//===-- GRConstants.cpp - Simple, Path-Sens. Constant Prop. ------*- C++ -*-==// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // Constant Propagation via Graph Reachability // // This files defines a simple analysis that performs path-sensitive // constant propagation within a function. An example use of this analysis // is to perform simple checks for NULL dereferences. // //===----------------------------------------------------------------------===// #include "RValues.h" #include "ValueState.h" #include "clang/Analysis/PathSensitive/GREngine.h" #include "clang/AST/Expr.h" #include "clang/AST/ASTContext.h" #include "clang/Analysis/Analyses/LiveVariables.h" #include "llvm/Support/Casting.h" #include "llvm/Support/DataTypes.h" #include "llvm/ADT/APSInt.h" #include "llvm/ADT/FoldingSet.h" #include "llvm/ADT/ImmutableMap.h" #include "llvm/ADT/SmallVector.h" #include "llvm/ADT/SmallPtrSet.h" #include "llvm/Support/Allocator.h" #include "llvm/Support/Compiler.h" #include "llvm/Support/Streams.h" #include #ifndef NDEBUG #include "llvm/Support/GraphWriter.h" #include #endif using namespace clang; using llvm::dyn_cast; using llvm::cast; using llvm::APSInt; //===----------------------------------------------------------------------===// // The Checker. // // FIXME: This checker logic should be eventually broken into two components. // The first is the "meta"-level checking logic; the code that // does the Stmt visitation, fetching values from the map, etc. // The second part does the actual state manipulation. This way we // get more of a separate of concerns of these two pieces, with the // latter potentially being refactored back into the main checking // logic. //===----------------------------------------------------------------------===// namespace { class VISIBILITY_HIDDEN GRConstants { public: typedef ValueState StateTy; typedef GRStmtNodeBuilder StmtNodeBuilder; typedef GRBranchNodeBuilder BranchNodeBuilder; typedef ExplodedGraph GraphTy; typedef GraphTy::NodeTy NodeTy; class NodeSet { typedef llvm::SmallVector ImplTy; ImplTy Impl; public: NodeSet() {} NodeSet(NodeTy* N) { assert (N && !N->isSink()); Impl.push_back(N); } void Add(NodeTy* N) { if (N && !N->isSink()) Impl.push_back(N); } typedef ImplTy::iterator iterator; typedef ImplTy::const_iterator const_iterator; unsigned size() const { return Impl.size(); } bool empty() const { return Impl.empty(); } iterator begin() { return Impl.begin(); } iterator end() { return Impl.end(); } const_iterator begin() const { return Impl.begin(); } const_iterator end() const { return Impl.end(); } }; protected: /// G - the simulation graph. GraphTy& G; /// Liveness - live-variables information the ValueDecl* and block-level /// Expr* in the CFG. Used to prune out dead state. LiveVariables Liveness; /// Builder - The current GRStmtNodeBuilder which is used when building the nodes /// for a given statement. StmtNodeBuilder* Builder; /// StateMgr - Object that manages the data for all created states. StateTy::Factory StateMgr; /// ValueMgr - Object that manages the data for all created RValues. ValueManager ValMgr; /// SymMgr - Object that manages the symbol information. SymbolManager SymMgr; /// StmtEntryNode - The immediate predecessor node. NodeTy* StmtEntryNode; /// CurrentStmt - The current block-level statement. Stmt* CurrentStmt; /// UninitBranches - Nodes in the ExplodedGraph that result from /// taking a branch based on an