//===---- CGBuiltin.cpp - Emit LLVM Code for builtins ---------------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This contains code to emit Objective-C code as LLVM code. // //===----------------------------------------------------------------------===// #include "CGDebugInfo.h" #include "CGObjCRuntime.h" #include "CodeGenFunction.h" #include "CodeGenModule.h" #include "TargetInfo.h" #include "clang/AST/ASTContext.h" #include "clang/AST/DeclObjC.h" #include "clang/AST/StmtObjC.h" #include "clang/Basic/Diagnostic.h" #include "llvm/ADT/STLExtras.h" #include "llvm/Target/TargetData.h" #include "llvm/InlineAsm.h" using namespace clang; using namespace CodeGen; typedef llvm::PointerIntPair TryEmitResult; static TryEmitResult tryEmitARCRetainScalarExpr(CodeGenFunction &CGF, const Expr *e); /// Given the address of a variable of pointer type, find the correct /// null to store into it. static llvm::Constant *getNullForVariable(llvm::Value *addr) { const llvm::Type *type = cast(addr->getType())->getElementType(); return llvm::ConstantPointerNull::get(cast(type)); } /// Emits an instance of NSConstantString representing the object. llvm::Value *CodeGenFunction::EmitObjCStringLiteral(const ObjCStringLiteral *E) { llvm::Constant *C = CGM.getObjCRuntime().GenerateConstantString(E->getString()); // FIXME: This bitcast should just be made an invariant on the Runtime. return llvm::ConstantExpr::getBitCast(C, ConvertType(E->getType())); } /// Emit a selector. llvm::Value *CodeGenFunction::EmitObjCSelectorExpr(const ObjCSelectorExpr *E) { // Untyped selector. // Note that this implementation allows for non-constant strings to be passed // as arguments to @selector(). Currently, the only thing preventing this // behaviour is the type checking in the front end. return CGM.getObjCRuntime().GetSelector(Builder, E->getSelector()); } llvm::Value *CodeGenFunction::EmitObjCProtocolExpr(const ObjCProtocolExpr *E) { // FIXME: This should pass the Decl not the name. return CGM.getObjCRuntime().GenerateProtocolRef(Builder, E->getProtocol()); } /// \brief Adjust the type of the result of an Objective-C message send /// expression when the method has a related result type. static RValue AdjustRelatedResultType(CodeGenFunction &CGF, const Expr *E, const ObjCMethodDecl *Method, RValue Result) { if (!Method) return Result; if (!Method->hasRelatedResultType() || CGF.getContext().hasSameType(E->getType(), Method->getResultType()) || !Result.isScalar()) return Result; // We have applied a related result type. Cast the rvalue appropriately. return RValue::get(CGF.Builder.CreateBitCast(Result.getScalarVal(), CGF.ConvertType(E->getType()))); } RValue CodeGenFunction::EmitObjCMessageExpr(const ObjCMessageExpr *E, ReturnValueSlot Return) { // Only the lookup mechanism and first two arguments of the method // implementation vary between runtimes. We can get the receiver and // arguments in generic code. bool isDelegateInit = E->isDelegateInitCall(); // We don't retain the receiver in delegate init calls, and this is // safe because the receiver value is always loaded from 'self', // which we zero out. We don't want to Block_copy block receivers, // though. bool retainSelf = (!isDelegateInit && CGM.getLangOptions().ObjCAutoRefCount && E->getMethodDecl() && E->getMethodDecl()->hasAttr()); CGObjCRuntime &Runtime = CGM.getObjCRuntime(); bool isSuperMessage = false; bool isClassMessage = false; ObjCInterfaceDecl *OID = 0; // Find the receiver QualType ReceiverType; llvm::Value *Receiver = 0; switch (E->getReceiverKind()) { case ObjCMessageExpr::Instance: ReceiverType = E->getInstanceReceiver()->getType(); if (retainSelf) { TryEmitResult ter = tryEmitARCRetainScalarExpr(*this, E->getInstanceReceiver()); Receiver = ter.getPointer(); if (!ter.getInt()) Receiver = EmitARCRetainNonBlock(Receiver); } else Receiver = EmitScalarExpr(E->getInstanceReceiver()); break; case ObjCMessageExpr::Class: { ReceiverType = E->getClassReceiver(); const ObjCObjectType *ObjTy = ReceiverType->getAs(); assert(ObjTy && "Invalid Objective-C class message send"); OID = ObjTy->getInterface(); assert(OID && "Invalid Objective-C class message send"); Receiver = Runtime.GetClass(Builder, OID); isClassMessage = true; if (retainSelf) Receiver = EmitARCRetainNonBlock(Receiver); break; } case ObjCMessageExpr::SuperInstance: ReceiverType = E->getSuperType(); Receiver = LoadObjCSelf(); isSuperMessage = true; if (retainSelf) Receiver = EmitARCRetainNonBlock(Receiver); break; case ObjCMessageExpr::SuperClass: ReceiverType = E->getSuperType(); Receiver = LoadObjCSelf(); isSuperMessage = true; isClassMessage = true; if (retainSelf) Receiver = EmitARCRetainNonBlock(Receiver); break; } QualType ResultType = E->getMethodDecl() ? E->getMethodDecl()->getResultType() : E->getType(); CallArgList Args; EmitCallArgs(Args, E->getMethodDecl(), E->arg_begin(), E->arg_end()); // For delegate init calls in ARC, do an unsafe store of null into // self. This represents the call taking direct ownership of that // value. We have to do this after emitting the other call // arguments because they might also reference self, but we don't // have to worry about any of them modifying self because that would // be an undefined read and write of an object in unordered // expressions. if (isDelegateInit) { assert(getLangOptions().ObjCAutoRefCount && "delegate init calls should only be marked in ARC"); // Do an unsafe store of null into self. llvm::Value *selfAddr = LocalDeclMap[cast(CurCodeDecl)->getSelfDecl()]; assert(selfAddr && "no self entry for a delegate init call?"); Builder.CreateStore(getNullForVariable(selfAddr), selfAddr); } RValue result; if (isSuperMessage) { // super is only valid in an Objective-C method const ObjCMethodDecl *OMD = cast(CurFuncDecl); bool isCategoryImpl = isa(OMD->getDeclContext()); result = Runtime.GenerateMessageSendSuper(*this, Return, ResultType, E->getSelector(), OMD->getClassInterface(), isCategoryImpl, Receiver, isClassMessage, Args, E->getMethodDecl()); } else { result = Runtime.GenerateMessageSend(*this, Return, ResultType, E->getSelector(), Receiver, Args, OID, E->getMethodDecl()); } // For delegate init calls in ARC, implicitly store the result of // the call back into self. This takes ownership of the value. if (isDelegateInit) { llvm::Value *selfAddr = LocalDeclMap[cast(CurCodeDecl)->getSelfDecl()]; llvm::Value *newSelf = result.getScalarVal(); // The delegate return type isn't necessarily a matching type; in // fact, it's quite likely to be 'id'. const llvm::Type *selfTy = cast(selfAddr->getType())->getElementType(); newSelf = Builder.CreateBitCast(newSelf, selfTy); Builder.CreateStore(newSelf, selfAddr); } return AdjustRelatedResultType(*this, E, E->getMethodDecl(), result); } namespace { struct FinishARCDealloc : EHScopeStack::Cleanup { void Emit(CodeGenFunction &CGF, bool isForEH) { const ObjCMethodDecl *method = cast(CGF.CurCodeDecl); const ObjCImplementationDecl *impl = cast(method->getDeclContext()); const ObjCInterfaceDecl *iface = impl->getClassInterface(); if (!iface->getSuperClass()) return; // Call [super dealloc] if we have a superclass. llvm::Value *self = CGF.LoadObjCSelf(); CallArgList args; CGF.CGM.getObjCRuntime().GenerateMessageSendSuper(CGF, ReturnValueSlot(), CGF.getContext().VoidTy, method->getSelector(), iface, /*is category*/ false, self, /*is class msg*/ false, args, method); } }; } /// StartObjCMethod - Begin emission of an ObjCMethod. This generates /// the LLVM function and sets the other context used by /// CodeGenFunction. void CodeGenFunction::StartObjCMethod(const ObjCMethodDecl *OMD, const ObjCContainerDecl *CD, SourceLocation StartLoc) { FunctionArgList args; // Check if we should generate debug info for this method. if (CGM.getModuleDebugInfo() && !OMD->hasAttr()) DebugInfo = CGM.getModuleDebugInfo(); llvm::Function *Fn = CGM.getObjCRuntime().GenerateMethod(OMD, CD); const CGFunctionInfo &FI = CGM.getTypes().getFunctionInfo(OMD); CGM.SetInternalFunctionAttributes(OMD, Fn, FI); args.push_back(OMD->getSelfDecl()); args.push_back(OMD->getCmdDecl()); for (ObjCMethodDecl::param_iterator PI = OMD->param_begin(), E = OMD->param_end(); PI != E; ++PI) args.push_back(*PI); CurGD = OMD; StartFunction(OMD, OMD->getResultType(), Fn, FI, args, StartLoc); // In ARC, certain methods get an extra cleanup. if (CGM.getLangOptions().ObjCAutoRefCount && OMD->isInstanceMethod() && OMD->getSelector().isUnarySelector()) { const IdentifierInfo *ident = OMD->getSelector().getIdentifierInfoForSlot(0); if (ident->isStr("dealloc")) EHStack.pushCleanup(getARCCleanupKind()); } } static llvm::Value *emitARCRetainLoadOfScalar(CodeGenFunction &CGF, LValue lvalue, QualType type); void CodeGenFunction::GenerateObjCGetterBody(ObjCIvarDecl *Ivar, bool IsAtomic, bool IsStrong) { LValue LV = EmitLValueForIvar(TypeOfSelfObject(), LoadObjCSelf(), Ivar, 0); llvm::Value *GetCopyStructFn = CGM.getObjCRuntime().GetGetStructFunction(); CodeGenTypes &Types = CGM.getTypes(); // objc_copyStruct (ReturnValue, &structIvar, // sizeof (Type of Ivar), isAtomic, false); CallArgList Args; RValue RV = RValue::get(Builder.CreateBitCast(ReturnValue, VoidPtrTy)); Args.add(RV, getContext().VoidPtrTy); RV = RValue::get(Builder.CreateBitCast(LV.getAddress(), VoidPtrTy)); Args.add(RV, getContext().VoidPtrTy); // sizeof (Type of Ivar) CharUnits Size = getContext().getTypeSizeInChars(Ivar->getType()); llvm::Value *SizeVal = llvm::ConstantInt::get(Types.ConvertType(getContext().LongTy), Size.getQuantity()); Args.add(RValue::get(SizeVal), getContext().LongTy); llvm::Value *isAtomic = llvm::ConstantInt::get(Types.ConvertType(getContext().BoolTy), IsAtomic ? 1 : 0); Args.add(RValue::get(isAtomic), getContext().BoolTy); llvm::Value *hasStrong = llvm::ConstantInt::get(Types.ConvertType(getContext().BoolTy), IsStrong ? 