//===- LinkerScript.cpp ---------------------------------------------------===// // // The LLVM Linker // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file contains the parser/evaluator of the linker script. // //===----------------------------------------------------------------------===// #include "LinkerScript.h" #include "Config.h" #include "InputSection.h" #include "Memory.h" #include "OutputSections.h" #include "Strings.h" #include "SymbolTable.h" #include "Symbols.h" #include "SyntheticSections.h" #include "Target.h" #include "Threads.h" #include "Writer.h" #include "llvm/ADT/STLExtras.h" #include "llvm/ADT/StringRef.h" #include "llvm/BinaryFormat/ELF.h" #include "llvm/Support/Casting.h" #include "llvm/Support/Endian.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/Support/FileSystem.h" #include "llvm/Support/Path.h" #include #include #include #include #include #include #include #include using namespace llvm; using namespace llvm::ELF; using namespace llvm::object; using namespace llvm::support::endian; using namespace lld; using namespace lld::elf; LinkerScript *elf::Script; static uint64_t getOutputSectionVA(SectionBase *InputSec, StringRef Loc) { if (OutputSection *OS = InputSec->getOutputSection()) return OS->Addr; error(Loc + ": unable to evaluate expression: input section " + InputSec->Name + " has no output section assigned"); return 0; } uint64_t ExprValue::getValue() const { if (Sec) return alignTo(Sec->getOffset(Val) + getOutputSectionVA(Sec, Loc), Alignment); return alignTo(Val, Alignment); } uint64_t ExprValue::getSecAddr() const { if (Sec) return Sec->getOffset(0) + getOutputSectionVA(Sec, Loc); return 0; } uint64_t ExprValue::getSectionOffset() const { // If the alignment is trivial, we don't have to compute the full // value to know the offset. This allows this function to succeed in // cases where the output section is not yet known. if (Alignment == 1) return Val; return getValue() - getSecAddr(); } static SymbolBody *addRegular(SymbolAssignment *Cmd) { Symbol *Sym; uint8_t Visibility = Cmd->Hidden ? STV_HIDDEN : STV_DEFAULT; std::tie(Sym, std::ignore) = Symtab->insert(Cmd->Name, /*Type*/ 0, Visibility, /*CanOmitFromDynSym*/ false, /*File*/ nullptr); Sym->Binding = STB_GLOBAL; ExprValue Value = Cmd->Expression(); SectionBase *Sec = Value.isAbsolute() ? nullptr : Value.Sec; // We want to set symbol values early if we can. This allows us to use symbols // as variables in linker scripts. Doing so allows us to write expressions // like this: `alignment = 16; . = ALIGN(., alignment)` uint64_t SymValue = Value.Sec ? 0 : Value.getValue(); replaceBody(Sym, nullptr, Cmd->Name, /*IsLocal=*/false, Visibility, STT_NOTYPE, SymValue, 0, Sec); return Sym->body(); } OutputSection *LinkerScript::createOutputSection(StringRef Name, StringRef Location) { OutputSection *&SecRef = NameToOutputSection[Name]; OutputSection *Sec; if (SecRef && SecRef->Location.empty()) { // There was a forward reference. Sec = SecRef; } else { Sec = make(Name, SHT_PROGBITS, 0); if (!SecRef) SecRef = Sec; } Sec->Location = Location; return Sec; } OutputSection *LinkerScript::getOrCreateOutputSection(StringRef Name) { OutputSection *&CmdRef = NameToOutputSection[Name]; if (!CmdRef) CmdRef = make(Name, SHT_PROGBITS, 0); return CmdRef; } void LinkerScript::setDot(Expr E, const Twine &Loc, bool InSec) { uint64_t Val = E().getValue(); if (Val < Dot && InSec) error(Loc + ": unable to move location counter backward for: " + CurAddressState->OutSec->Name); Dot = Val; // Update to location counter means update to section size. if (InSec) CurAddressState->OutSec->Size = Dot - CurAddressState->OutSec->Addr; } // Sets value of a symbol. Two kinds of symbols are processed: synthetic // symbols, whose value is an offset from beginning of section and regular // symbols whose value is absolute. void