uninitialized value. typedef llvm::SmallPtrSet UninitBranchesTy; UninitBranchesTy UninitBranches; bool StateCleaned; ASTContext& getContext() const { return G.getContext(); } public: GRConstants(GraphTy& g) : G(g), Liveness(G.getCFG(), G.getFunctionDecl()), Builder(NULL), ValMgr(G.getContext()), StmtEntryNode(NULL), CurrentStmt(NULL) { // Compute liveness information. Liveness.runOnCFG(G.getCFG()); Liveness.runOnAllBlocks(G.getCFG(), NULL, true); } /// getCFG - Returns the CFG associated with this analysis. CFG& getCFG() { return G.getCFG(); } /// getInitialState - Return the initial state used for the root vertex /// in the ExplodedGraph. StateTy getInitialState() { StateTy St = StateMgr.GetEmptyMap(); // Iterate the parameters. FunctionDecl& F = G.getFunctionDecl(); for (FunctionDecl::param_iterator I=F.param_begin(), E=F.param_end(); I!=E; ++I) St = SetValue(St, LValueDecl(*I), RValue::GetSymbolValue(SymMgr, *I)); return St; } bool isUninitControlFlow(const NodeTy* N) const { return N->isSink() && UninitBranches.count(const_cast(N)) != 0; } /// ProcessStmt - Called by GREngine. Used to generate new successor /// nodes by processing the 'effects' of a block-level statement. void ProcessStmt(Stmt* S, StmtNodeBuilder& builder); /// ProcessBranch - Called by GREngine. Used to generate successor /// nodes by processing the 'effects' of a branch condition. void ProcessBranch(Stmt* Condition, Stmt* Term, BranchNodeBuilder& builder); /// RemoveDeadBindings - Return a new state that is the same as 'M' except /// that all subexpression mappings are removed and that any /// block-level expressions that are not live at 'S' also have their /// mappings removed. StateTy RemoveDeadBindings(Stmt* S, StateTy M); StateTy SetValue(StateTy St, Stmt* S, const RValue& V); StateTy SetValue(StateTy St, const Stmt* S, const RValue& V) { return SetValue(St, const_cast(S), V); } StateTy SetValue(StateTy St, const LValue& LV, const RValue& V); RValue GetValue(const StateTy& St, Stmt* S); inline RValue GetValue(const StateTy& St, const Stmt* S) { return GetValue(St, const_cast(S)); } RValue GetValue(const StateTy& St, const LValue& LV); LValue GetLValue(const StateTy& St, Stmt* S); /// Assume - Create new state by assuming that a given expression /// is true or false. inline StateTy Assume(StateTy St, RValue Cond, bool Assumption, bool& isFeasible) { if (isa(Cond)) return Assume(St, cast(Cond), Assumption, isFeasible); else return Assume(St, cast(Cond), Assumption, isFeasible); } StateTy Assume(StateTy St, LValue Cond, bool Assumption, bool& isFeasible); StateTy Assume(StateTy St, NonLValue Cond, bool Assumption, bool& isFeasible); void Nodify(NodeSet& Dst, Stmt* S, NodeTy* Pred, StateTy St); /// Visit - Transfer function logic for all statements. Dispatches to /// other functions that handle specific kinds of statements. void Visit(Stmt* S, NodeTy* Pred, NodeSet& Dst); /// VisitCast - Transfer function logic for all casts (implicit and explicit). void VisitCast(Expr* CastE, Expr* E, NodeTy* Pred, NodeSet& Dst); /// VisitUnaryOperator - Transfer function logic for unary operators. void VisitUnaryOperator(UnaryOperator* B, NodeTy* Pred, NodeSet& Dst); /// VisitBinaryOperator - Transfer function logic for binary operators. void VisitBinaryOperator(BinaryOperator* B, NodeTy* Pred, NodeSet& Dst); /// VisitDeclStmt - Transfer function logic for DeclStmts. void VisitDeclStmt(DeclStmt* DS, NodeTy* Pred, NodeSet& Dst); }; } // end anonymous namespace void GRConstants::ProcessBranch(Stmt* Condition, Stmt* Term, BranchNodeBuilder& builder) { StateTy PrevState = builder.getState(); // Remove old bindings for subexpressions. for (StateTy::iterator I=PrevState.begin(), E=PrevState.end(); I!