.push_back(BreakContinue(ExitBlock, LoopHeader)); // Emit the loop body. EmitBlock(LoopBody); EmitStmt(S.getBody()); BreakContinueStack.pop_back(); // Cycle to the condition. Builder.CreateBr(LoopHeader); // Emit the exit block. EmitBlock(ExitBlock); // If LoopHeader is a simple forwarding block then eliminate it. if (!EmitBoolCondBranch && &LoopHeader->front() == LoopHeader->getTerminator()) { LoopHeader->replaceAllUsesWith(LoopBody); LoopHeader->getTerminator()->eraseFromParent(); LoopHeader->eraseFromParent(); } } void CodeGenFunction::EmitDoStmt(const DoStmt &S) { // Emit the body for the loop, insert it, which will create an uncond br to // it. llvm::BasicBlock *LoopBody = llvm::BasicBlock::Create("dobody"); llvm::BasicBlock *AfterDo = llvm::BasicBlock::Create("afterdo"); EmitBlock(LoopBody); llvm::BasicBlock *DoCond = llvm::BasicBlock::Create("docond"); // Store the blocks to use for break and continue. BreakContinueStack.push_back(BreakContinue(AfterDo, DoCond)); // Emit the body of the loop into the block. EmitStmt(S.getBody()); BreakContinueStack.pop_back(); EmitBlock(DoCond); // C99 6.8.5.2: "The evaluation of the controlling expression takes place // after each execution of the loop body." // Evaluate the conditional in the while header. // C99 6.8.5p2/p4: The first substatement is executed if the expression // compares unequal to 0. The condition must be a scalar type. llvm::Value *BoolCondVal = EvaluateExprAsBool(S.getCond()); // "do {} while (0)" is common in macros, avoid extra blocks. Be sure // to correctly handle break/continue though. bool EmitBoolCondBranch = true; if (llvm::ConstantInt *C = dyn_cast(BoolCondVal)) if (C->isZero()) EmitBoolCondBranch = false; // As long as the condition is true, iterate the loop. if (EmitBoolCondBranch) Builder.CreateCondBr(BoolCondVal, LoopBody, AfterDo); // Emit the exit block. EmitBlock(AfterDo); // If DoCond is a simple forwarding block then eliminate it. if (!EmitBoolCondBranch && &DoCond->front() == DoCond->getTerminator()) { DoCond->replaceAllUsesWith(AfterDo); DoCond->getTerminator()->eraseFromParent(); DoCond->eraseFromParent(); } } void CodeGenFunction::EmitForStmt(const ForStmt &S) { // FIXME: What do we do if the increment (f.e.) contains a stmt expression, // which contains a continue/break? // TODO: We could keep track of whether the loop body contains any // break/continue statements and not create unnecessary blocks (like // "afterfor" for a condless loop) if it doesn't. // Evaluate the first part before the loop. if (S.getInit()) EmitStmt(S.getInit()); // Start the loop with a block that tests the condition. llvm::BasicBlock *CondBlock = llvm::BasicBlock::Create("forcond"); llvm::BasicBlock *AfterFor = llvm::BasicBlock::Create("afterfor"); EmitBlock(CondBlock); // Evaluate the condition if present. If not, treat it as a non-zero-constant // according to 6.8.5.3p2, aka, true. if (S.getCond()) { // C99 6.8.5p2/p4: The first substatement is executed if the expression // compares unequal to 0. The condition must be a scalar type. llvm::Value *BoolCondVal = EvaluateExprAsBool(S.getCond()); // As long as the condition is true, iterate the loop. llvm::BasicBlock *ForBody = llvm::BasicBlock::Create("forbody"); Builder.CreateCondBr(BoolCondVal, ForBody, AfterFor); EmitBlock(ForBody); } else { // Treat it as a non-zero constant. Don't even create a new block for the // body, just fall into it. } // If the for loop doesn't have an increment we can just use the // condition as the continue block. llvm::BasicBlock *ContinueBlock; if (S.getInc()) ContinueBlock = llvm::BasicBlock::Create("forinc"); else ContinueBlock = CondBlock; // Store the blocks to use for break and continue. BreakContinueStack.push_back(BreakContinue(AfterFor, ContinueBlock)); // If the condition is true, execute the body of the for stmt. EmitStmt(S.getBody()); BreakContinueStack.pop_back(); if (S.getInc()) EmitBlock(ContinueBlock); // If there is an increment, emit it next. if (S.getInc()) EmitStmt(S.getInc()); // Finally, branch back up to the condition for