LinkerScript::assignSymbol(SymbolAssignment *Cmd, bool InSec) { if (Cmd->Name == ".") { setDot(Cmd->Expression, Cmd->Location, InSec); return; } if (!Cmd->Sym) return; auto *Sym = cast(Cmd->Sym); ExprValue V = Cmd->Expression(); if (V.isAbsolute()) { Sym->Value = V.getValue(); Sym->Section = nullptr; } else { Sym->Section = V.Sec; Sym->Value = V.getSectionOffset(); } } void LinkerScript::addSymbol(SymbolAssignment *Cmd) { if (Cmd->Name == ".") return; // If a symbol was in PROVIDE(), we need to define it only when // it is a referenced undefined symbol. SymbolBody *B = Symtab->find(Cmd->Name); if (Cmd->Provide && (!B || B->isDefined())) return; Cmd->Sym = addRegular(Cmd); } bool SymbolAssignment::classof(const BaseCommand *C) { return C->Kind == AssignmentKind; } bool InputSectionDescription::classof(const BaseCommand *C) { return C->Kind == InputSectionKind; } bool AssertCommand::classof(const BaseCommand *C) { return C->Kind == AssertKind; } bool BytesDataCommand::classof(const BaseCommand *C) { return C->Kind == BytesDataKind; } static std::string filename(InputFile *File) { if (!File) return ""; if (File->ArchiveName.empty()) return File->getName(); return (File->ArchiveName + "(" + File->getName() + ")").str(); } bool LinkerScript::shouldKeep(InputSectionBase *S) { for (InputSectionDescription *ID : Opt.KeptSections) { std::string Filename = filename(S->File); if (ID->FilePat.match(Filename)) for (SectionPattern &P : ID->SectionPatterns) if (P.SectionPat.match(S->Name)) return true; } return false; } // A helper function for the SORT() command. static std::function getComparator(SortSectionPolicy K) { switch (K) { case SortSectionPolicy::Alignment: return [](InputSectionBase *A, InputSectionBase *B) { // ">" is not a mistake. Sections with larger alignments are placed // before sections with smaller alignments in order to reduce the // amount of padding necessary. This is compatible with GNU. return A->Alignment > B->Alignment; }; case SortSectionPolicy::Name: return [](InputSectionBase *A, InputSectionBase *B) { return A->Name < B->Name; }; case SortSectionPolicy::Priority: return [](InputSectionBase *A, InputSectionBase *B) { return getPriority(A->Name) < getPriority(B->Name); }; default: llvm_unreachable("unknown sort policy"); } } // A helper function for the SORT() command. static bool matchConstraints(ArrayRef Sections, ConstraintKind Kind) { if (Kind == ConstraintKind::NoConstraint) return true; bool IsRW = llvm::any_of(Sections, [](InputSectionBase *Sec) { return static_cast(Sec)->Flags & SHF_WRITE; }); return (IsRW && Kind == ConstraintKind::ReadWrite) || (!IsRW && Kind == ConstraintKind::ReadOnly); } static void sortSections(InputSection **Begin, InputSection **End, SortSectionPolicy K) { if (K != SortSectionPolicy::Default && K != SortSectionPolicy::None) std::stable_sort(Begin, End, getComparator(K)); } static void sortBySymbolOrder(InputSection **Begin, InputSection **End) { if (Config->SymbolOrderingFile.empty()) return; static llvm::DenseMap Order = buildSectionOrder(); MutableArrayRef In(Begin, End - Begin); sortByOrder(In, [&](InputSectionBase *S) { return Order.lookup(S); }); } // Compute and remember which sections the InputSectionDescription matches. std::vector LinkerScript::computeInputSections(const InputSectionDescription *Cmd) { std::vector Ret; // Collects all sections that satisfy constraints of Cmd. for (const SectionPattern &Pat : Cmd->SectionPatterns) { size_t SizeBefore = Ret.size(); for (InputSectionBase *Sec : InputSections) { if (Sec->Assigned) continue; if (!Sec->Live) { reportDiscarded(Sec); continue; } // For -emit-relocs we have to ignore entries like // .rela.dyn : { *(.rela.data) } // which are common because they are in the default bfd script. if (Sec->Type == SHT_REL || Sec->Type == SHT_RELA) continue; std::string Filename = filename(Sec->File); if (!Cmd->FilePat.match(Filename) || Pat.ExcludedFilePat.match(Filename) || !Pat.SectionPat.match(Sec->Name)) continue; Ret.push_back(cast(Sec)); Sec->Assigned = true; } // Sort sections as instructed by SORT-family commands and --sort-section // option. Because SORT-family commands can be nested at most two depth // (e.g. SORT_BY_NAME(SORT_BY_ALIGNMENT(.text.