//===- PPC64.cpp ----------------------------------------------------------===// // // The LLVM Linker // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// #include "Symbols.h" #include "SyntheticSections.h" #include "Target.h" #include "lld/Common/ErrorHandler.h" #include "llvm/Support/Endian.h" using namespace llvm; using namespace llvm::object; using namespace llvm::support::endian; using namespace llvm::ELF; using namespace lld; using namespace lld::elf; static uint64_t PPC64TocOffset = 0x8000; uint64_t elf::getPPC64TocBase() { // The TOC consists of sections .got, .toc, .tocbss, .plt in that order. The // TOC starts where the first of these sections starts. We always create a // .got when we see a relocation that uses it, so for us the start is always // the .got. uint64_t TocVA = InX::Got->getVA(); // Per the ppc64-elf-linux ABI, The TOC base is TOC value plus 0x8000 // thus permitting a full 64 Kbytes segment. Note that the glibc startup // code (crt1.o) assumes that you can get from the TOC base to the // start of the .toc section with only a single (signed) 16-bit relocation. return TocVA + PPC64TocOffset; } namespace { class PPC64 final : public TargetInfo { public: PPC64(); uint32_t calcEFlags() const override; RelExpr getRelExpr(RelType Type, const Symbol &S, const uint8_t *Loc) const override; void writePlt(uint8_t *Buf, uint64_t GotPltEntryAddr, uint64_t PltEntryAddr, int32_t Index, unsigned RelOff) const override; void relocateOne(uint8_t *Loc, RelType Type, uint64_t Val) const override; void writeGotHeader(uint8_t *Buf) const override; }; } // namespace // Relocation masks following the #lo(value), #hi(value), #ha(value), // #higher(value), #highera(value), #highest(value), and #highesta(value) // macros defined in section 4.5.1. Relocation Types of the PPC-elf64abi // document. static uint16_t applyPPCLo(uint64_t V) { return V; } static uint16_t applyPPCHi(uint64_t V) { return V >> 16; } static uint16_t applyPPCHa(uint64_t V) { return (V + 0x8000) >> 16; } static uint16_t applyPPCHigher(uint64_t V) { return V >> 32; } static uint16_t applyPPCHighera(uint64_t V) { return (V + 0x8000) >> 32; } static uint16_t applyPPCHighest(uint64_t V) { return V >> 48; } static uint16_t applyPPCHighesta(uint64_t V) { return (V + 0x8000) >> 48; } PPC64::PPC64() { GotRel = R_PPC64_GLOB_DAT; RelativeRel = R_PPC64_RELATIVE; GotEntrySize = 8; GotPltEntrySize = 8; PltEntrySize = 32; PltHeaderSize = 0; GotBaseSymInGotPlt = false; GotBaseSymOff = 0x8000; GotHeaderEntriesNum = 1; GotPltHeaderEntriesNum = 2; PltRel = R_PPC64_JMP_SLOT; // We need 64K pages (at least under glibc/Linux, the loader won't // set different permissions on a finer granularity than that). DefaultMaxPageSize = 65536; // The PPC64 ELF ABI v1 spec, says: // // It is normally desirable to put segments with different characteristics // in separate 256 Mbyte portions of the address space, to give the // operating system full paging flexibility in the 64-bit address space. // // And because the lowest non-zero 256M boundary is 0x10000000, PPC64 linkers // use 0x10000000 as the starting address. DefaultImageBase = 0x10000000; TrapInstr = (Config->IsLE == sys::IsLittleEndianHost) ? 0x7fe00008 : 0x0800e07f; } static uint32_t getEFlags(InputFile *File) { // Get the e_flag from the input file and issue an error if incompatible // e_flag encountered. uint32_t EFlags = Config->IsLE ? cast>(File)->getObj().getHeader()->e_flags : cast>(File)->getObj().getHeader()->e_flags; if (EFlags > 2) { error("incompatible e_flags: " + toString(File)); return 0; } return EFlags; } uint32_t PPC64::calcEFlags() const { assert(!ObjectFiles.empty()); uint32_t NonZeroFlag; for (InputFile *F : makeArrayRef(ObjectFiles)) { NonZeroFlag = getEFlags(F); if (NonZeroFlag) break; } // Verify that all input files have either the same e_flags, or zero. for (InputFile *F : makeArrayRef(ObjectFiles)) { uint32_t Flag = getEFlags(F); if (Flag == 0 || Flag == NonZeroFlag) continue; error(toString(F) + ": ABI version " + Twine(Flag) + " is not compatible with ABI version " + Twine(NonZeroFlag) + " output"); return 0; } if (NonZeroFlag == 1) { error("PPC64 V1 ABI not supported"); return 0; } return 2; } RelExpr PPC64::getRelExpr(RelType Type, const Symbol &S, const uint8_t *Loc) const { switch (Type) { case R_PPC64_TOC16: case R_PPC64_TOC16_DS: case R_PPC64_TOC16_HA: case R_PPC64_TOC16_HI: case R_PPC64_TOC16_LO: case R_PPC64_TOC16_LO_DS: return R_GOTREL; case R_PPC64_TOC: return R_PPC_TOC; case R_PPC64_REL24: return R_PPC_CALL_PLT; case R_PPC64_REL16_LO: case R_PPC64_REL16_HA: return R_PC; default: return R_ABS; } } void PPC64::writeGotHeader(uint8_t *Buf) const { write64(Buf, getPPC64TocBase()); } void PPC64::writePlt(uint8_t *Buf, uint64_t GotPltEntryAddr, uint64_t PltEntryAddr, int32_t Index, unsigned RelOff) const { uint64_t Off = GotPltEntryAddr - getPPC64TocBase(); // The most-common form of the plt stub. This assumes that the toc-pointer // register is properly initalized, and that the stub must save the toc // pointer value to the stack-save slot reserved for it (sp + 24). // There are 2 other variants but we don't have to emit those until we add // support for R_PPC64_REL24_NOTOC and R_PPC64_TOCSAVE relocations. // We are missing a super simple optimization, where if the upper 16 bits of // the offset are zero, then we can omit the addis instruction, and load // r2 + lo-offset directly into r12. I decided to leave this out in the // spirit of keeping it simple until we can link actual non-trivial // programs. write32(Buf + 0, 0xf8410018); // std r2,24(r1) write32(Buf + 4, 0x3d820000 | applyPPCHa(Off)); // addis r12,r2, X@plt@to@ha write32(Buf + 8, 0xe98c0000 | applyPPCLo(Off)); // ld r12,X@plt@toc@l(r12) write32(Buf + 12, 0x7d8903a6); // mtctr r12 write32(Buf + 16, 0x4e800420); // bctr } static std::pair toAddr16Rel(RelType Type, uint64_t Val) { uint64_t V = Val - PPC64TocOffset; switch (Type) { case R_PPC64_TOC16: return {R_PPC64_ADDR16, V}; case R_PPC64_TOC16_DS: return {R_PPC64_ADDR16_DS, V}; case R_PPC64_TOC16_HA: return {R_PPC64_ADDR16_HA, V}; case R_PPC64_TOC16_HI: return {R_PPC64_ADDR16_HI, V}; case R_PPC64_TOC16_LO: return {R_PPC64_ADDR16_LO, V}; case R_PPC64_TOC16_LO_DS: return {R_PPC64_ADDR16_LO_DS, V}; default: return {Type, Val}; } } void PPC64::relocateOne(uint8_t *Loc, RelType Type, uint64_t Val) const { // For a TOC-relative relocation, proceed in terms of the corresponding // ADDR16 relocation type. std::tie(Type, Val) = toAddr16Rel(Type, Val); switch (Type) { case R_PPC64_ADDR14: { checkAlignment(Loc, Val, 4, Type); // Preserve the AA/LK bits in the branch instruction uint8_t AALK = Loc[3]; write16(Loc + 2, (AALK & 3) | (Val & 0xfffc)); break; } case R_PPC64_ADDR16: checkInt(Loc, Val, 16, Type); write16(Loc, Val); break; case R_PPC64_ADDR16_DS: checkInt(Loc, Val, 16, Type); write16(Loc, (read16(Loc) & 3) | (Val & ~3)); break; case R_PPC64_ADDR16_HA: case R_PPC64_REL16_HA: write16(Loc, applyPPCHa(Val)); break; case R_PPC64_ADDR16_HI: case R_PPC64_REL16_HI: write16(Loc, applyPPCHi(Val)); break; case R_PPC64_ADDR16_HIGHER: write16(Loc, applyPPCHigher(Val)); break; case R_PPC64_ADDR16_HIGHERA: write16(Loc, applyPPCHighera(Val)); break; case R_PPC64_ADDR16_HIGHEST: write16(Loc, applyPPCHighest(Val)); break; case R_PPC64_ADDR16_HIGHESTA: write16(Loc, applyPPCHighesta(Val)); break; case R_PPC64_ADDR16_LO: case R_PPC64_REL16_LO: write16(Loc, applyPPCLo(Val)); break; case R_PPC64_ADDR16_LO_DS: write16(Loc, (read16(Loc) & 3) | (applyPPCLo(Val) & ~3)); break; case R_PPC64_ADDR32: case R_PPC64_REL32: checkInt(Loc, Val, 32, Type); write32(Loc, Val); break; case R_PPC64_ADDR64: case R_PPC64_REL64: case R_PPC64_TOC: write64(Loc, Val); break; case R_PPC64_REL24: { uint32_t Mask = 0x03FFFFFC; checkInt(Loc, Val, 24, Type); write32(Loc, (read32(Loc) & ~Mask) | (Val & Mask)); break; } default: error(getErrorLocation(Loc) + "unrecognized reloc " + Twine(Type)); } } TargetInfo *elf::getPPC64TargetInfo() { static PPC64 Target; return &Target; }