=E; ++I) if (I.getKey().isSubExpr()) PrevState = StateMgr.Remove(PrevState, I.getKey()); RValue V = GetValue(PrevState, Condition); switch (V.getBaseKind()) { default: break; case RValue::InvalidKind: builder.generateNode(PrevState, true); builder.generateNode(PrevState, false); return; case RValue::UninitializedKind: { NodeTy* N = builder.generateNode(PrevState, true); if (N) { N->markAsSink(); UninitBranches.insert(N); } builder.markInfeasible(false); return; } } // Process the true branch. bool isFeasible = true; StateTy St = Assume(PrevState, V, true, isFeasible); if (isFeasible) builder.generateNode(St, true); else { builder.markInfeasible(true); isFeasible = true; } // Process the false branch. St = Assume(PrevState, V, false, isFeasible); if (isFeasible) builder.generateNode(St, false); else builder.markInfeasible(false); } void GRConstants::ProcessStmt(Stmt* S, StmtNodeBuilder& builder) { Builder = &builder; StmtEntryNode = builder.getLastNode(); CurrentStmt = S; NodeSet Dst; StateCleaned = false; Visit(S, StmtEntryNode, Dst); // If no nodes were generated, generate a new node that has all the // dead mappings removed. if (Dst.size() == 1 && *Dst.begin() == StmtEntryNode) { StateTy St = RemoveDeadBindings(S, StmtEntryNode->getState()); builder.generateNode(S, St, StmtEntryNode); } CurrentStmt = NULL; StmtEntryNode = NULL; Builder = NULL; } RValue GRConstants::GetValue(const StateTy& St, const LValue& LV) { switch (LV.getSubKind()) { case LValueDeclKind: { StateTy::TreeTy* T = St.SlimFind(cast(LV).getDecl()); return T ? T->getValue().second : InvalidValue(); } default: assert (false && "Invalid LValue."); break; } return InvalidValue(); } RValue GRConstants::GetValue(const StateTy& St, Stmt* S) { for (;;) { switch (S->getStmtClass()) { // ParenExprs are no-ops. case Stmt::ParenExprClass: S = cast(S)->getSubExpr(); continue; // DeclRefExprs can either evaluate to an LValue or a Non-LValue // (assuming an implicit "load") depending on the context. In this // context we assume that we are retrieving the value contained // within the referenced variables. case Stmt::DeclRefExprClass: return GetValue(St, LValueDecl(cast(S)->getDecl())); // Integer literals evaluate to an RValue. Simply retrieve the // RValue for the literal. case Stmt::IntegerLiteralClass: return NonLValue::GetValue(ValMgr, cast(S)); // Casts where the source and target type are the same // are no-ops. We blast through these to get the descendant // subexpression that has a value. case Stmt::ImplicitCastExprClass: { ImplicitCastExpr* C = cast(S); if (C->getType() == C->getSubExpr()->getType()) { S = C->getSubExpr(); continue; } break; } case Stmt::CastExprClass: { CastExpr* C = cast(S); if (C->getType() == C->getSubExpr()->getType()) { S = C->getSubExpr(); continue; } break; } // Handle all other Stmt* using a lookup. default: break; }; break; } StateTy::TreeTy* T = St.SlimFind(S); return T ? T->getValue().second : InvalidValue(); } LValue GRConstants::GetLValue(const StateTy& St, Stmt* S) { while (ParenExpr* P = dyn_cast(S)) S = P->getSubExpr(); if (DeclRefExpr* DR = dyn_cast(S)) return LValueDecl(DR->getDecl()); return