the next iteration. Builder.CreateBr(CondBlock); // Emit the fall-through block. EmitBlock(AfterFor); } /// EmitReturnStmt - Note that due to GCC extensions, this can have an operand /// if the function returns void, or may be missing one if the function returns /// non-void. Fun stuff :). void CodeGenFunction::EmitReturnStmt(const ReturnStmt &S) { // Emit the result value, even if unused, to evalute the side effects. const Expr *RV = S.getRetValue(); if (FnRetTy->isVoidType()) { // If the function returns void, emit ret void. Builder.CreateRetVoid(); } else if (RV == 0) { // Handle "return;" in a function that returns a value. const llvm::Type *RetTy = CurFn->getFunctionType()->getReturnType(); if (RetTy == llvm::Type::VoidTy) Builder.CreateRetVoid(); // struct return etc. else Builder.CreateRet(llvm::UndefValue::get(RetTy)); } else if (!hasAggregateLLVMType(RV->getType())) { Builder.CreateRet(EmitScalarExpr(RV)); } else if (RV->getType()->isAnyComplexType()) { llvm::Value *SRetPtr = CurFn->arg_begin(); EmitComplexExprIntoAddr(RV, SRetPtr, false); } else { llvm::Value *SRetPtr = CurFn->arg_begin(); EmitAggExpr(RV, SRetPtr, false); } // Emit a block after the branch so that dead code after a return has some // place to go. EmitBlock(llvm::BasicBlock::Create()); } void CodeGenFunction::EmitDeclStmt(const DeclStmt &S) { for (const ScopedDecl *Decl = S.getDecl(); Decl; Decl = Decl->getNextDeclarator()) EmitDecl(*Decl); } void CodeGenFunction::EmitBreakStmt() { assert(!BreakContinueStack.empty() && "break stmt not in a loop or switch!"); llvm::BasicBlock *Block = BreakContinueStack.back().BreakBlock; Builder.CreateBr(Block); EmitBlock(llvm::BasicBlock::Create()); } void CodeGenFunction::EmitContinueStmt() { assert(!BreakContinueStack.empty() && "continue stmt not in a loop!"); llvm::BasicBlock *Block = BreakContinueStack.back().ContinueBlock; Builder.CreateBr(Block); EmitBlock(llvm::BasicBlock::Create()); } /// EmitCaseStmtRange - If case statement range is not too big then /// add multiple cases to switch instruction, one for each value within /// the range. If range is too big then emit "if" condition check. void CodeGenFunction::EmitCaseStmtRange(const CaseStmt &S) { assert (S.getRHS() && "Unexpected RHS value in CaseStmt"); const Expr *L = S.getLHS(); const Expr *R = S.getRHS(); llvm::ConstantInt *LV = cast(EmitScalarExpr(L)); llvm::ConstantInt *RV = cast(EmitScalarExpr(R)); llvm::APInt LHS = LV->getValue(); const llvm::APInt &RHS = RV->getValue(); llvm::APInt Range = RHS - LHS; if (Range.ult(llvm::APInt(Range.getBitWidth(), 64))) { // Range is small enough to add multiple switch instruction cases. StartBlock("sw.bb"); llvm::BasicBlock *CaseDest = Builder.GetInsertBlock(); SwitchInsn->addCase(LV, CaseDest); LHS++; while (LHS != RHS) { SwitchInsn->addCase(llvm::ConstantInt::get(LHS), CaseDest); LHS++; } SwitchInsn->addCase(RV, CaseDest); EmitStmt(S.getSubStmt()); return; } // The range is too big. Emit "if" condition. llvm::BasicBlock *FalseDest = NULL; llvm::BasicBlock *CaseDest = llvm::BasicBlock::Create("sw.bb"); // If we have already seen one case statement range for this switch // instruction then piggy-back otherwise use default block as false // destination. if (CaseRangeBlock) FalseDest = CaseRangeBlock; else FalseDest = SwitchInsn->getDefaultDest(); // Start new block to hold case statement range check instructions. StartBlock("case.range"); CaseRangeBlock = Builder.GetInsertBlock(); // Emit range check. llvm::Value *Diff = Builder.CreateSub(SwitchInsn->getCondition(), LV, "tmp"); llvm::Value *Cond = Builder.CreateICmpULE(Diff, llvm::ConstantInt::get(Range), "tmp"); Builder.CreateCondBr(Cond, CaseDest, FalseDest); // Now emit case statement body. EmitBlock(CaseDest); EmitStmt(S.getSubStmt()); } void CodeGenFunction::EmitCaseStmt(const CaseStmt &S) { if (S.getRHS()) { EmitCaseStmtRange(S); return; } StartBlock("sw.bb"); llvm::BasicBlock *CaseDest = Builder.GetInsertBlock(); llvm::APSInt CaseVal(32); S.getLHS()->isIntegerConstantExpr(CaseVal, getContext()); llvm::ConstantInt *LV = llvm::ConstantInt::get(CaseVal); SwitchInsn->addCase(LV, CaseDest); EmitStmt(S.getSubStmt()); } void CodeGenFunction::EmitDefaultStmt(const DefaultStmt &S) { StartBlock("sw.default"); // Current insert block is the default destination. SwitchInsn->setSuccessor(0, Builder.GetInsertBlock()); EmitStmt(S.getSubStmt()); } void CodeGenFunction::EmitSwitchStmt(const SwitchStmt &S) { llvm::Value *CondV = EmitScalarExpr(S.getCond()); // Handle nested switch statements. llvm::SwitchInst *SavedSwitchInsn = SwitchInsn; llvm::BasicBlock *SavedCRBlock = CaseRangeBlock; CaseRangeBlock = NULL; // Create basic block to hold stuff that comes after switch statement. // Initially use it to hold DefaultStmt. llvm::BasicBlock *NextBlock = llvm::BasicBlock::Create("after.sw"); SwitchInsn = Builder.CreateSwitch(CondV, NextBlock); // All break statements jump to NextBlock. If BreakContinueStack is non empty // then reuse last ContinueBlock. llvm::BasicBlock *ContinueBlock = NULL; if (!BreakContinueStack.empty()) ContinueBlock = BreakContinueStack.back().ContinueBlock; BreakContinueStack.push_back(BreakContinue(NextBlock, ContinueBlock)); // Emit switch body. EmitStmt(S.getBody()); BreakContinueStack.pop_back(); // If one or more case statement range is seen then use CaseRangeBlock // as the default block. False edge of CaseRangeBlock will lead to // original default block. if (CaseRangeBlock) SwitchInsn->setSuccessor(0, CaseRangeBlock); // Prune insert block if it is dummy. llvm::BasicBlock *BB = Builder.GetInsertBlock(); if (isDummyBlock(BB)) BB->eraseFromParent(); else // Otherwise, branch to continuation. Builder.CreateBr(NextBlock); // Place NextBlock as the new insert point. CurFn->getBasicBlockList().push_back(NextBlock); Builder.SetInsertPoint(NextBlock); SwitchInsn = SavedSwitchInsn; CaseRangeBlock = SavedCRBlock; } static inline std::string ConvertAsmString(const char *Start, unsigned NumOperands, bool IsSimple) { static unsigned AsmCounter = 0; AsmCounter++; std::string Result; if (IsSimple) { while (*Start) { switch (*Start) { default: Result += *Start; break; case '$': Result += "$$"; break; } Start++; } return Result; } while (*Start) { switch (*Start) { default: Result += *Start; break; case '$': Result += "$$"; break; case '%': // Escaped character Start++; if (!*Start) { // FIXME: This should be caught during Sema. assert(0 && "Trailing '%' in asm string."); } char EscapedChar = *Start; if (EscapedChar == '%') { // Escaped percentage sign. Result += '%'; } else if (EscapedChar == '=') { // Generate an unique ID. Result += llvm::utostr(AsmCounter); } else if (isdigit(EscapedChar)) { // %n - Assembler operand n char *End; unsigned long n = strtoul(Start, &End, 10); if (Start == End) { // FIXME: This should be caught during Sema. assert(0 && "Missing operand!"); } else if (n >= NumOperands) { // FIXME: This should be caught during Sema. assert(0 && "Operand number out of range!"); } Result += '$' + llvm::utostr(n); Start = End - 1; } else if (isalpha(EscapedChar)) { char *End; unsigned long n = strtoul(Start + 1, &End, 10); if (Start == End) { // FIXME: This should be caught during Sema. assert(0 && "Missing operand!"); } else if (n >= NumOperands) { // FIXME: This should be caught during Sema. assert(0 && "Operand number out of range!"); } Result += "${" + llvm::utostr(n) + ':' + EscapedChar + '}'; Start = End - 1; } else { assert(0 && "Unhandled asm escaped character!"); } } Start++; } return Result; } static std::string SimplifyConstraint(const char* Constraint, TargetInfo &Target) { std::string Result; while (*Constraint) { switch (*Constraint) { default: Result += Target.convertConstraint(*Constraint); break; // Ignore these case '*': case '?': case '!': break; case 'g': Result += "imr"; break; } Constraint++; } return Result; } void CodeGenFunction::EmitAsmStmt(const AsmStmt &S) { std::string AsmString = ConvertAsmString(std::string(S.getAsmString()->getStrData(), S.getAsmString()->getByteLength()).c_str(), S.getNumOutputs() + S.getNumInputs(), S.isSimple()); std::string Constraints; llvm::Value *ResultAddr = 0; const llvm::Type *ResultType = llvm::Type::VoidTy; std::vector ArgTypes; std::vector Args; // Keep track of inout constraints. std::string InOutConstraints; std::vector InOutArgs; std::vector InOutArgTypes; for (unsigned i = 0, e = S.getNumOutputs(); i != e; i++) { std::string OutputConstraint(S.getOutputConstraint(i)->getStrData(), S.getOutputConstraint(i)->getByteLength()); TargetInfo::ConstraintInfo Info; bool result = Target.validateOutputConstraint(OutputConstraint.c_str(), Info); assert(result && "Failed to parse output constraint"); // Simplify the output constraint. OutputConstraint = SimplifyConstraint(OutputConstraint.c_str() + 1, Target); LValue Dest = EmitLValue(S.getOutputExpr(i)); const llvm::Type *DestValueType = cast(Dest.getAddress()->getType())->getElementType(); // If the first output operand is not a memory dest, we'll // make it the return value. if (i == 0 && !(Info & TargetInfo::CI_AllowsMemory) && DestValueType->isFirstClassType()) { ResultAddr = Dest.getAddress(); ResultType = DestValueType; Constraints += "=" + OutputConstraint; } else { ArgTypes.push_back(Dest.getAddress()->getType()); Args.push_back(Dest.getAddress()); if (i != 0) Constraints += ','; Constraints += "=*"; Constraints += OutputConstraint; } if (Info & TargetInfo::CI_ReadWrite) { // FIXME: This code should be shared with the code that handles inputs. InOutConstraints += ','; const Expr *InputExpr = S.getOutputExpr(i); llvm::Value *Arg; if ((Info & TargetInfo::CI_AllowsRegister) || !(Info & TargetInfo::CI_AllowsMemory)) { if (ConvertType(InputExpr->getType())->isFirstClassType()) { Arg = EmitScalarExpr(InputExpr); } else { assert(0 && "FIXME: Implement passing non first class types as inputs"); } } else { LValue Dest = EmitLValue(InputExpr); Arg = Dest.getAddress(); InOutConstraints += '*'; } InOutArgTypes.push_back(Arg->getType()); InOutArgs.push_back(Arg); InOutConstraints += OutputConstraint; } } unsigned NumConstraints = S.getNumOutputs() + S.getNumInputs(); for (unsigned i = 0, e = S.getNumInputs(); i != e; i++) { const Expr *InputExpr = S.getInputExpr(i); std::string InputConstraint(S.getInputConstraint(i)->getStrData(), S.getInputConstraint(i)->getByteLength()); TargetInfo::ConstraintInfo Info; bool result = Target.validateInputConstraint(InputConstraint.c_str(), NumConstraints, Info); assert(result && "Failed to parse input constraint"); if (i != 0 || S.getNumOutputs() > 0) Constraints += ','; // Simplify the input constraint. InputConstraint = SimplifyConstraint(InputConstraint.c_str(), Target); llvm::Value *Arg; if ((Info & TargetInfo::CI_AllowsRegister) || !(Info & TargetInfo::CI_AllowsMemory)) { if (ConvertType(InputExpr->getType())->isFirstClassType()) { Arg = EmitScalarExpr(InputExpr); } else { assert(0 && "FIXME: Implement passing non first class types as inputs"); } } else { LValue Dest = EmitLValue(InputExpr); Arg = Dest.getAddress(); Constraints += '*'; } ArgTypes.push_back(Arg->getType()); Args.push_back(Arg); Constraints += InputConstraint; } // Append the "input" part of inout constraints last. for (unsigned i = 0, e = InOutArgs.size(); i != e; i++) { ArgTypes.push_back(InOutArgTypes[i]); Args.push_back(InOutArgs[i]); } Constraints += InOutConstraints; // Clobbers for (unsigned i = 0, e = S.getNumClobbers(); i != e; i++) { std::string Clobber(S.getClobber(i)->getStrData(), S.getClobber(i)->getByteLength()); Clobber = Target.getNormalizedGCCRegisterName(Clobber.c_str()); if (i != 0 || NumConstraints != 0) Constraints += ','; Constraints += "~{"; Constraints += Clobber; Constraints += '}'; } // Add machine specific clobbers if (const char *C = Target.getClobbers()) { if (!Constraints.empty()) Constraints += ','; Constraints += C; } const llvm::FunctionType *FTy = llvm::FunctionType::get(ResultType, ArgTypes, false); llvm::InlineAsm *IA = llvm::InlineAsm::get(FTy, AsmString, Constraints, S.isVolatile() || S.getNumOutputs() == 0); llvm::Value *Result = Builder.CreateCall(IA, Args.begin(), Args.end(), ""); if (ResultAddr) Builder.CreateStore(Result, ResultAddr); }