1 : 0); Args.add(RValue::get(hasStrong), getContext().BoolTy); EmitCall(Types.getFunctionInfo(getContext().VoidTy, Args, FunctionType::ExtInfo()), GetCopyStructFn, ReturnValueSlot(), Args); } /// Generate an Objective-C method. An Objective-C method is a C function with /// its pointer, name, and types registered in the class struture. void CodeGenFunction::GenerateObjCMethod(const ObjCMethodDecl *OMD) { StartObjCMethod(OMD, OMD->getClassInterface(), OMD->getLocStart()); EmitStmt(OMD->getBody()); FinishFunction(OMD->getBodyRBrace()); } // FIXME: I wasn't sure about the synthesis approach. If we end up generating an // AST for the whole body we can just fall back to having a GenerateFunction // which takes the body Stmt. /// GenerateObjCGetter - Generate an Objective-C property getter /// function. The given Decl must be an ObjCImplementationDecl. @synthesize /// is illegal within a category. void CodeGenFunction::GenerateObjCGetter(ObjCImplementationDecl *IMP, const ObjCPropertyImplDecl *PID) { ObjCIvarDecl *Ivar = PID->getPropertyIvarDecl(); const ObjCPropertyDecl *PD = PID->getPropertyDecl(); bool IsAtomic = !(PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_nonatomic); ObjCMethodDecl *OMD = PD->getGetterMethodDecl(); assert(OMD && "Invalid call to generate getter (empty method)"); StartObjCMethod(OMD, IMP->getClassInterface(), PID->getLocStart()); // Determine if we should use an objc_getProperty call for // this. Non-atomic properties are directly evaluated. // atomic 'copy' and 'retain' properties are also directly // evaluated in gc-only mode. if (CGM.getLangOptions().getGCMode() != LangOptions::GCOnly && IsAtomic && (PD->getSetterKind() == ObjCPropertyDecl::Copy || PD->getSetterKind() == ObjCPropertyDecl::Retain)) { llvm::Value *GetPropertyFn = CGM.getObjCRuntime().GetPropertyGetFunction(); if (!GetPropertyFn) { CGM.ErrorUnsupported(PID, "Obj-C getter requiring atomic copy"); FinishFunction(); return; } // Return (ivar-type) objc_getProperty((id) self, _cmd, offset, true). // FIXME: Can't this be simpler? This might even be worse than the // corresponding gcc code. CodeGenTypes &Types = CGM.getTypes(); ValueDecl *Cmd = OMD->getCmdDecl(); llvm::Value *CmdVal = Builder.CreateLoad(LocalDeclMap[Cmd], "cmd"); QualType IdTy = getContext().getObjCIdType(); llvm::Value *SelfAsId = Builder.CreateBitCast(LoadObjCSelf(), Types.ConvertType(IdTy)); llvm::Value *Offset = EmitIvarOffset(IMP->getClassInterface(), Ivar); llvm::Value *True = llvm::ConstantInt::get(Types.ConvertType(getContext().BoolTy), 1); CallArgList Args; Args.add(RValue::get(SelfAsId), IdTy); Args.add(RValue::get(CmdVal), Cmd->getType()); Args.add(RValue::get(Offset), getContext().getPointerDiffType()); Args.add(RValue::get(True), getContext().BoolTy); // FIXME: We shouldn't need to get the function info here, the // runtime already should have computed it to build the function. RValue RV = EmitCall(Types.getFunctionInfo(PD->getType(), Args, FunctionType::ExtInfo()), GetPropertyFn, ReturnValueSlot(), Args); // We need to fix the type here. Ivars with copy & retain are // always objects so we don't need to worry about complex or // aggregates. RV = RValue::get(Builder.CreateBitCast(RV.getScalarVal(), Types.ConvertType(PD->getType()))); EmitReturnOfRValue(RV, PD->getType()); // objc_getProperty does an autorelease, so we should suppress ours. AutoreleaseResult = false; } else { const llvm::Triple &Triple = getContext().Target.getTriple(); QualType IVART = Ivar->getType(); if (IsAtomic && IVART->isScalarType() && (Triple.getArch() == llvm::Triple::arm || Triple.getArch() == llvm::Triple::thumb) && (getContext().getTypeSizeInChars(IVART) > CharUnits::fromQuantity(4)) && CGM.getObjCRuntime().GetGetStructFunction()) { GenerateObjCGetterBody(Ivar, true, false); } else if (IsAtomic && (IVART->isScalarType() && !IVART->isRealFloatingType()) && Triple.getArch() == llvm::Triple::x86 && (getContext().getTypeSizeInChars(IVART) > CharUnits::fromQuantity(4)) && CGM.getObjCRuntime().GetGetStructFunction()) { GenerateObjCGetterBody(Ivar, true, false); } else if (IsAtomic && (IVART->isScalarType() && !IVART->isRealFloatingType()) && Triple.getArch() == llvm::Triple::x86_64 && (getContext().getTypeSizeInChars(IVART) > CharUnits::fromQuantity(8)) && CGM.getObjCRuntime().GetGetStructFunction()) { GenerateObjCGetterBody(Ivar, true, false); } else if (IVART->isAnyComplexType()) { LValue LV = EmitLValueForIvar(TypeOfSelfObject(), LoadObjCSelf(), Ivar, 0); ComplexPairTy Pair = LoadComplexFromAddr(LV.getAddress(), LV.isVolatileQualified()); StoreComplexToAddr(Pair, ReturnValue, LV.isVolatileQualified()); } else if (hasAggregateLLVMType(IVART)) { bool IsStrong = false; if ((IsStrong = IvarTypeWithAggrGCObjects(IVART)) && CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::Indirect && CGM.getObjCRuntime().GetGetStructFunction()) { GenerateObjCGetterBody(Ivar, IsAtomic, IsStrong); } else { const CXXRecordDecl *classDecl = IVART->getAsCXXRecordDecl(); if (PID->getGetterCXXConstructor() && classDecl && !classDecl->hasTrivialDefaultConstructor()) { ReturnStmt *Stmt = new (getContext()) ReturnStmt(SourceLocation(), PID->getGetterCXXConstructor(), 0); EmitReturnStmt(*Stmt); } else if (IsAtomic && !IVART->isAnyComplexType() && Triple.getArch() == llvm::Triple::x86 && (getContext().getTypeSizeInChars(IVART) > CharUnits::fromQuantity(4)) && CGM.getObjCRuntime().GetGetStructFunction()) { GenerateObjCGetterBody(Ivar, true, false); } else if (IsAtomic && !IVART->isAnyComplexType() && Triple.getArch() == llvm::Triple::x86_64 && (getContext().getTypeSizeInChars(IVART) > CharUnits::fromQuantity(8)) && CGM.getObjCRuntime().GetGetStructFunction()) { GenerateObjCGetterBody(Ivar, true, false); } else { LValue LV = EmitLValueForIvar(TypeOfSelfObject(), LoadObjCSelf(), Ivar, 0); EmitAggregateCopy(ReturnValue, LV.getAddress(), IVART); } } } else { LValue LV = EmitLValueForIvar(TypeOfSelfObject(), LoadObjCSelf(), Ivar, 0); QualType propType = PD->getType(); llvm::Value *value; if (propType->isReferenceType()) { value = LV.getAddress(); } else { // In ARC, we want to emit this retained. if (getLangOptions().ObjCAutoRefCount && PD->getType()->isObjCRetainableType()) value = emitARCRetainLoadOfScalar(*this, LV, IVART); else value = EmitLoadOfLValue(LV).getScalarVal(); value = Builder.CreateBitCast(value, ConvertType(propType)); } EmitReturnOfRValue(RValue::get(value), propType); } } FinishFunction(); } void CodeGenFunction::GenerateObjCAtomicSetterBody(ObjCMethodDecl *OMD, ObjCIvarDecl *Ivar) { // objc_copyStruct (&structIvar, &Arg, // sizeof (struct something), true, false); llvm::Value *GetCopyStructFn = CGM.getObjCRuntime().GetSetStructFunction(); CodeGenTypes &Types = CGM.getTypes(); CallArgList Args; LValue LV = EmitLValueForIvar(TypeOfSelfObject(), LoadObjCSelf(), Ivar, 0); RValue RV = RValue::get(Builder.CreateBitCast(LV.getAddress(), Types.ConvertType(getContext().VoidPtrTy))); Args.add(RV, getContext().VoidPtrTy); llvm::Value *Arg = LocalDeclMap[*OMD->param_begin()]; llvm::Value *ArgAsPtrTy = Builder.CreateBitCast(Arg, Types.ConvertType(getContext().VoidPtrTy)); RV = RValue::get(ArgAsPtrTy); Args.add(RV, getContext().VoidPtrTy); // sizeof (Type of Ivar) CharUnits Size = getContext().getTypeSizeInChars(Ivar->getType()); llvm::Value *SizeVal = llvm::ConstantInt::get(Types.ConvertType(getContext().LongTy), Size.getQuantity()); Args.add(RValue::get(SizeVal), getContext().LongTy); llvm::Value *True = llvm::ConstantInt::get(Types.ConvertType(getContext().BoolTy), 1); Args.add(RValue::get(True), getContext().BoolTy); llvm::Value *False = llvm::ConstantInt::get(Types.ConvertType(getContext().BoolTy), 0); Args.add(RValue::get(False), getContext().BoolTy); EmitCall(Types.getFunctionInfo(getContext().VoidTy, Args, FunctionType::ExtInfo()), GetCopyStructFn, ReturnValueSlot(), Args); } static bool IvarAssignHasTrvialAssignment(const ObjCPropertyImplDecl *PID, QualType IvarT) { bool HasTrvialAssignment = true; if (PID->getSetterCXXAssignment()) { const CXXRecordDecl *classDecl = IvarT->getAsCXXRecordDecl(); HasTrvialAssignment = (!classDecl || classDecl->hasTrivialCopyAssignment()); } return HasTrvialAssignment; } /// GenerateObjCSetter - Generate an Objective-C property setter /// function. The given Decl must be an ObjCImplementationDecl. @synthesize /// is illegal within a category. void CodeGenFunction::GenerateObjCSetter(ObjCImplementationDecl *IMP, const ObjCPropertyImplDecl *PID) { ObjCIvarDecl *Ivar = PID->getPropertyIvarDecl(); const ObjCPropertyDecl *PD = PID->getPropertyDecl(); ObjCMethodDecl *OMD = PD->getSetterMethodDecl(); assert(OMD && "Invalid call to generate setter (empty method)"); StartObjCMethod(OMD, IMP->getClassInterface(), PID->getLocStart()); const llvm::Triple &Triple = getContext().Target.getTriple(); QualType IVART = Ivar->getType(); bool IsCopy = PD->getSetterKind() == ObjCPropertyDecl::Copy; bool IsAtomic = !(PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_nonatomic); // Determine if we should use an objc_setProperty call for // this. Properties with 'copy' semantics always use it, as do // non-atomic properties with 'release' semantics as long as we are // not in gc-only mode. if (IsCopy || (CGM.getLangOptions().getGCMode() != LangOptions::GCOnly && PD->getSetterKind() == ObjCPropertyDecl::Retain)) { llvm::Value *SetPropertyFn = CGM.getObjCRuntime().GetPropertySetFunction(); if (!SetPropertyFn) { CGM.ErrorUnsupported(PID, "Obj-C getter requiring atomic copy"); FinishFunction(); return; } // Emit objc_setProperty((id) self, _cmd, offset, arg, // , ). // FIXME: Can't this be simpler? This might even be worse than the // corresponding gcc code. CodeGenTypes &Types = CGM.getTypes(); ValueDecl *Cmd = OMD->getCmdDecl(); llvm::Value *CmdVal = Builder.CreateLoad(LocalDeclMap[Cmd], "cmd"); QualType IdTy = getContext().getObjCIdType(); llvm::Value *SelfAsId = Builder.CreateBitCast(LoadObjCSelf(), Types.ConvertType(IdTy)); llvm::Value *Offset = EmitIvarOffset(IMP->getClassInterface(), Ivar); llvm::Value *Arg = LocalDeclMap[*OMD->param_begin()]; llvm::Value *ArgAsId = Builder.CreateBitCast(Builder.CreateLoad(Arg, "arg"), Types.ConvertType(IdTy)); llvm::Value *True = llvm::ConstantInt::get(Types.ConvertType(getContext().BoolTy), 1); llvm::Value *False = llvm::ConstantInt::get(Types.ConvertType(getContext().BoolTy), 0); CallArgList Args; Args.add(RValue::get(SelfAsId), IdTy); Args.add(RValue::get(CmdVal), Cmd->getType()); Args.add(RValue::get(Offset), getContext().getPointerDiffType()); Args.add(RValue::get(ArgAsId), IdTy); Args.add(RValue::get(IsAtomic ? True : False), getContext().BoolTy); Args.add(RValue::get(IsCopy ? True : False), getContext().BoolTy); // FIXME: We shouldn't need to get the function info here, the runtime // already should have computed it to build the function. EmitCall(Types.getFunctionInfo(getContext().VoidTy, Args, FunctionType::ExtInfo()), SetPropertyFn, ReturnValueSlot(), Args); } else if (IsAtomic && hasAggregateLLVMType(IVART) && !IVART->isAnyComplexType() && IvarAssignHasTrvialAssignment(PID, IVART) && ((Triple.getArch() == llvm::Triple::x86 && (getContext().getTypeSizeInChars(IVART) > CharUnits::fromQuantity(4))) || (Triple.getArch() == llvm::Triple::x86_64 && (getContext().getTypeSizeInChars(IVART) > CharUnits::fromQuantity(8)))) && CGM.getObjCRuntime().GetSetStructFunction()) { // objc_copyStruct (&structIvar, &Arg, // sizeof (struct something), true, false); GenerateObjCAtomicSetterBody(OMD, Ivar); } else if (PID->getSetterCXXAssignment()) { EmitIgnoredExpr(PID->getSetterCXXAssignment()); } else { if (IsAtomic && IVART->isScalarType() && (Triple.getArch() == llvm::Triple::arm || Triple.getArch() == llvm::Triple::thumb) && (getContext().getTypeSizeInChars(IVART) > CharUnits::fromQuantity(4)) && CGM.getObjCRuntime().GetGetStructFunction()) { GenerateObjCAtomicSetterBody(OMD, Ivar); } else if (IsAtomic && (IVART->isScalarType() && !IVART->isRealFloatingType()) && Triple.getArch() == llvm::Triple::x86 && (getContext().getTypeSizeInChars(IVART) > CharUnits::fromQuantity(4)) && CGM.getObjCRuntime().GetGetStructFunction()) { GenerateObjCAtomicSetterBody(OMD, Ivar); } else if (IsAtomic && (IVART->isScalarType() && !IVART->isRealFloatingType()) && Triple.getArch() == llvm::Triple::x86_64 && (getContext().getTypeSizeInChars(IVART) > CharUnits::fromQuantity(8)) && CGM.getObjCRuntime().GetGetStructFunction()) { GenerateObjCAtomicSetterBody(OMD, Ivar); } else { // FIXME: Find a clean way to avoid AST node creation. SourceLocation Loc = PID->getLocStart(); ValueDecl *Self = OMD->getSelfDecl(); ObjCIvarDecl *Ivar = PID->getPropertyIvarDecl(); DeclRefExpr Base(Self, Self->getType(), VK_RValue, Loc); ParmVarDecl *ArgDecl = *OMD->param_begin(); QualType T = ArgDecl->getType(); if (T->isReferenceType()) T = cast(T)->getPointeeType(); DeclRefExpr Arg(ArgDecl, T, VK_LValue, Loc); ObjCIvarRefExpr IvarRef(Ivar, Ivar->getType(), Loc, &Base, true, true); // The property type can differ from the ivar type in some situations with // Objective-C pointer types, we can always bit cast the RHS in these cases. if (getContext().getCanonicalType(Ivar->getType()) != getContext().getCanonicalType(ArgDecl->getType())) { ImplicitCastExpr ArgCasted(ImplicitCastExpr::OnStack, Ivar->getType(), CK_BitCast, &Arg, VK_RValue); BinaryOperator Assign(&IvarRef, &ArgCasted, BO_Assign, Ivar->getType(), VK_RValue, OK_Ordinary, Loc); EmitStmt(&Assign); } else { BinaryOperator Assign(&IvarRef, &Arg, BO_Assign, Ivar->getType(), VK_RValue, OK_Ordinary, Loc); EmitStmt(&Assign); } } } FinishFunction(); } // FIXME: these are stolen from CGClass.cpp, which is lame. namespace { struct CallArrayIvarDtor : EHScopeStack::Cleanup { const ObjCIvarDecl *ivar; llvm::Value *self; CallArrayIvarDtor(const ObjCIvarDecl *ivar, llvm::Value *self) : ivar(ivar), self(self) {} void Emit(CodeGenFunction &CGF, bool IsForEH) { LValue lvalue = CGF.EmitLValueForIvar(CGF.TypeOfSelfObject(), self, ivar, 0); QualType type = ivar->getType(); const ConstantArrayType *arrayType = CGF.getContext().getAsConstantArrayType(type); QualType baseType = CGF.getContext().getBaseElementType(arrayType); const CXXRecordDecl *classDecl = baseType->getAsCXXRecordDecl(); llvm::Value *base = CGF.Builder.CreateBitCast(lvalue.getAddress(), CGF.ConvertType(baseType)->getPointerTo()); CGF.EmitCXXAggrDestructorCall(classDecl->getDestructor(), arrayType, base); } }; struct CallIvarDtor : EHScopeStack::Cleanup { const ObjCIvarDecl *ivar; llvm::Value *self; CallIvarDtor(const ObjCIvarDecl *ivar, llvm::Value *self) : ivar(ivar), self(self) {} void Emit(CodeGenFunction &CGF, bool IsForEH) { LValue lvalue = CGF.EmitLValueForIvar(CGF.TypeOfSelfObject(), self, ivar, 0); QualType type = ivar->getType(); const CXXRecordDecl *classDecl = type->getAsCXXRecordDecl(); CGF.EmitCXXDestructorCall(classDecl->getDestructor(), Dtor_Complete, /*ForVirtualBase=*/false, lvalue.getAddress()); } }; } static void pushReleaseForIvar(CodeGenFunction &CGF, ObjCIvarDecl *ivar, llvm::Value *self); static void pushWeakReleaseForIvar(CodeGenFunction &CGF, ObjCIvarDecl *ivar, llvm::Value *self); static void emitCXXDestructMethod(CodeGenFunction &CGF, ObjCImplementationDecl *impl) { CodeGenFunction::RunCleanupsScope scope(CGF); llvm::Value *self = CGF.LoadObjCSelf(); ObjCInterfaceDecl *iface = const_cast(impl->getClassInterface()); for (ObjCIvarDecl *ivar = iface->all_declared_ivar_begin(); ivar; ivar = ivar->getNextIvar()) { QualType type = ivar->getType(); // Drill down to the base element type. QualType baseType = type; const ConstantArrayType *arrayType = CGF.getContext().getAsConstantArrayType(baseType); if (arrayType) baseType = CGF.getContext().getBaseElementType(arrayType); // Check whether the ivar is a destructible type. QualType::DestructionKind destructKind = baseType.isDestructedType(); assert(destructKind == type.isDestructedType()); switch (destructKind) { case QualType::DK_none: continue; case QualType::DK_cxx_destructor: if (arrayType) CGF.EHStack.pushCleanup(NormalAndEHCleanup, ivar, self); else CGF.EHStack.pushCleanup(NormalAndEHCleanup, ivar, self); break; case QualType::DK_objc_strong_lifetime: pushReleaseForIvar(CGF, ivar, self); break; case QualType::DK_objc_weak_lifetime: pushWeakReleaseForIvar(CGF, ivar, self); break; } } assert(scope.requiresCleanups() && "nothing to do in .cxx_destruct?"); } void CodeGenFunction::GenerateObjCCtorDtorMethod(ObjCImplementationDecl *IMP, ObjCMethodDecl *MD, bool ctor) { MD->createImplicitParams(CGM.getContext(), IMP->getClassInterface()); StartObjCMethod(MD, IMP->getClassInterface(), MD->getLocStart()); // Emit .cxx_construct. if (ctor) { // Suppress the final autorelease in ARC. AutoreleaseResult = false; llvm::SmallVector IvarInitializers; for (ObjCImplementationDecl::init_const_iterator B = IMP->init_begin(), E = IMP->init_end(); B != E; ++B) { CXXCtorInitializer *IvarInit = (*B); FieldDecl *Field = IvarInit->getAnyMember(); ObjCIvarDecl *Ivar = cast(Field); LValue LV = EmitLValueForIvar(TypeOfSelfObject(), LoadObjCSelf(), Ivar, 0); EmitAggExpr(IvarInit->getInit(), AggValueSlot::forLValue(LV, true)); } // constructor returns 'self'. CodeGenTypes &Types = CGM.getTypes(); QualType IdTy(CGM.getContext().getObjCIdType()); llvm::Value *SelfAsId = Builder.CreateBitCast(LoadObjCSelf(), Types.ConvertType(IdTy)); EmitReturnOfRValue(RValue::get(SelfAsId), IdTy); // Emit .cxx_destruct. } else { emitCXXDestructMethod(*this, IMP); } FinishFunction(); } bool CodeGenFunction::IndirectObjCSetterArg(const CGFunctionInfo &FI) { CGFunctionInfo::const_arg_iterator it = FI.arg_begin(); it++; it++; const ABIArgInfo &AI = it->info; // FIXME. Is this sufficient check? return (AI.getKind() == ABIArgInfo::Indirect); } bool CodeGenFunction::IvarTypeWithAggrGCObjects(QualType Ty) { if (CGM.getLangOptions().getGCMode() == LangOptions::NonGC) return false; if (const RecordType *FDTTy = Ty.getTypePtr()->getAs()) return FDTTy->getDecl()->hasObjectMember(); return false; } llvm::Value *CodeGenFunction::LoadObjCSelf() { const ObjCMethodDecl *OMD = cast(CurFuncDecl); return Builder.CreateLoad(LocalDeclMap[OMD->getSelfDecl()], "self"); } QualType CodeGenFunction::TypeOfSelfObject() { const ObjCMethodDecl *OMD = cast(CurFuncDecl); ImplicitParamDecl *selfDecl = OMD->getSelfDecl(); const ObjCObjectPointerType *PTy = cast( getContext().getCanonicalType(selfDecl->getType())); return PTy->getPointeeType(); } LValue CodeGenFunction::EmitObjCPropertyRefLValue(const ObjCPropertyRefExpr *E) { // This is a special l-value that just issues sends when we load or // store through it. // For certain base kinds, we need to emit the base immediately. llvm::Value *Base; if (E->isSuperReceiver()) Base = LoadObjCSelf(); else if (E->isClassReceiver()) Base = CGM.getObjCRuntime().GetClass(Builder, E->getClassReceiver()); else Base = EmitScalarExpr(E->getBase()); return LValue::MakePropertyRef(E, Base); } static RValue GenerateMessageSendSuper(CodeGenFunction &CGF, ReturnValueSlot Return, QualType ResultType, Selector S, llvm::Value *Receiver, const CallArgList &CallArgs) { const ObjCMethodDecl *OMD = cast(CGF.CurFuncDecl); bool isClassMessage = OMD->isClassMethod(); bool isCategoryImpl = isa(OMD->getDeclContext()); return CGF.CGM.getObjCRuntime() .GenerateMessageSendSuper(CGF, Return, ResultType, S, OMD->getClassInterface(), isCategoryImpl, Receiver, isClassMessage, CallArgs); } RValue CodeGenFunction::EmitLoadOfPropertyRefLValue(LValue LV, ReturnValueSlot Return) { const ObjCPropertyRefExpr *E = LV.getPropertyRefExpr(); QualType ResultType = E->getGetterResultType(); Selector S; const ObjCMethodDecl *method; if (E->isExplicitProperty()) { const ObjCPropertyDecl *Property = E->getExplicitProperty(); S = Property->getGetterName(); method = Property->getGetterMethodDecl(); } else { method = E->getImplicitPropertyGetter(); S = method->getSelector(); } llvm::Value *Receiver = LV.getPropertyRefBaseAddr(); if (CGM.getLangOptions().ObjCAutoRefCount) { QualType receiverType; if (E->isSuperReceiver()) receiverType = E->getSuperReceiverType(); else if (E->isClassReceiver()) receiverType = getContext().getObjCClassType(); else receiverType = E->getBase()->getType(); } // Accesses to 'super' follow a different code path. if (E->isSuperReceiver()) return AdjustRelatedResultType(*this, E, method, GenerateMessageSendSuper(*this, Return, ResultType, S, Receiver, CallArgList())); const ObjCInterfaceDecl *ReceiverClass = (E->isClassReceiver() ? E->getClassReceiver() : 0); return AdjustRelatedResultType(*this, E, method, CGM.getObjCRuntime(). GenerateMessageSend(*this, Return, ResultType, S, Receiver, CallArgList(), ReceiverClass)); } void CodeGenFunction::EmitStoreThroughPropertyRefLValue(RValue Src, LValue Dst) { const ObjCPropertyRefExpr *E = Dst.getPropertyRefExpr(); Selector S = E->getSetterSelector(); QualType ArgType = E->getSetterArgType(); // FIXME. Other than scalars, AST is not adequate for setter and // getter type mismatches which require conversion. if (Src.isScalar()) { llvm::Value *SrcVal = Src.getScalarVal(); QualType DstType = getContext().getCanonicalType(ArgType); const llvm::Type *DstTy = ConvertType(DstType); if (SrcVal->getType() != DstTy) Src = RValue::get(EmitScalarConversion(SrcVal, E->getType(), DstType)); } CallArgList Args; Args.add(Src, ArgType); llvm::Value *Receiver = Dst.getPropertyRefBaseAddr(); QualType ResultType = getContext().VoidTy; if (E->isSuperReceiver()) { GenerateMessageSendSuper(*this, ReturnValueSlot(), ResultType, S, Receiver, Args); return; } const ObjCInterfaceDecl *ReceiverClass = (E->isClassReceiver() ? E->getClassReceiver() : 0); CGM.getObjCRuntime().GenerateMessageSend(*this, ReturnValueSlot(), ResultType, S, Receiver, Args, ReceiverClass); } void CodeGenFunction::EmitObjCForCollectionStmt(const ObjCForCollectionStmt &S){ llvm::Constant *EnumerationMutationFn = CGM.getObjCRuntime().EnumerationMutationFunction(); if (!EnumerationMutationFn) { CGM.ErrorUnsupported(&S, "Obj-C fast enumeration for this runtime"); return; } CGDebugInfo *DI = getDebugInfo(); if (DI) { DI->setLocation(S.getSourceRange().getBegin()); DI->EmitRegionStart(Builder); } // The local variable comes into scope immediately. AutoVarEmission variable = AutoVarEmission::invalid(); if (const DeclStmt *SD = dyn_cast(S.getElement())) variable = EmitAutoVarAlloca(*cast(SD->getSingleDecl())); JumpDest LoopEnd = getJumpDestInCurrentScope("forcoll.end"); JumpDest AfterBody = getJumpDestInCurrentScope("forcoll.next"); // Fast enumeration state. QualType StateTy = getContext().getObjCFastEnumerationStateType(); llvm::Value *StatePtr = CreateMemTemp(StateTy, "state.ptr"); EmitNullInitialization(StatePtr, StateTy); // Number of elements in the items array. static const unsigned NumItems = 16; // Fetch the countByEnumeratingWithState:objects:count: selector. IdentifierInfo *II[] = { &CGM.getContext().Idents.get("countByEnumeratingWithState"), &CGM.getContext().Idents.get("objects"), &CGM.getContext().Idents.get("count") }; Selector FastEnumSel = CGM.getContext().Selectors.getSelector(llvm::array_lengthof(II), &II[0]); QualType ItemsTy = getContext().getConstantArrayType(getContext().getObjCIdType(), llvm::APInt(32, NumItems), ArrayType::Normal, 0); llvm::Value *ItemsPtr = CreateMemTemp(ItemsTy, "items.ptr"); // Emit the collection pointer. llvm::Value *Collection = EmitScalarExpr(S.getCollection()); // Send it our message: CallArgList Args; // The first argument is a temporary of the enumeration-state type. Args.add(RValue::get(StatePtr), getContext().getPointerType(StateTy)); // The second argument is a temporary array with space for NumItems // pointers. We'll actually be loading elements from the array // pointer written into the control state; this buffer is so that // collections that *aren't* backed by arrays can still queue up // batches of elements. Args.add(RValue::get(ItemsPtr), getContext().getPointerType(ItemsTy)); // The third argument is the capacity of that temporary array. const llvm::Type *UnsignedLongLTy = ConvertType(getContext().UnsignedLongTy); llvm::Constant *Count = llvm::ConstantInt::get(UnsignedLongLTy, NumItems); Args.add(RValue::get(Count), getContext().UnsignedLongTy); // Start the enumeration. RValue CountRV = CGM.getObjCRuntime().GenerateMessageSend(*this, ReturnValueSlot(), getContext().UnsignedLongTy, FastEnumSel, Collection, Args); // The initial number of objects that were returned in the buffer. llvm::Value *initialBufferLimit = CountRV.getScalarVal(); llvm::BasicBlock *EmptyBB = createBasicBlock("forcoll.empty"); llvm::BasicBlock *LoopInitBB = createBasicBlock("forcoll.loopinit"); llvm::Value *zero = llvm::Constant::getNullValue(UnsignedLongLTy); // If the limit pointer was zero to begin with, the collection is // empty; skip all this. Builder.CreateCondBr(Builder.CreateICmpEQ(initialBufferLimit, zero, "iszero"), EmptyBB, LoopInitBB); // Otherwise, initialize the loop. EmitBlock(LoopInitBB); // Save the initial mutations value. This is the value at an // address that was written into the state object by // countByEnumeratingWithState:objects:count:. llvm::Value *StateMutationsPtrPtr = Builder.CreateStructGEP(StatePtr, 2, "mutationsptr.ptr"); llvm::Value *StateMutationsPtr = Builder.CreateLoad(StateMutationsPtrPtr, "mutationsptr"); llvm::Value *initialMutations = Builder.CreateLoad(StateMutationsPtr, "forcoll.initial-mutations"); // Start looping. This is the point we return to whenever we have a // fresh, non-empty batch of objects. llvm::BasicBlock *LoopBodyBB = createBasicBlock("forcoll.loopbody"); EmitBlock(LoopBodyBB); // The current index into the buffer. llvm::PHINode *index = Builder.CreatePHI(UnsignedLongLTy, 3, "forcoll.index"); index->addIncoming(zero, LoopInitBB); // The current buffer size. llvm::PHINode *count = Builder.CreatePHI(UnsignedLongLTy, 3, "forcoll.count"); count->addIncoming(initialBufferLimit, LoopInitBB); // Check whether the mutations value has changed from where it was // at start. StateMutationsPtr should actually be invariant between // refreshes. StateMutationsPtr = Builder.CreateLoad(StateMutationsPtrPtr, "mutationsptr"); llvm::Value *currentMutations = Builder.CreateLoad(StateMutationsPtr, "statemutations"); llvm::BasicBlock *WasMutatedBB = createBasicBlock("forcoll.mutated"); llvm::BasicBlock *WasNotMutatedBB = createBasicBlock("forcoll.notmutated"); Builder.CreateCondBr(Builder.CreateICmpEQ(currentMutations, initialMutations), WasNotMutatedBB, WasMutatedBB); // If so, call the enumeration-mutation function. EmitBlock(WasMutatedBB); llvm::Value *V = Builder.CreateBitCast(Collection, ConvertType(getContext().getObjCIdType()), "tmp"); CallArgList Args2; Args2.add(RValue::get(V), getContext().getObjCIdType()); // FIXME: We shouldn't need to get the function info here, the runtime already // should have computed it to build the function. EmitCall(CGM.getTypes().getFunctionInfo(getContext().VoidTy, Args2, FunctionType::ExtInfo()), EnumerationMutationFn, ReturnValueSlot(), Args2); // Otherwise, or if the mutation function returns, just continue. EmitBlock(WasNotMutatedBB); // Initialize the element variable. RunCleanupsScope elementVariableScope(*this); bool elementIsVariable; LValue elementLValue; QualType elementType; if (const DeclStmt *SD = dyn_cast(S.getElement())) { // Initialize the variable, in case it's a __block variable or something. EmitAutoVarInit(variable); const VarDecl* D = cast(SD->getSingleDecl()); DeclRefExpr tempDRE(const_cast(D), D->getType(), VK_LValue, SourceLocation()); elementLValue = EmitLValue(&tempDRE); elementType = D->getType(); elementIsVariable = true; if (D->isARCPseudoStrong()) elementLValue.getQuals().setObjCLifetime(Qualifiers::OCL_ExplicitNone); } else { elementLValue = LValue(); // suppress warning elementType = cast(S.getElement())->getType(); elementIsVariable = false; } const llvm::Type *convertedElementType = ConvertType(elementType); // Fetch the buffer out of the enumeration state. // TODO: this pointer should actually be invariant between // refreshes, which would help us do certain loop optimizations. llvm::Value *StateItemsPtr = Builder.CreateStructGEP(StatePtr, 1, "stateitems.ptr"); llvm::Value *EnumStateItems = Builder.CreateLoad(StateItemsPtr, "stateitems"); // Fetch the value at the current index from the buffer. llvm::Value *CurrentItemPtr = Builder.CreateGEP(EnumStateItems, index, "currentitem.ptr"); llvm::Value *CurrentItem = Builder.CreateLoad(CurrentItemPtr); // Cast that value to the right type. CurrentItem = Builder.CreateBitCast(CurrentItem, convertedElementType, "currentitem"); // Make sure we have an l-value. Yes, this gets evaluated every // time through the loop. if (!elementIsVariable) { elementLValue = EmitLValue(cast(S.getElement())); EmitStoreThroughLValue(RValue::get(CurrentItem), elementLValue); } else { EmitScalarInit(CurrentItem, elementLValue); } // If we do have an element variable, this assignment is the end of // its initialization. if (elementIsVariable) EmitAutoVarCleanups(variable); // Perform the loop body, setting up break and continue labels. BreakContinueStack.push_back(BreakContinue(LoopEnd, AfterBody)); { RunCleanupsScope Scope(*this); EmitStmt(S.getBody()); } BreakContinueStack.pop_back(); // Destroy the element variable now. elementVariableScope.ForceCleanup(); // Check whether there are more elements. EmitBlock(AfterBody.getBlock()); llvm::BasicBlock *FetchMoreBB = createBasicBlock("forcoll.refetch"); // First we check in the local buffer. llvm::Value *indexPlusOne = Builder.CreateAdd(index, llvm::ConstantInt::get(UnsignedLongLTy, 1)); // If we haven't overrun the buffer yet, we can continue. Builder.CreateCondBr(Builder.CreateICmpULT(indexPlusOne, count), LoopBodyBB, FetchMoreBB); index->addIncoming(indexPlusOne, AfterBody.getBlock()); count->addIncoming(count, AfterBody.getBlock()); // Otherwise, we have to fetch more elements. EmitBlock(FetchMoreBB); CountRV = CGM.getObjCRuntime().GenerateMessageSend(*this, ReturnValueSlot(), getContext().UnsignedLongTy, FastEnumSel, Collection, Args); // If we got a zero count, we're done. llvm::Value *refetchCount = CountRV.getScalarVal(); // (note that the message send might split