cast(GetValue(St, S)); } GRConstants::StateTy GRConstants::SetValue(StateTy St, Stmt* S, const RValue& V) { assert (S); if (!StateCleaned) { St = RemoveDeadBindings(CurrentStmt, St); StateCleaned = true; } bool isBlkExpr = false; if (S == CurrentStmt) { isBlkExpr = getCFG().isBlkExpr(S); if (!isBlkExpr) return St; } return V.isValid() ? StateMgr.Add(St, ValueKey(S,isBlkExpr), V) : St; } GRConstants::StateTy GRConstants::SetValue(StateTy St, const LValue& LV, const RValue& V) { if (!LV.isValid()) return St; if (!StateCleaned) { St = RemoveDeadBindings(CurrentStmt, St); StateCleaned = true; } switch (LV.getSubKind()) { case LValueDeclKind: return V.isValid() ? StateMgr.Add(St, cast(LV).getDecl(), V) : StateMgr.Remove(St, cast(LV).getDecl()); default: assert ("SetValue for given LValue type not yet implemented."); return St; } } GRConstants::StateTy GRConstants::RemoveDeadBindings(Stmt* Loc, StateTy M) { // Note: in the code below, we can assign a new map to M since the // iterators are iterating over the tree of the *original* map. StateTy::iterator I = M.begin(), E = M.end(); for (; I!=E && !I.getKey().isSymbol(); ++I) { // Remove old bindings for subexpressions and "dead" // block-level expressions. if (I.getKey().isSubExpr() || I.getKey().isBlkExpr() && !Liveness.isLive(Loc,cast(I.getKey()))){ M = StateMgr.Remove(M, I.getKey()); } else if (I.getKey().isDecl()) { // Remove bindings for "dead" decls. if (VarDecl* V = dyn_cast(cast(I.getKey()))) if (!Liveness.isLive(Loc, V)) M = StateMgr.Remove(M, I.getKey()); } } return M; } void GRConstants::Nodify(NodeSet& Dst, Stmt* S, GRConstants::NodeTy* Pred, GRConstants::StateTy St) { // If the state hasn't changed, don't generate a new node. if (St == Pred->getState()) return; Dst.Add(Builder->generateNode(S, St, Pred)); } void GRConstants::VisitCast(Expr* CastE, Expr* E, GRConstants::NodeTy* Pred, GRConstants::NodeSet& Dst) { QualType T = CastE->getType(); // Check for redundant casts. if (E->getType() == T) { Dst.Add(Pred); return; } NodeSet S1; Visit(E, Pred, S1); for (NodeSet::iterator I1=S1.begin(), E1=S1.end(); I1 != E1; ++I1) { NodeTy* N = *I1; StateTy St = N->getState(); const RValue& V = GetValue(St, E); Nodify(Dst, CastE, N, SetValue(St, CastE, V.Cast(ValMgr, CastE))); } } void GRConstants::VisitDeclStmt(DeclStmt* DS, GRConstants::NodeTy* Pred, GRConstants::NodeSet& Dst) { StateTy St = Pred->getState(); for (const ScopedDecl* D = DS->getDecl(); D; D = D->getNextDeclarator()) if (const VarDecl* VD = dyn_cast(D)) { const Expr* E = VD->getInit(); St = SetValue(St, LValueDecl(VD), E ? GetValue(St, E) : UninitializedValue()); } Nodify(Dst, DS, Pred, St); if (Dst.empty()) Dst.Add(Pred); } void GRConstants::VisitUnaryOperator(UnaryOperator* U, GRConstants::NodeTy* Pred, GRConstants::NodeSet& Dst) { NodeSet S1; Visit(U->getSubExpr(), Pred, S1); for (NodeSet::iterator I1=S1.begin(), E1=S1.end(); I1 != E1; ++I1) { NodeTy* N1 = *I1; StateTy St = N1->getState(); switch (U->getOpcode()) { case UnaryOperator::PostInc: { const LValue& L1 = GetLValue(St, U->getSubExpr()); NonLValue R1 = cast(GetValue(St, L1)); NonLValue R2 = NonLValue::GetValue(ValMgr, 1U, U->getType(), U->getLocStart()); NonLValue Result = R1.Add(ValMgr, R2); Nodify(Dst, U, N1, SetValue(SetValue(St, U, R1), L1, Result)); break; } case UnaryOperator::PostDec: { const LValue& L1 = GetLValue(St, U->getSubExpr()); NonLValue R1 = cast(GetValue(St, L1)); NonLValue R2 = NonLValue::GetValue(ValMgr, 