*))) and because the command // line option is respected even if a SORT command is given, the exact // behavior we have here is a bit complicated. Here are the rules. // // 1. If two SORT commands are given, --sort-section is ignored. // 2. If one SORT command is given, and if it is not SORT_NONE, // --sort-section is handled as an inner SORT command. // 3. If one SORT command is given, and if it is SORT_NONE, don't sort. // 4. If no SORT command is given, sort according to --sort-section. // 5. If no SORT commands are given and --sort-section is not specified, // apply sorting provided by --symbol-ordering-file if any exist. InputSection **Begin = Ret.data() + SizeBefore; InputSection **End = Ret.data() + Ret.size(); if (Pat.SortOuter == SortSectionPolicy::Default && Config->SortSection == SortSectionPolicy::Default) { sortBySymbolOrder(Begin, End); continue; } if (Pat.SortOuter != SortSectionPolicy::None) { if (Pat.SortInner == SortSectionPolicy::Default) sortSections(Begin, End, Config->SortSection); else sortSections(Begin, End, Pat.SortInner); sortSections(Begin, End, Pat.SortOuter); } } return Ret; } void LinkerScript::discard(ArrayRef V) { for (InputSectionBase *S : V) { S->Live = false; if (S == InX::ShStrTab || S == InX::Dynamic || S == InX::DynSymTab || S == InX::DynStrTab) error("discarding " + S->Name + " section is not allowed"); discard(S->DependentSections); } } std::vector LinkerScript::createInputSectionList(OutputSection &OutCmd) { std::vector Ret; for (BaseCommand *Base : OutCmd.Commands) { auto *Cmd = dyn_cast(Base); if (!Cmd) continue; Cmd->Sections = computeInputSections(Cmd); Ret.insert(Ret.end(), Cmd->Sections.begin(), Cmd->Sections.end()); } return Ret; } void LinkerScript::processCommands(OutputSectionFactory &Factory) { // A symbol can be assigned before any section is mentioned in the linker // script. In an DSO, the symbol values are addresses, so the only important // section values are: // * SHN_UNDEF // * SHN_ABS // * Any value meaning a regular section. // To handle that, create a dummy aether section that fills the void before // the linker scripts switches to another section. It has an index of one // which will map to whatever the first actual section is. Aether = make("", 0, SHF_ALLOC); Aether->SectionIndex = 1; auto State = make_unique(Opt); // CurAddressState captures the local AddressState and makes it accessible // deliberately. This is needed as there are some cases where we cannot just // thread the current state through to a lambda function created by the // script parser. CurAddressState = State.get(); CurAddressState->OutSec = Aether; Dot = 0; for (size_t I = 0; I < Opt.Commands.size(); ++I) { // Handle symbol assignments outside of any output section. if (auto *Cmd = dyn_cast(Opt.Commands[I])) { addSymbol(Cmd); continue; } if (auto *Sec = dyn_cast(Opt.Commands[I])) { std::vector V = createInputSectionList(*Sec); // The output section name `/DISCARD/' is special. // Any input section assigned to it is discarded. if (Sec->Name == "/DISCARD/") { discard(V); continue; } // This is for ONLY_IF_RO and ONLY_IF_RW. An output section directive // ".foo : ONLY_IF_R[OW] { ... }" is handled only if all member input // sections satisfy a given constraint. If not, a directive is handled // as if it wasn't present from the beginning. // // Because we'll iterate over Commands many more times, the easiest // way to "make it as if it wasn't present" is to just remove it. if (!matchConstraints(V, Sec->Constraint)) { for (InputSectionBase *S : V) S->Assigned = false; Opt.Commands.erase(Opt.Commands.begin() + I); --I; continue; } // A directive may contain symbol definitions like this: // ".foo : { ...; bar = .; }". Handle them. for (BaseCommand *Base : Sec->Commands) if (auto *OutCmd = dyn_cast(Base)) addSymbol(OutCmd); // Handle subalign (e.g. ".foo : SUBALIGN(32) { ... }"). If subalign // is given, input sections are aligned to that value, whether the // given value is larger or smaller than the original section alignment. if (Sec->SubalignExpr) { uint32_t Subalign = Sec->SubalignExpr().getValue(); for (InputSectionBase *S : V) S->Alignment = Subalign; } // Add input sections to an output section. for (InputSectionBase *S : V) Factory.addInputSec(S, Sec->Name, Sec); assert(Sec->SectionIndex == INT_MAX); Sec->SectionIndex = I; if (Sec->Noload) Sec->Type = SHT_NOBITS; } } CurAddressState = nullptr; } void LinkerScript::fabricateDefaultCommands() { // Define start address uint64_t StartAddr = UINT64_MAX; // The Sections with -T
have been sorted in order of ascending // address. We must lower StartAddr if the lowest -T
as // calls to setDot() must be monotonically increasing. for (auto &KV : Config->SectionStartMap) StartAddr = std::min(StartAddr, KV.second); auto Expr = [=] { return std::min(StartAddr, Config->ImageBase + elf::getHeaderSize()); }; Opt.Commands.insert(Opt.Commands.begin(), make(".", Expr, "")); } // Add sections that didn't match any sections command. void LinkerScript::addOrphanSections(OutputSectionFactory &Factory) { unsigned NumCommands = Opt.Commands.size(); for (InputSectionBase *S : InputSections) { if (!S->Live || S->Parent) continue; StringRef Name = getOutputSectionName(S->Name); auto End = Opt.Commands.begin() + NumCommands; auto I = std::find_if(Opt.Commands.begin(), End, [&](BaseCommand *Base) { if (auto *Sec = dyn_cast(Base)) return Sec->Name == Name; return false; }); log(toString(S) + " is being placed in '" + Name + "'"); if (I == End) { Factory.addInputSec(S, Name); assert(S->getOutputSection()->SectionIndex == INT_MAX); } else { OutputSection *Sec = cast(*I); Factory.addInputSec(S, Name, Sec); unsigned Index = std::distance(Opt.Commands.begin(), I); assert(Sec->SectionIndex == INT_MAX || Sec->SectionIndex == Index); Sec->SectionIndex = Index; } } } uint64_t LinkerScript::advance(uint64_t Size, unsigned Align) { bool IsTbss = (CurAddressState->OutSec->Flags & SHF_TLS) && CurAddressState->OutSec->Type == SHT_NOBITS; uint64_t Start = IsTbss ? Dot + CurAddressState->ThreadBssOffset : Dot; Start = alignTo(Start, Align); uint64_t End = Start + Size; if (IsTbss) CurAddressState->ThreadBssOffset = End - Dot; else Dot = End; return End; } void LinkerScript::output(InputSection *S) { uint64_t Before = advance(0, 1); uint64_t Pos = advance(S->getSize(), S->Alignment); S->OutSecOff = Pos - S->getSize() - CurAddressState->OutSec->Addr; // Update output section size after adding each section. This is so that // SIZEOF works correctly in the case below: // .foo { *(.aaa) a = SIZEOF(.foo); *(.bbb) } CurAddressState->OutSec->Size = Pos - CurAddressState->OutSec->Addr; // If there is a memory region associated with this input section, then // place the section in that region and update the region index. if (CurAddressState->MemRegion) { uint64_t &CurOffset = CurAddressState->MemRegionOffset[CurAddressState->MemRegion]; CurOffset += Pos - Before; uint64_t CurSize = CurOffset - CurAddressState->MemRegion->Origin; if (CurSize > CurAddressState->MemRegion->Length) { uint64_t OverflowAmt = CurSize - CurAddressState->MemRegion->Length; error("section '" + CurAddressState->OutSec->Name + "' will not fit in region '" + CurAddressState->MemRegion->Name + "': overflowed by " + Twine(OverflowAmt) + " bytes"); } } } void LinkerScript::switchTo(OutputSection *Sec) { if (CurAddressState->OutSec == Sec) return; CurAddressState->OutSec = Sec; CurAddressState->OutSec->Addr = advance(0, CurAddressState->OutSec->Alignment); // If neither AT nor AT> is specified for an allocatable section, the linker // will set the LMA such that the difference between VMA and LMA for the // section is the same as the preceding output section in the same region // https://sourceware.org/binutils/docs-2.20/ld/Output-Section-LMA.html if (CurAddressState->LMAOffset) CurAddressState->OutSec->LMAOffset = CurAddressState->LMAOffset(); } void LinkerScript::process(BaseCommand &Base) { // This handles the assignments to symbol or to the dot. if (auto *Cmd = dyn_cast(&Base)) { assignSymbol(Cmd, true); return; } // Handle BYTE(), SHORT(), LONG(), or QUAD(). if (auto *Cmd = dyn_cast(&Base)) { Cmd->Offset = Dot - CurAddressState->OutSec->Addr; Dot += Cmd->Size; CurAddressState->OutSec->Size = Dot - CurAddressState->OutSec->Addr; return; } // Handle ASSERT(). if (auto *Cmd = dyn_cast(&Base)) { Cmd->Expression(); return; } // Handle a single input section description command. // It calculates and assigns the offsets for each section and also // updates the output section size. auto &Cmd = cast(Base); for (InputSection *Sec : Cmd.Sections) { // We tentatively added all synthetic sections at the beginning and removed // empty ones afterwards (because there is no way to know whether they were // going be empty or not other than actually running linker scripts.) // We need to ignore remains of empty sections. if (auto *S = dyn_cast(Sec)) if (S->empty()) continue; if (!Sec->Live) continue; assert(CurAddressState->OutSec == Sec->getParent()); output(Sec); } } // This function searches for a memory region to place the given output // section in. If found, a pointer to the appropriate memory region is // returned. Otherwise, a nullptr is returned. MemoryRegion *LinkerScript::findMemoryRegion(OutputSection *Sec) { // If a memory region name was specified in the output section command, // then try to find that region first. if (!Sec->MemoryRegionName.empty()) { auto It = Opt.MemoryRegions.find(Sec->MemoryRegionName); if (It != Opt.MemoryRegions.end()) return It->second; error("memory region '" + Sec->MemoryRegionName + "' not declared"); return nullptr; } // If at least one memory region is defined, all sections must // belong to some memory region. Otherwise, we don't need to do // anything for memory regions. if (Opt.MemoryRegions.empty()) return nullptr; // See if a region can be found by matching section flags. for (auto &Pair : Opt.MemoryRegions) { MemoryRegion *M = Pair.second; if ((M->Flags & Sec->Flags) && (M->NegFlags & Sec->Flags) == 0) return M; } // Otherwise, no suitable region was found. if (Sec->Flags & SHF_ALLOC) error("no memory region specified for section '" + Sec->Name + "'"); return nullptr; } // This function assigns offsets to input sections and an output section // for a single sections command (e.g. ".text { *(.text); }"). void LinkerScript::assignOffsets(OutputSection *Sec) { if (!(Sec->Flags & SHF_ALLOC)) Dot = 0; else if (Sec->AddrExpr) setDot(Sec->AddrExpr, Sec->Location, false); CurAddressState->MemRegion = Sec->MemRegion; if (CurAddressState->MemRegion) Dot = CurAddressState->MemRegionOffset[CurAddressState->MemRegion]; if (Sec->LMAExpr) { uint64_t D = Dot; CurAddressState->LMAOffset = [=] { return Sec->LMAExpr().getValue() - D; }; } switchTo(Sec); // We do not support custom layout for compressed debug sectons. // At this point we already know their size and have compressed content. if (CurAddressState->OutSec->Flags & SHF_COMPRESSED) return; for (BaseCommand *C : Sec->Commands) process(*C); } void LinkerScript::removeEmptyCommands() { // It is common practice to use very generic linker scripts. So for any // given run some of the output sections in the script will be empty. // We could create corresponding