FetchMoreBB) index->addIncoming(zero, Builder.GetInsertBlock()); count->addIncoming(refetchCount, Builder.GetInsertBlock()); Builder.CreateCondBr(Builder.CreateICmpEQ(refetchCount, zero), EmptyBB, LoopBodyBB); // No more elements. EmitBlock(EmptyBB); if (!elementIsVariable) { // If the element was not a declaration, set it to be null. llvm::Value *null = llvm::Constant::getNullValue(convertedElementType); elementLValue = EmitLValue(cast(S.getElement())); EmitStoreThroughLValue(RValue::get(null), elementLValue); } if (DI) { DI->setLocation(S.getSourceRange().getEnd()); DI->EmitRegionEnd(Builder); } EmitBlock(LoopEnd.getBlock()); } void CodeGenFunction::EmitObjCAtTryStmt(const ObjCAtTryStmt &S) { CGM.getObjCRuntime().EmitTryStmt(*this, S); } void CodeGenFunction::EmitObjCAtThrowStmt(const ObjCAtThrowStmt &S) { CGM.getObjCRuntime().EmitThrowStmt(*this, S); } void CodeGenFunction::EmitObjCAtSynchronizedStmt( const ObjCAtSynchronizedStmt &S) { CGM.getObjCRuntime().EmitSynchronizedStmt(*this, S); } /// Produce the code for a CK_ObjCProduceObject. Just does a /// primitive retain. llvm::Value *CodeGenFunction::EmitObjCProduceObject(QualType type, llvm::Value *value) { return EmitARCRetain(type, value); } namespace { struct CallObjCRelease : EHScopeStack::Cleanup { CallObjCRelease(QualType type, llvm::Value *ptr, llvm::Value *condition) : type(type), ptr(ptr), condition(condition) {} QualType type; llvm::Value *ptr; llvm::Value *condition; void Emit(CodeGenFunction &CGF, bool forEH) { llvm::Value *object; // If we're in a conditional branch, we had to stash away in an // alloca the pointer to be released. llvm::BasicBlock *cont = 0; if (condition) { llvm::BasicBlock *release = CGF.createBasicBlock("release.yes"); cont = CGF.createBasicBlock("release.cont"); llvm::Value *cond = CGF.Builder.CreateLoad(condition); CGF.Builder.CreateCondBr(cond, release, cont); CGF.EmitBlock(release); object = CGF.Builder.CreateLoad(ptr); } else { object = ptr; } CGF.EmitARCRelease(object, /*precise*/ true); if (cont) CGF.EmitBlock(cont); } }; } /// Produce the code for a CK_ObjCConsumeObject. Does a primitive /// release at the end of the full-expression. llvm::Value *CodeGenFunction::EmitObjCConsumeObject(QualType type, llvm::Value *object) { // If we're in a conditional branch, we need to make the cleanup // conditional. FIXME: this really needs to be supported by the // environment. llvm::AllocaInst *cond; llvm::Value *ptr; if (isInConditionalBranch()) { cond = CreateTempAlloca(Builder.getInt1Ty(), "release.cond"); ptr = CreateTempAlloca(object->getType(), "release.value"); // The alloca is false until we get here. // FIXME: er. doesn't this need to be set at the start of the condition? InitTempAlloca(cond, Builder.getFalse()); // Then it turns true. Builder.CreateStore(Builder.getTrue(), cond); Builder.CreateStore(object, ptr); } else { cond = 0; ptr = object; } EHStack.pushCleanup(getARCCleanupKind(), type, ptr, cond); return object; } llvm::Value *CodeGenFunction::EmitObjCExtendObjectLifetime(QualType type, llvm::Value *value) { return EmitARCRetainAutorelease(type, value); } static llvm::Constant *createARCRuntimeFunction(CodeGenModule &CGM, const llvm::FunctionType *type, llvm::StringRef fnName) { llvm::Constant *fn = CGM.CreateRuntimeFunction(type, fnName); // In -fobjc-no-arc-runtime, emit weak references to the runtime // support library. if (!CGM.getCodeGenOpts().ObjCRuntimeHasARC) if (llvm::Function *f = dyn_cast(fn)) f->setLinkage(llvm::Function::ExternalWeakLinkage); return fn; } /// Perform an operation having the signature /// i8* (i8*) /// where a null input causes a no-op and returns null. static llvm::Value *emitARCValueOperation(CodeGenFunction &CGF, llvm::Value *value, llvm::Constant *&fn, llvm::StringRef fnName) { if (isa(value)) return value; if (!fn) { std::vector args(1, CGF.Int8PtrTy); const llvm::FunctionType *fnType = llvm::FunctionType::get(CGF.Int8PtrTy, args, false); fn = createARCRuntimeFunction(CGF.CGM, fnType, fnName); } // Cast the argument to 'id'. const llvm::Type *origType = value->getType(); value = CGF.Builder.CreateBitCast(value, CGF.Int8PtrTy); // Call the function. llvm::CallInst *call = CGF.Builder.CreateCall(fn, value); call->setDoesNotThrow(); // Cast the result back to the original type. return CGF.Builder.CreateBitCast(call, origType); } /// Perform an operation having the following signature: /// i8* (i8**) static llvm::Value *emitARCLoadOperation(CodeGenFunction &CGF, llvm::Value *addr, llvm::Constant *&fn, llvm::StringRef fnName) { if (!fn) { std::vector args(1, CGF.Int8PtrPtrTy); const llvm::FunctionType *fnType = llvm::FunctionType::get(CGF.Int8PtrTy, args, false); fn = createARCRuntimeFunction(CGF.CGM, fnType, fnName); } // Cast the argument to 'id*'. const llvm::Type *origType = addr->getType(); addr = CGF.Builder.CreateBitCast(addr, CGF.Int8PtrPtrTy); // Call the function. llvm::CallInst *call = CGF.Builder.CreateCall(fn, addr); call->setDoesNotThrow(); // Cast the result back to a dereference of the original type. llvm::Value *result = call; if (origType != CGF.Int8PtrPtrTy) result = CGF.Builder.CreateBitCast(result, cast(origType)->getElementType()); return result; } /// Perform an operation having the following signature: /// i8* (i8**, i8*) static llvm::Value *emitARCStoreOperation(CodeGenFunction &CGF, llvm::Value *addr, llvm::Value *value, llvm::Constant *&fn, llvm::StringRef fnName, bool ignored) { assert(cast(addr->getType())->getElementType() == value->getType()); if (!fn) { std::vector argTypes(2); argTypes[0] = CGF.Int8PtrPtrTy; argTypes[1] = CGF.Int8PtrTy; const llvm::FunctionType *fnType = llvm::FunctionType::get(CGF.Int8PtrTy, argTypes, false); fn = createARCRuntimeFunction(CGF.CGM, fnType, fnName); } const llvm::Type *origType = value->getType(); addr = CGF.Builder.CreateBitCast(addr, CGF.Int8PtrPtrTy); value = CGF.Builder.CreateBitCast(value, CGF.Int8PtrTy); llvm::CallInst *result = CGF.Builder.CreateCall2(fn, addr, value); result->setDoesNotThrow(); if (ignored) return 0; return CGF.Builder.CreateBitCast(result, origType); } /// Perform an operation having the following signature: /// void (i8**, i8**) static void emitARCCopyOperation(CodeGenFunction &CGF, llvm::Value *dst, llvm::Value *src, llvm::Constant *&fn, llvm::StringRef fnName) { assert(dst->getType() == src->getType()); if (!fn) { std::vector argTypes(2, CGF.Int8PtrPtrTy); const llvm::FunctionType *fnType = llvm::FunctionType::get(CGF.Builder.getVoidTy(), argTypes, false); fn = createARCRuntimeFunction(CGF.CGM, fnType, fnName); } dst = CGF.Builder.CreateBitCast(dst, CGF.Int8PtrPtrTy); src = CGF.Builder.CreateBitCast(src, CGF.Int8PtrPtrTy); llvm::CallInst *result = CGF.Builder.CreateCall2(fn, dst, src); result->setDoesNotThrow(); } /// Produce the code to do a retain. Based on the type, calls one of: /// call i8* @objc_retain(i8* %value) /// call i8* @objc_retainBlock(i8* %value) llvm::Value *CodeGenFunction::EmitARCRetain(QualType type, llvm::Value *value) { if (type->isBlockPointerType()) return EmitARCRetainBlock(value); else return EmitARCRetainNonBlock(value); } /// Retain the given object, with normal retain semantics. /// call i8* @objc_retain(i8* %value) llvm::Value *CodeGenFunction::EmitARCRetainNonBlock(llvm::Value *value) { return emitARCValueOperation(*this, value, CGM.getARCEntrypoints().objc_retain, "objc_retain"); } /// Retain the given block, with _Block_copy semantics. /// call i8* @objc_retainBlock(i8* %value) llvm::Value *CodeGenFunction::EmitARCRetainBlock(llvm::Value *value) { return emitARCValueOperation(*this, value, CGM.getARCEntrypoints().objc_retainBlock, "objc_retainBlock"); } /// Retain the given object which is the result of a function call. /// call i8* @objc_retainAutoreleasedReturnValue(i8* %value) /// /// Yes, this function name is one character away from a different /// call with completely different semantics. llvm::Value * CodeGenFunction::EmitARCRetainAutoreleasedReturnValue(llvm::Value *value) { // Fetch the void(void) inline asm which marks that we're going to // retain the autoreleased return value. llvm::InlineAsm *&marker = CGM.getARCEntrypoints().retainAutoreleasedReturnValueMarker; if (!marker) { llvm::StringRef assembly = CGM.getTargetCodeGenInfo() .getARCRetainAutoreleasedReturnValueMarker(); // If we have an empty assembly string, there's nothing to do. if (assembly.empty()) { // Otherwise, at -O0, build an inline asm that we're going to call // in a moment. } else if (CGM.getCodeGenOpts().OptimizationLevel == 0) { llvm::FunctionType *type = llvm::FunctionType::get(llvm::Type::getVoidTy(getLLVMContext()), /*variadic*/ false); marker = llvm::InlineAsm::get(type, assembly, "", /*sideeffects*/ true); // If we're at -O1 and above, we don't want to litter the code // with this marker yet, so leave a breadcrumb for the ARC // optimizer to pick up. } else { llvm::NamedMDNode *metadata = CGM.getModule().getOrInsertNamedMetadata( "clang.arc.retainAutoreleasedReturnValueMarker"); assert(metadata->getNumOperands() <= 1); if (metadata->getNumOperands() == 0) { llvm::Value *string = llvm::MDString::get(getLLVMContext(), assembly); llvm::Value *args[] = { string }; metadata->addOperand(llvm::MDNode::get(getLLVMContext(), args)); } } } // Call the marker asm if we made one, which we do only at -O0. if (marker) Builder.CreateCall(marker); return emitARCValueOperation(*this, value, CGM.getARCEntrypoints().objc_retainAutoreleasedReturnValue, "objc_retainAutoreleasedReturnValue"); } /// Release the given object. /// call void @objc_release(i8* %value) void CodeGenFunction::EmitARCRelease(llvm::Value *value, bool precise) { if (isa(value)) return; llvm::Constant *&fn = CGM.getARCEntrypoints().objc_release; if (!fn) { std::vector args(1, Int8PtrTy); const llvm::FunctionType *fnType = llvm::FunctionType::get(Builder.getVoidTy(), args, false); fn = createARCRuntimeFunction(CGM, fnType, "objc_release"); } // Cast the argument to 'id'. value = Builder.CreateBitCast(value, Int8PtrTy); // Call objc_release. llvm::CallInst *call = Builder.CreateCall(fn, value); call->setDoesNotThrow(); if (!precise) { llvm::SmallVector args; call->setMetadata("clang.imprecise_release", llvm::MDNode::get(Builder.getContext(), args)); } } /// Store into a strong object. Always calls this: /// call void @objc_storeStrong(i8** %addr, i8* %value) llvm::Value *CodeGenFunction::EmitARCStoreStrongCall(llvm::Value *addr, llvm::Value *value, bool ignored) { assert(cast(addr->getType())->getElementType() == value->getType()); llvm::Constant *&fn = CGM.getARCEntrypoints().objc_storeStrong; if (!fn) { const llvm::Type *argTypes[] = { Int8PtrPtrTy, Int8PtrTy }; const llvm::FunctionType *fnType = llvm::FunctionType::get(Builder.getVoidTy(), argTypes, false); fn = createARCRuntimeFunction(CGM, fnType, "objc_storeStrong"); } addr = Builder.CreateBitCast(addr, Int8PtrPtrTy); llvm::Value *castValue = Builder.CreateBitCast(value, Int8PtrTy); Builder.CreateCall2(fn, addr, castValue)->setDoesNotThrow(); if (ignored) return 0; return value; } /// Store into a strong object. Sometimes calls this: /// call void @objc_storeStrong(i8** %addr, i8* %value) /// Other times, breaks it down into components. llvm::Value *CodeGenFunction::EmitARCStoreStrong(LValue dst, llvm::Value *newValue, bool ignored) { QualType type = dst.getType(); bool isBlock = type->isBlockPointerType(); // Use a store barrier at -O0 unless this is a block type or the // lvalue is inadequately aligned. if (shouldUseFusedARCCalls() && !isBlock && !