empty output sections, but that would // clutter the output. // We instead remove trivially empty sections. The bfd linker seems even // more aggressive at removing them. llvm::erase_if(Opt.Commands, [&](BaseCommand *Base) { if (auto *Sec = dyn_cast(Base)) return !Sec->Live; return false; }); } static bool isAllSectionDescription(const OutputSection &Cmd) { for (BaseCommand *Base : Cmd.Commands) if (!isa(*Base)) return false; return true; } void LinkerScript::adjustSectionsBeforeSorting() { // If the output section contains only symbol assignments, create a // corresponding output section. The bfd linker seems to only create them if // '.' is assigned to, but creating these section should not have any bad // consequeces and gives us a section to put the symbol in. uint64_t Flags = SHF_ALLOC; for (BaseCommand * Cmd : Opt.Commands) { auto *Sec = dyn_cast(Cmd); if (!Sec) continue; if (Sec->Live) { Flags = Sec->Flags; continue; } if (isAllSectionDescription(*Sec)) continue; Sec->Live = true; Sec->Flags = Flags; } } void LinkerScript::adjustSectionsAfterSorting() { // Try and find an appropriate memory region to assign offsets in. for (BaseCommand *Base : Opt.Commands) { if (auto *Sec = dyn_cast(Base)) { Sec->MemRegion = findMemoryRegion(Sec); // Handle align (e.g. ".foo : ALIGN(16) { ... }"). if (Sec->AlignExpr) Sec->updateAlignment(Sec->AlignExpr().getValue()); } } // If output section command doesn't specify any segments, // and we haven't previously assigned any section to segment, // then we simply assign section to the very first load segment. // Below is an example of such linker script: // PHDRS { seg PT_LOAD; } // SECTIONS { .aaa : { *(.aaa) } } std::vector DefPhdrs; auto FirstPtLoad = std::find_if(Opt.PhdrsCommands.begin(), Opt.PhdrsCommands.end(), [](const PhdrsCommand &Cmd) { return Cmd.Type == PT_LOAD; }); if (FirstPtLoad != Opt.PhdrsCommands.end()) DefPhdrs.push_back(FirstPtLoad->Name); // Walk the commands and propagate the program headers to commands that don't // explicitly specify them. for (BaseCommand *Base : Opt.Commands) { auto *Sec = dyn_cast(Base); if (!Sec) continue; if (Sec->Phdrs.empty()) { // To match the bfd linker script behaviour, only propagate program // headers to sections that are allocated. if (Sec->Flags & SHF_ALLOC) Sec->Phdrs = DefPhdrs; } else { DefPhdrs = Sec->Phdrs; } } removeEmptyCommands(); } static OutputSection *findFirstSection(PhdrEntry *Load) { for (OutputSection *Sec : OutputSections) if (Sec->PtLoad == Load) return Sec; return nullptr; } // Try to find an address for the file and program headers output sections, // which were unconditionally added to the first PT_LOAD segment earlier. // // When using the default layout, we check if the headers fit below the first // allocated section. When using a linker script, we also check if the headers // are covered by the output section. This allows omitting the headers by not // leaving enough space for them in the linker script; this pattern is common // in embedded systems. // // If there isn't enough space for these sections, we'll remove them from the // PT_LOAD segment, and we'll also remove the PT_PHDR segment. void LinkerScript::allocateHeaders(std::vector &Phdrs) { uint64_t Min = std::numeric_limits::max(); for (OutputSection *Sec : OutputSections) if (Sec->Flags & SHF_ALLOC) Min = std::min(Min, Sec->Addr); auto It = llvm::find_if( Phdrs, [](const PhdrEntry *E) { return E->p_type == PT_LOAD; }); if (It == Phdrs.end()) return; PhdrEntry *FirstPTLoad = *It; uint64_t HeaderSize = getHeaderSize(); // When linker script with SECTIONS is being used, don't output headers // unless there's a space for them. uint64_t Base = Opt.HasSections ? alignDown(Min, Config->MaxPageSize) : 0; if (HeaderSize <= Min - Base || Script->hasPhdrsCommands()) { Min = alignDown(Min - HeaderSize, Config->MaxPageSize); Out::ElfHeader->Addr = Min; Out::ProgramHeaders->Addr = Min + Out::ElfHeader->Size; return; } Out::ElfHeader->PtLoad = nullptr; Out::ProgramHeaders->PtLoad = nullptr; FirstPTLoad->FirstSec = findFirstSection(FirstPTLoad); llvm::erase_if(Phdrs, [](const PhdrEntry *E) { return E->p_type == PT_PHDR; }); } LinkerScript::AddressState::AddressState(const ScriptConfiguration &Opt) { for (auto &MRI : Opt.MemoryRegions) { const MemoryRegion *MR = MRI.second; MemRegionOffset[MR] = MR->Origin; } } void LinkerScript::assignAddresses() { // Assign addresses as instructed by linker script SECTIONS sub-commands. Dot = 0; auto State = make_unique(Opt); // CurAddressState captures the local AddressState and makes it accessible // deliberately. This is needed as there are some cases where we cannot just // thread the current state through to a lambda function created by the // script parser. CurAddressState = State.get(); ErrorOnMissingSection = true; switchTo(Aether); for (BaseCommand *Base : Opt.Commands) { if (auto *Cmd = dyn_cast(Base)) { assignSymbol(Cmd, false); continue; } if (auto *Cmd = dyn_cast(Base)) { Cmd->Expression(); continue; } assignOffsets(cast(Base)); } CurAddressState = nullptr; } // Creates program headers as instructed by PHDRS linker script command. std::vector LinkerScript::createPhdrs() { std::vector Ret; // Process PHDRS and FILEHDR keywords because they are not // real output sections and cannot be added in the following loop. for (const PhdrsCommand &Cmd : Opt.PhdrsCommands) { PhdrEntry *Phdr = make(Cmd.Type, Cmd.Flags == UINT_MAX ? PF_R : Cmd.Flags); if (Cmd.HasFilehdr) Phdr->add(Out::ElfHeader); if (Cmd.HasPhdrs) Phdr->add(Out::ProgramHeaders); if (Cmd.LMAExpr) { Phdr->p_paddr = Cmd.LMAExpr().getValue(); Phdr->HasLMA = true; } Ret.push_back(Phdr); } // Add output sections to program headers. for (OutputSection *Sec : OutputSections) { // Assign headers specified by linker script for (size_t Id : getPhdrIndices(Sec)) { Ret[Id]->add(Sec); if (Opt.PhdrsCommands[Id].Flags == UINT_MAX) Ret[Id]->p_flags |= Sec->getPhdrFlags(); } } return Ret; } bool LinkerScript::ignoreInterpSection() { // Ignore .interp section in case we have PHDRS specification // and PT_INTERP isn't listed. if (Opt.PhdrsCommands.empty()) return false; for (PhdrsCommand &Cmd : Opt.PhdrsCommands) if (Cmd.Type == PT_INTERP) return false; return true; } ExprValue LinkerScript::getSymbolValue(const Twine &Loc, StringRef S) { if (S == ".") { if (CurAddressState) return {CurAddressState->OutSec, Dot - CurAddressState->OutSec->Addr, Loc}; error(Loc + ": unable to get location counter value"); return 0; } if (SymbolBody *B = Symtab->find(S)) { if (auto *D = dyn_cast(B)) return {D->Section, D->Value, Loc}; if (auto *C = dyn_cast(B)) return {C->Section, 0, Loc}; } error(Loc + ": symbol not found: " + S); return 0; } bool LinkerScript::isDefined(StringRef S) { return Symtab->find(S) != nullptr; } static const size_t NoPhdr = -1; // Returns indices of ELF headers containing specific section. Each index is a // zero based number of ELF header listed within PHDRS {} script block. std::vector LinkerScript::getPhdrIndices(OutputSection *Cmd) { std::vector Ret; for (StringRef PhdrName : Cmd->Phdrs) { size_t Index = getPhdrIndex(Cmd->Location, PhdrName); if (Index != NoPhdr) Ret.push_back(Index); } return Ret; } // Returns the index of the segment named PhdrName if found otherwise // NoPhdr. When not found, if PhdrName is not the special case value 'NONE' // (which can be used to explicitly specify that a section isn't assigned to a // segment) then error. size_t LinkerScript::getPhdrIndex(const Twine &Loc, StringRef PhdrName) { size_t I = 0; for (PhdrsCommand &Cmd : Opt.PhdrsCommands) { if (Cmd.Name == PhdrName) return I; ++I; } if (PhdrName != "NONE") error(Loc + ": section header '" + PhdrName + "' is not listed in PHDRS"); return NoPhdr; }