(dst.getAlignment() && dst.getAlignment() < PointerAlignInBytes)) { return EmitARCStoreStrongCall(dst.getAddress(), newValue, ignored); } // Otherwise, split it out. // Retain the new value. newValue = EmitARCRetain(type, newValue); // Read the old value. llvm::Value *oldValue = EmitLoadOfScalar(dst); // Store. We do this before the release so that any deallocs won't // see the old value. EmitStoreOfScalar(newValue, dst); // Finally, release the old value. EmitARCRelease(oldValue, /*precise*/ false); return newValue; } /// Autorelease the given object. /// call i8* @objc_autorelease(i8* %value) llvm::Value *CodeGenFunction::EmitARCAutorelease(llvm::Value *value) { return emitARCValueOperation(*this, value, CGM.getARCEntrypoints().objc_autorelease, "objc_autorelease"); } /// Autorelease the given object. /// call i8* @objc_autoreleaseReturnValue(i8* %value) llvm::Value * CodeGenFunction::EmitARCAutoreleaseReturnValue(llvm::Value *value) { return emitARCValueOperation(*this, value, CGM.getARCEntrypoints().objc_autoreleaseReturnValue, "objc_autoreleaseReturnValue"); } /// Do a fused retain/autorelease of the given object. /// call i8* @objc_retainAutoreleaseReturnValue(i8* %value) llvm::Value * CodeGenFunction::EmitARCRetainAutoreleaseReturnValue(llvm::Value *value) { return emitARCValueOperation(*this, value, CGM.getARCEntrypoints().objc_retainAutoreleaseReturnValue, "objc_retainAutoreleaseReturnValue"); } /// Do a fused retain/autorelease of the given object. /// call i8* @objc_retainAutorelease(i8* %value) /// or /// %retain = call i8* @objc_retainBlock(i8* %value) /// call i8* @objc_autorelease(i8* %retain) llvm::Value *CodeGenFunction::EmitARCRetainAutorelease(QualType type, llvm::Value *value) { if (!type->isBlockPointerType()) return EmitARCRetainAutoreleaseNonBlock(value); if (isa(value)) return value; const llvm::Type *origType = value->getType(); value = Builder.CreateBitCast(value, Int8PtrTy); value = EmitARCRetainBlock(value); value = EmitARCAutorelease(value); return Builder.CreateBitCast(value, origType); } /// Do a fused retain/autorelease of the given object. /// call i8* @objc_retainAutorelease(i8* %value) llvm::Value * CodeGenFunction::EmitARCRetainAutoreleaseNonBlock(llvm::Value *value) { return emitARCValueOperation(*this, value, CGM.getARCEntrypoints().objc_retainAutorelease, "objc_retainAutorelease"); } /// i8* @objc_loadWeak(i8** %addr) /// Essentially objc_autorelease(objc_loadWeakRetained(addr)). llvm::Value *CodeGenFunction::EmitARCLoadWeak(llvm::Value *addr) { return emitARCLoadOperation(*this, addr, CGM.getARCEntrypoints().objc_loadWeak, "objc_loadWeak"); } /// i8* @objc_loadWeakRetained(i8** %addr) llvm::Value *CodeGenFunction::EmitARCLoadWeakRetained(llvm::Value *addr) { return emitARCLoadOperation(*this, addr, CGM.getARCEntrypoints().objc_loadWeakRetained, "objc_loadWeakRetained"); } /// i8* @objc_storeWeak(i8** %addr, i8* %value) /// Returns %value. llvm::Value *CodeGenFunction::EmitARCStoreWeak(llvm::Value *addr, llvm::Value *value, bool ignored) { return emitARCStoreOperation(*this, addr, value, CGM.getARCEntrypoints().objc_storeWeak, "objc_storeWeak", ignored); } /// i8* @objc_initWeak(i8** %addr, i8* %value) /// Returns %value. %addr is known to not have a current weak entry. /// Essentially equivalent to: /// *addr = nil; objc_storeWeak(addr, value); void CodeGenFunction::EmitARCInitWeak(llvm::Value *addr, llvm::Value *value) { // If we're initializing to null, just write null to memory; no need // to get the runtime involved. But don't do this if optimization // is enabled, because accounting for this would make the optimizer // much more complicated. if (isa(value) && CGM.getCodeGenOpts().OptimizationLevel == 0) { Builder.CreateStore(value, addr); return; } emitARCStoreOperation(*this, addr, value, CGM.getARCEntrypoints().objc_initWeak, "objc_initWeak", /*ignored*/ true); } /// void @objc_destroyWeak(i8** %addr) /// Essentially objc_storeWeak(addr, nil). void CodeGenFunction::EmitARCDestroyWeak(llvm::Value *addr) { llvm::Constant *&fn = CGM.getARCEntrypoints().objc_destroyWeak; if (!fn) { std::vector args(1, Int8PtrPtrTy); const llvm::FunctionType *fnType = llvm::FunctionType::get(Builder.getVoidTy(), args, false); fn = createARCRuntimeFunction(CGM, fnType, "objc_destroyWeak"); } // Cast the argument to 'id*'. addr = Builder.CreateBitCast(addr, Int8PtrPtrTy); llvm::CallInst *call = Builder.CreateCall(fn, addr); call->setDoesNotThrow(); } /// void @objc_moveWeak(i8** %dest, i8** %src) /// Disregards the current value in %dest. Leaves %src pointing to nothing. /// Essentially (objc_copyWeak(dest, src), objc_destroyWeak(src)). void CodeGenFunction::EmitARCMoveWeak(llvm::Value *dst, llvm::Value *src) { emitARCCopyOperation(*this, dst, src, CGM.getARCEntrypoints().objc_moveWeak, "objc_moveWeak"); } /// void @objc_copyWeak(i8** %dest, i8** %src) /// Disregards the current value in %dest. Essentially /// objc_release(objc_initWeak(dest, objc_readWeakRetained(src))) void CodeGenFunction::EmitARCCopyWeak(llvm::Value *dst, llvm::Value *src) { emitARCCopyOperation(*this, dst, src, CGM.getARCEntrypoints().objc_copyWeak, "objc_copyWeak"); } /// Produce the code to do a objc_autoreleasepool_push. /// call i8* @objc_autoreleasePoolPush(void) llvm::Value *CodeGenFunction::EmitObjCAutoreleasePoolPush() { llvm::Constant *&fn = CGM.getRREntrypoints().objc_autoreleasePoolPush; if (!fn) { const llvm::FunctionType *fnType = llvm::FunctionType::get(Int8PtrTy, false); fn = createARCRuntimeFunction(CGM, fnType, "objc_autoreleasePoolPush"); } llvm::CallInst *call = Builder.CreateCall(fn); call->setDoesNotThrow(); return call; } /// Produce the code to do a primitive release. /// call void @objc_autoreleasePoolPop(i8* %ptr) void CodeGenFunction::EmitObjCAutoreleasePoolPop(llvm::Value *value) { assert(value->getType() == Int8PtrTy); llvm::Constant *&fn = CGM.getRREntrypoints().objc_autoreleasePoolPop; if (!fn) { std::vector args(1, Int8PtrTy); const llvm::FunctionType *fnType = llvm::FunctionType::get(Builder.getVoidTy(), args, false); // We don't want to use a weak import here; instead we should not // fall into this path. fn = createARCRuntimeFunction(CGM, fnType, "objc_autoreleasePoolPop"); } llvm::CallInst *call = Builder.CreateCall(fn, value); call->setDoesNotThrow(); } /// Produce the code to do an MRR version objc_autoreleasepool_push. /// Which is: [[NSAutoreleasePool alloc] init]; /// Where alloc is declared as: + (id) alloc; in NSAutoreleasePool class. /// init is declared as: - (id) init; in its NSObject super class. /// llvm::Value *CodeGenFunction::EmitObjCMRRAutoreleasePoolPush() { CGObjCRuntime &Runtime = CGM.getObjCRuntime(); llvm::Value *Receiver = Runtime.EmitNSAutoreleasePoolClassRef(Builder); // [NSAutoreleasePool alloc] IdentifierInfo *II = &CGM.getContext().Idents.get("alloc"); Selector AllocSel = getContext().Selectors.getSelector(0, &II); CallArgList Args; RValue AllocRV = Runtime.GenerateMessageSend(*this, ReturnValueSlot(), getContext().getObjCIdType(), AllocSel, Receiver, Args); // [Receiver init] Receiver = AllocRV.getScalarVal(); II = &CGM.getContext().Idents.get("init"); Selector InitSel = getContext().Selectors.getSelector(0, &II); RValue InitRV = Runtime.GenerateMessageSend(*this, ReturnValueSlot(), getContext().getObjCIdType(), InitSel, Receiver, Args); return InitRV.getScalarVal(); } /// Produce the code to do a primitive release. /// [tmp drain]; void CodeGenFunction::EmitObjCMRRAutoreleasePoolPop(llvm::Value *Arg) { IdentifierInfo *II = &CGM.getContext().Idents.get("drain"); Selector DrainSel = getContext().Selectors.getSelector(0, &II); CallArgList Args; CGM.getObjCRuntime().GenerateMessageSend(*this, ReturnValueSlot(), getContext().VoidTy, DrainSel, Arg, Args); } namespace { struct ObjCReleasingCleanup : EHScopeStack::Cleanup { private: QualType type; llvm::Value *addr; protected: ObjCReleasingCleanup(QualType type, llvm::Value *addr) : type(type), addr(addr) {} virtual llvm::Value *getAddress(CodeGenFunction &CGF, llvm::Value *addr) { return addr; } virtual void release(CodeGenFunction &CGF, QualType type, llvm::Value *addr) = 0; public: void Emit(CodeGenFunction &CGF, bool isForEH) { const ArrayType *arrayType = CGF.getContext().getAsArrayType(type); llvm::Value *addr = getAddress(CGF, this->addr); // If we don't have an array type, this is easy. if (!arrayType) return release(CGF, type, addr); llvm::Value *begin = addr; QualType baseType; // Otherwise, this is more painful. llvm::Value *count = emitArrayLength(CGF, arrayType, baseType, begin); assert(baseType == CGF.getContext().getBaseElementType(arrayType)); llvm::BasicBlock *incomingBB = CGF.Builder.GetInsertBlock(); // id *cur = begin; // id *end = begin + count; llvm::Value *end = CGF.Builder.CreateInBoundsGEP(begin, count, "array.end"); // loopBB: llvm::BasicBlock *loopBB = CGF.createBasicBlock("release-loop"); CGF.EmitBlock(loopBB); llvm::PHINode *cur = CGF.Builder.CreatePHI(begin->getType(), 2, "cur"); cur->addIncoming(begin, incomingBB); // if (cur == end) goto endBB; llvm::Value *eq = CGF.Builder.CreateICmpEQ(cur, end, "release-loop.done"); llvm::BasicBlock *bodyBB = CGF.createBasicBlock("release-loop.body"); llvm::BasicBlock *endBB = CGF.createBasicBlock("release-loop.cont"); CGF.Builder.CreateCondBr(eq, endBB, bodyBB); CGF.EmitBlock(bodyBB); // Release the value at 'cur'. release(CGF, baseType, cur); // ++cur; // goto loopBB; llvm::Value *next = CGF.Builder.CreateConstInBoundsGEP1_32(cur, 1); cur->addIncoming(next, CGF.Builder.GetInsertBlock()); CGF.Builder.CreateBr(loopBB); // endBB: CGF.EmitBlock(endBB); } private: /// Computes the length of an array in elements, as well /// as the base static llvm::Value *emitArrayLength(CodeGenFunction &CGF, const ArrayType *origArrayType, QualType &baseType, llvm::Value *&addr) { ASTContext &Ctx = CGF.getContext(); const ArrayType *arrayType = origArrayType; // If it's a VLA, we have to load the stored size. Note that // this is the size of the VLA in bytes, not its size in elements. llvm::Value *numVLAElements = 0; if (isa(arrayType)) { numVLAElements = CGF.getVLASize(cast(arrayType)).first; // Walk into all VLAs. This doesn't require changes to addr, // which has type T* where T is the first non-VLA element type. do { QualType elementType = arrayType->getElementType(); arrayType = Ctx.getAsArrayType(elementType); // If we only have VLA components, 'addr' requires no adjustment. if (!arrayType) { baseType = elementType; return numVLAElements; } } while (isa(arrayType)); // We get out here only if we find a constant array type // inside the VLA. } // We have some number of constant-length arrays, so addr should // have LLVM type [M x [N x [...]]]*. Build a GEP that walks // down to the first element of addr. llvm::SmallVector gepIndices; // GEP down to the array type. llvm::ConstantInt *zero = CGF.Builder.getInt32(0); gepIndices.push_back(zero); // It's more efficient to calculate the count from the LLVM // constant-length arrays than to re-evaluate the array bounds. uint64_t countFromCLAs = 1; const llvm::ArrayType *llvmArrayType = cast( cast(addr->getType())->getElementType()); while (true) { assert(isa(arrayType)); assert(cast(arrayType)->getSize().getZExtValue() == llvmArrayType->getNumElements()); gepIndices.push_back(zero); countFromCLAs *= llvmArrayType->getNumElements(); llvmArrayType = dyn_cast(llvmArrayType->getElementType()); if (!llvmArrayType) break; arrayType = Ctx.getAsArrayType(arrayType->getElementType()); assert(arrayType && "LLVM and Clang types are out-of-synch"); } baseType = arrayType->getElementType(); // Create the actual GEP. addr = CGF.Builder.CreateInBoundsGEP(addr, gepIndices.begin(), gepIndices.end(), "array.begin"); llvm::Value *numElements = llvm::ConstantInt::get(CGF.IntPtrTy, countFromCLAs); // If we had any VLA dimensions, factor them in. if (numVLAElements) numElements = CGF.Builder.CreateNUWMul(numVLAElements, numElements); return numElements; } static llvm::Value *divideVLASizeByBaseType(CodeGenFunction &CGF, llvm::Value *vlaSizeInBytes, QualType baseType) { // Divide the base type size back out of the CharUnits baseSize = CGF.getContext().getTypeSizeInChars(baseType); llvm::Value *baseSizeInBytes = llvm::ConstantInt::get(vlaSizeInBytes->getType(), baseSize.getQuantity()); return CGF.Builder.CreateUDiv(vlaSizeInBytes, baseSizeInBytes, "array.vla-count"); } }; /// A cleanup that calls @objc_release on all the objects to release. struct CallReleaseForObject : ObjCReleasingCleanup { bool precise; CallReleaseForObject(QualType type, llvm::Value *addr, bool precise) : ObjCReleasingCleanup(type, addr), precise(precise) {} using ObjCReleasingCleanup::Emit; static void Emit(CodeGenFunction &CGF, bool IsForEH, QualType type, llvm::Value *addr, bool precise) { // EHScopeStack::Cleanup objects can never have their destructors called, // so use placement new to construct our temporary object. union { void* align; char data[sizeof(CallReleaseForObject)]; }; CallReleaseForObject *Object = new (&align) CallReleaseForObject(type, addr, precise); Object->Emit(CGF, IsForEH); (void)data[0]; } void release(CodeGenFunction &CGF, QualType type, llvm::Value *addr) { llvm::Value *ptr = CGF.Builder.CreateLoad(addr, "tmp"); CGF.EmitARCRelease(ptr, precise); } }; /// A cleanup that calls @objc_storeStrong(nil) on all the objects to /// release in an ivar. struct CallReleaseForIvar : ObjCReleasingCleanup { const ObjCIvarDecl *ivar; CallReleaseForIvar(const ObjCIvarDecl *ivar, llvm::Value *self) : ObjCReleasingCleanup(ivar->getType(), self), ivar(ivar) {} llvm::Value *getAddress(CodeGenFunction &CGF, llvm::Value *addr) { LValue lvalue = CGF.EmitLValueForIvar(CGF.TypeOfSelfObject(), addr, ivar, /*CVR*/ 0); return lvalue.getAddress(); } void release(CodeGenFunction &CGF, QualType type, llvm::Value *addr) { // Release ivars by storing nil into them; it just makes things easier. llvm::Value *null = getNullForVariable(addr); CGF.EmitARCStoreStrongCall(addr, null, /*ignored*/ true); } }; /// A cleanup that calls @objc_release on all of the objects to release in /// a field. struct CallReleaseForField : CallReleaseForObject { const FieldDecl *Field; explicit CallReleaseForField(const FieldDecl *Field) : CallReleaseForObject(Field->getType(), 0, /*precise=*/true), Field(Field) { } llvm::Value *getAddress(CodeGenFunction &CGF, llvm::Value *) { llvm::Value *This = CGF.LoadCXXThis(); LValue LV = CGF.EmitLValueForField(This, Field, 0); return LV.getAddress(); } }; /// A cleanup that calls @objc_weak_release on all the objects to /// release in an object. struct CallWeakReleaseForObject : ObjCReleasingCleanup { CallWeakReleaseForObject(QualType type, llvm::Value *addr) : ObjCReleasingCleanup(type, addr) {} using ObjCReleasingCleanup::Emit; static void Emit(CodeGenFunction &CGF, bool IsForEH, QualType type, llvm::Value *addr) { // EHScopeStack::Cleanup objects can never have their destructors called, // so use placement new to construct our temporary object. union { void* align; char data[sizeof(CallWeakReleaseForObject)]; }; CallWeakReleaseForObject *Object = new (&align) CallWeakReleaseForObject(type, addr); Object->Emit(CGF, IsForEH); (void)data[0]; } void release(CodeGenFunction &CGF, QualType type, llvm::Value *addr) { CGF.EmitARCDestroyWeak(addr); } }; /// A cleanup that calls @objc_weak_release on all the objects to /// release in an ivar. struct CallWeakReleaseForIvar : CallWeakReleaseForObject { const ObjCIvarDecl *ivar; CallWeakReleaseForIvar(const ObjCIvarDecl *ivar, llvm::Value *self) : CallWeakReleaseForObject(ivar->getType(), self), ivar(ivar) {} llvm::Value *getAddress(CodeGenFunction &CGF, llvm::Value *addr) { LValue lvalue = CGF.EmitLValueForIvar(CGF.TypeOfSelfObject(), addr, ivar, /*CVR*/ 0); return lvalue.getAddress(); } }; /// A cleanup that calls @objc_weak_release on all the objects to /// release in a field; struct CallWeakReleaseForField : CallWeakReleaseForObject { const FieldDecl *Field; CallWeakReleaseForField(const FieldDecl *Field) : CallWeakReleaseForObject(Field->getType(), 0), Field(Field) {} llvm::Value *getAddress(CodeGenFunction &CGF, llvm::Value *) { llvm::Value *This = CGF.LoadCXXThis(); LValue LV = CGF.EmitLValueForField(This, Field, 0); return LV.getAddress(); } }; struct CallObjCAutoreleasePoolObject : EHScopeStack::Cleanup { llvm::Value *Token; CallObjCAutoreleasePoolObject(llvm::Value *token) : Token(token) {} void Emit(CodeGenFunction &CGF, bool isForEH) { CGF.EmitObjCAutoreleasePoolPop(Token); } }; struct CallObjCMRRAutoreleasePoolObject : EHScopeStack::Cleanup { llvm::Value *Token; CallObjCMRRAutoreleasePoolObject(llvm::Value *token) : Token(token) {} void Emit(CodeGenFunction &CGF, bool isForEH) { CGF.EmitObjCMRRAutoreleasePoolPop(Token); } }; } void CodeGenFunction::EmitObjCAutoreleasePoolCleanup(llvm::Value *Ptr) { if (CGM.getLangOptions().ObjCAutoRefCount) EHStack.pushCleanup(NormalCleanup, Ptr); else EHStack.pushCleanup(NormalCleanup, Ptr); } /// PushARCReleaseCleanup - Enter a cleanup to perform a release on a /// given object or array of objects. void CodeGenFunction::PushARCReleaseCleanup(CleanupKind cleanupKind, QualType type, llvm::Value *addr, bool precise, bool forFullExpr) { if (forFullExpr) pushFullExprCleanup(cleanupKind, type, addr, precise); else EHStack.pushCleanup(cleanupKind, type, addr, precise); } /// PushARCWeakReleaseCleanup - Enter a cleanup to perform a weak /// release on the given object or array of objects. void CodeGenFunction::PushARCWeakReleaseCleanup(CleanupKind cleanupKind, QualType type, llvm::Value *addr, bool forFullExpr) { if (forFullExpr) pushFullExprCleanup(cleanupKind, type, addr); else EHStack.pushCleanup(cleanupKind, type, addr); } /// PushARCReleaseCleanup - Enter a cleanup to perform a release on a /// given object or array of objects. void CodeGenFunction::PushARCFieldReleaseCleanup(CleanupKind cleanupKind, const FieldDecl *field) { EHStack.pushCleanup(cleanupKind, field); } /// PushARCWeakReleaseCleanup - Enter a cleanup to perform a weak /// release on the given object or array of objects. void CodeGenFunction::PushARCFieldWeakReleaseCleanup(CleanupKind cleanupKind, const FieldDecl *field) { EHStack.pushCleanup(cleanupKind, field); } static void pushReleaseForIvar(CodeGenFunction &CGF, ObjCIvarDecl *ivar, llvm::Value *self) { CGF.EHStack.pushCleanup(CGF.getARCCleanupKind(), ivar, self); } static void pushWeakReleaseForIvar(CodeGenFunction &CGF, ObjCIvarDecl *ivar, llvm::Value *self) { CGF.EHStack.pushCleanup(CGF.getARCCleanupKind(), ivar, self); } static TryEmitResult tryEmitARCRetainLoadOfScalar(CodeGenFunction &CGF, LValue lvalue, QualType type) { switch (type.getObjCLifetime()) { case Qualifiers::OCL_None: case Qualifiers::OCL_ExplicitNone: case Qualifiers::OCL_Strong: case Qualifiers::OCL_Autoreleasing: return TryEmitResult(CGF.EmitLoadOfLValue(lvalue).getScalarVal(), false); case Qualifiers::OCL_Weak: return TryEmitResult(CGF.EmitARCLoadWeakRetained(lvalue.getAddress()), true); } llvm_unreachable("impossible lifetime!"); return TryEmitResult(); } static TryEmitResult tryEmitARCRetainLoadOfScalar(CodeGenFunction &CGF, const Expr *e) { e = e->IgnoreParens(); QualType type = e->getType(); // As a very special optimization, in ARC++, if the l-value is the // result of a non-volatile assignment, do a simple retain of the // result of the call to objc_storeWeak instead of reloading. if (CGF.getLangOptions().CPlusPlus && !type.isVolatileQualified() && type.getObjCLifetime() == Qualifiers::OCL_Weak && isa(e) && cast(e)->getOpcode() == BO_Assign) return TryEmitResult(CGF.EmitScalarExpr(e), false); return tryEmitARCRetainLoadOfScalar(CGF, CGF.EmitLValue(e), type); } static llvm::Value *emitARCRetainAfterCall(CodeGenFunction &CGF, llvm::Value *value); /// Given that the given expression is some sort of call (which does /// not return retained), emit a retain following it. static llvm::Value *emitARCRetainCall(CodeGenFunction &CGF, const Expr *e) { llvm::Value *value = CGF.EmitScalarExpr(e); return emitARCRetainAfterCall(CGF, value); } static llvm::Value *emitARCRetainAfterCall(CodeGenFunction &CGF, llvm::Value *value) { if (llvm::CallInst *call = dyn_cast(value)) { CGBuilderTy::InsertPoint ip = CGF.Builder.saveIP(); // Place the retain immediately following the call. CGF.Builder.SetInsertPoint(call->getParent(), ++llvm::BasicBlock::iterator(call)); value = CGF.EmitARCRetainAutoreleasedReturnValue(value); CGF.Builder.restoreIP(ip); return value; } else if (llvm::InvokeInst *invoke = dyn_cast(value)) { CGBuilderTy::InsertPoint ip = CGF.Builder.saveIP(); // Place the retain at the beginning of the normal destination block. llvm::BasicBlock *BB = invoke->getNormalDest(); CGF.Builder.SetInsertPoint(BB, BB->begin()); value = CGF.EmitARCRetainAutoreleasedReturnValue(value); CGF.Builder.restoreIP(ip); return value; // Bitcasts can arise because of related-result returns. Rewrite // the operand. } else if (llvm::BitCastInst *bitcast = dyn_cast(value)) { llvm::Value *operand = bitcast->getOperand(0); operand = emitARCRetainAfterCall(CGF, operand); bitcast->setOperand(0, operand); return bitcast; // Generic fall-back case. } else { // Retain using the non-block variant: we never need to do a copy // of a block that's been returned to us. return CGF.EmitARCRetainNonBlock(value); } } static TryEmitResult tryEmitARCRetainScalarExpr(CodeGenFunction &CGF, const Expr *e) { // The desired result type, if it differs from the type of the // ultimate opaque expression. const llvm::Type *resultType = 0; // If we're loading retained from a __strong xvalue, we can avoid // an extra retain/release pair by zeroing out the source of this // "move" operation. if (e->isXValue() && !e->getType().isConstQualified() && e->getType().getObjCLifetime() == Qualifiers::OCL_Strong) { // Emit the lvalue LValue lv = CGF.EmitLValue(e); // Load the object pointer and cast it to the appropriate type. QualType exprType = e->getType(); llvm::Value *result = CGF.EmitLoadOfLValue(lv).getScalarVal(); if (resultType) result = CGF.Builder.CreateBitCast(result, resultType); // Set the source pointer to NULL. llvm::Value *null = llvm::ConstantPointerNull::get( cast(CGF.ConvertType(exprType))); CGF.EmitStoreOfScalar(null, lv); return TryEmitResult(result, true); } while (true) { e = e->IgnoreParens(); // There's a break at the end of this if-chain; anything // that wants to keep looping has to explicitly continue. if (const CastExpr *ce = dyn_cast(e)) { switch (ce->getCastKind()) { // No-op casts don't change the type, so we just ignore them. case CK_NoOp: e = ce->getSubExpr(); continue; case CK_LValueToRValue: { TryEmitResult loadResult = tryEmitARCRetainLoadOfScalar(CGF, ce->getSubExpr()); if (resultType) { llvm::Value *value = loadResult.getPointer(); value = CGF.Builder.CreateBitCast(value, resultType); loadResult.setPointer(value); } return loadResult; } // These casts can change the type, so remember that and // soldier on. We only need to remember the outermost such // cast, though. case CK_AnyPointerToObjCPointerCast: case CK_AnyPointerToBlockPointerCast: case CK_BitCast: if (!resultType) resultType = CGF.ConvertType(ce->getType()); e = ce->getSubExpr(); assert(e->getType()->hasPointerRepresentation()); continue; // For consumptions, just emit the subexpression and thus elide // the retain/release pair. case CK_ObjCConsumeObject: { llvm::Value *result = CGF.EmitScalarExpr(ce->getSubExpr()); if (resultType) result = CGF.Builder.CreateBitCast(result, resultType); return TryEmitResult(result, true); } // For reclaims, emit the subexpression as a retained call and // skip the consumption. case CK_ObjCReclaimReturnedObject: { llvm::Value *result = emitARCRetainCall(CGF, ce->getSubExpr()); if (resultType) result = CGF.Builder.CreateBitCast(result, resultType); return TryEmitResult(result, true); } case CK_GetObjCProperty: { llvm::Value *result = emitARCRetainCall(CGF, ce); if (resultType) result = CGF.Builder.CreateBitCast(result, resultType); return TryEmitResult(result, true); } default: break; } // Skip __extension__. } else if (const UnaryOperator *op = dyn_cast(e)) { if (op->getOpcode() == UO_Extension) { e = op->getSubExpr(); continue; } // For calls and message sends, use the retained-call logic. // Delegate inits are a special case in that they're the only // returns-retained expression that *isn't* surrounded by // a consume. } else if (isa(e) || (isa(e) && !cast(e)->isDelegateInitCall())) { llvm::Value *result = emitARCRetainCall(CGF, e); if (resultType) result = CGF.Builder.CreateBitCast(result, resultType); return TryEmitResult(result, true); } // Conservatively halt the search at any other expression kind. break; } // We didn't find an obvious production, so emit what we've got and // tell the caller that we didn't manage to retain. llvm::Value *result = CGF.EmitScalarExpr(e); if (resultType) result = CGF.Builder.CreateBitCast(result, resultType); return TryEmitResult(result, false); } static llvm::Value *emitARCRetainLoadOfScalar(CodeGenFunction &CGF, LValue lvalue, QualType type) { TryEmitResult result = tryEmitARCRetainLoadOfScalar(CGF, lvalue, type); llvm::Value *value = result.getPointer(); if (!result.getInt()) value = CGF.EmitARCRetain(type, value); return value; } /// EmitARCRetainScalarExpr - Semantically equivalent to /// EmitARCRetainObject(e->getType(), EmitScalarExpr(e)), but making a /// best-effort attempt to peephole expressions that naturally produce /// retained objects. llvm::Value *CodeGenFunction::EmitARCRetainScalarExpr(const Expr *e) { TryEmitResult result = tryEmitARCRetainScalarExpr(*this, e); llvm::Value *value = result.getPointer(); if (!result.getInt()) value = EmitARCRetain(e->getType(), value); return value; } llvm::Value * CodeGenFunction::EmitARCRetainAutoreleaseScalarExpr(const Expr *e) { TryEmitResult result = tryEmitARCRetainScalarExpr(*this, e); llvm::Value *value = result.getPointer(); if (result.getInt()) value = EmitARCAutorelease(value); else value = EmitARCRetainAutorelease(e->getType(), value); return value; } std::pair CodeGenFunction::EmitARCStoreStrong(const BinaryOperator *e, bool ignored) { // Evaluate the RHS first. TryEmitResult result = tryEmitARCRetainScalarExpr(*this, e->getRHS()); llvm::Value *value = result.getPointer(); LValue lvalue = EmitLValue(e->getLHS()); // If the RHS was emitted retained, expand this. if (result.getInt()) { llvm::Value *oldValue = EmitLoadOfScalar(lvalue.getAddress(), lvalue.isVolatileQualified(), lvalue.getAlignment(), e->getType(), lvalue.getTBAAInfo()); EmitStoreOfScalar(value, lvalue.getAddress(), lvalue.isVolatileQualified(), lvalue.getAlignment(), e->getType(), lvalue.getTBAAInfo()); EmitARCRelease(oldValue, /*precise*/ false); } else { value = EmitARCStoreStrong(lvalue, value, ignored); } return std::pair(lvalue, value); } std::pair CodeGenFunction::EmitARCStoreAutoreleasing(const BinaryOperator *e) { llvm::Value *value = EmitARCRetainAutoreleaseScalarExpr(e->getRHS()); LValue lvalue = EmitLValue(e->getLHS()); EmitStoreOfScalar(value, lvalue.getAddress(), lvalue.isVolatileQualified(), lvalue.getAlignment(), e->getType(), lvalue.getTBAAInfo()); return std::pair(lvalue, value); } void CodeGenFunction::EmitObjCAutoreleasePoolStmt( const ObjCAutoreleasePoolStmt &ARPS) { const Stmt *subStmt = ARPS.getSubStmt(); const CompoundStmt &S = cast(*subStmt); CGDebugInfo *DI = getDebugInfo(); if (DI) { DI->setLocation(S.getLBracLoc()); DI->EmitRegionStart(Builder); } // Keep track of the current cleanup stack depth. RunCleanupsScope Scope(*this); if (CGM.getCodeGenOpts().ObjCRuntimeHasARC) { llvm::Value *token = EmitObjCAutoreleasePoolPush(); EHStack.pushCleanup(NormalCleanup, token); } else { llvm::Value *token = EmitObjCMRRAutoreleasePoolPush(); EHStack.pushCleanup(NormalCleanup, token); } for (CompoundStmt::const_body_iterator I = S.body_begin(), E = S.body_end(); I != E; ++I) EmitStmt(*I); if (DI) { DI->setLocation(S.getRBracLoc()); DI->EmitRegionEnd(Builder); } } /// EmitExtendGCLifetime - Given a pointer to an Objective-C object, /// make sure it survives garbage collection until this point. void CodeGenFunction::EmitExtendGCLifetime(llvm::Value *object) { // We just use an inline assembly. const llvm::Type *paramTypes[] = { VoidPtrTy }; llvm::FunctionType *extenderType = llvm::FunctionType::get(VoidTy, paramTypes, /*variadic*/ false); llvm::Value *extender = llvm::InlineAsm::get(extenderType, /* assembly */ "", /* constraints */ "r", /* side effects */ true); object = Builder.CreateBitCast(object, VoidPtrTy); Builder.CreateCall(extender, object)->setDoesNotThrow(); } CGObjCRuntime::~CGObjCRuntime() {}