1U, U->getType(), U->getLocStart()); NonLValue Result = R1.Sub(ValMgr, R2); Nodify(Dst, U, N1, SetValue(SetValue(St, U, R1), L1, Result)); break; } case UnaryOperator::PreInc: { const LValue& L1 = GetLValue(St, U->getSubExpr()); NonLValue R1 = cast(GetValue(St, L1)); NonLValue R2 = NonLValue::GetValue(ValMgr, 1U, U->getType(), U->getLocStart()); NonLValue Result = R1.Add(ValMgr, R2); Nodify(Dst, U, N1, SetValue(SetValue(St, U, Result), L1, Result)); break; } case UnaryOperator::PreDec: { const LValue& L1 = GetLValue(St, U->getSubExpr()); NonLValue R1 = cast(GetValue(St, L1)); NonLValue R2 = NonLValue::GetValue(ValMgr, 1U, U->getType(), U->getLocStart()); NonLValue Result = R1.Sub(ValMgr, R2); Nodify(Dst, U, N1, SetValue(SetValue(St, U, Result), L1, Result)); break; } case UnaryOperator::Minus: { const NonLValue& R1 = cast(GetValue(St, U->getSubExpr())); Nodify(Dst, U, N1, SetValue(St, U, R1.UnaryMinus(ValMgr, U))); break; } case UnaryOperator::AddrOf: { const LValue& L1 = GetLValue(St, U->getSubExpr()); Nodify(Dst, U, N1, SetValue(St, U, L1)); break; } case UnaryOperator::Deref: { const LValue& L1 = GetLValue(St, U->getSubExpr()); Nodify(Dst, U, N1, SetValue(St, U, GetValue(St, L1))); break; } default: ; assert (false && "Not implemented."); } } } void GRConstants::VisitBinaryOperator(BinaryOperator* B, GRConstants::NodeTy* Pred, GRConstants::NodeSet& Dst) { NodeSet S1; Visit(B->getLHS(), Pred, S1); for (NodeSet::iterator I1=S1.begin(), E1=S1.end(); I1 != E1; ++I1) { NodeTy* N1 = *I1; // When getting the value for the LHS, check if we are in an assignment. // In such cases, we want to (initially) treat the LHS as an LValue, // so we use GetLValue instead of GetValue so that DeclRefExpr's are // evaluated to LValueDecl's instead of to an NonLValue. const RValue& V1 = B->isAssignmentOp() ? GetLValue(N1->getState(), B->getLHS()) : GetValue(N1->getState(), B->getLHS()); NodeSet S2; Visit(B->getRHS(), N1, S2); for (NodeSet::iterator I2=S2.begin(), E2=S2.end(); I2 != E2; ++I2) { NodeTy* N2 = *I2; StateTy St = N2->getState(); const RValue& V2 = GetValue(St, B->getRHS()); switch (B->getOpcode()) { default: Dst.Add(N2); break; // Arithmetic opreators. case BinaryOperator::Add: { const NonLValue& R1 = cast(V1); const NonLValue& R2 = cast(V2); Nodify(Dst, B, N2, SetValue(St, B, R1.Add(ValMgr, R2))); break; } case BinaryOperator::Sub: { const NonLValue& R1 = cast(V1); const NonLValue& R2 = cast(V2); Nodify(Dst, B, N2, SetValue(St, B, R1.Sub(ValMgr, R2))); break; } case BinaryOperator::Mul: { const NonLValue& R1 = cast(V1); const NonLValue& R2 = cast(V2); Nodify(Dst, B, N2, SetValue(St, B, R1.Mul(ValMgr, R2))); break; } case BinaryOperator::Div: { const NonLValue& R1 = cast(V1); const NonLValue& R2 = cast(V2); Nodify(Dst, B, N2, SetValue(St, B, R1.Div(ValMgr, R2))); break; } case BinaryOperator::Rem: { const NonLValue& R1 = cast(V1); const NonLValue& R2 = cast(V2); Nodify(Dst, B, N2, SetValue(St, B, R1.Rem(ValMgr, R2))); break; } // Assignment operators. case BinaryOperator::Assign: { const LValue& L1 = cast(V1); const NonLValue& R2 = cast(V2); Nodify(Dst, B, N2, SetValue(SetValue(St, B, R2), L1, R2)); break; } case BinaryOperator::AddAssign: { const LValue& L1 = cast(V1); NonLValue R1 = cast(GetValue(N1->getState(), L1)); NonLValue Result = R1.Add(ValMgr, cast(V2)); Nodify(Dst, B, N2, SetValue(SetValue(St, B, Result), L1, Result)); break; } case BinaryOperator::SubAssign: { const LValue& L1 = cast(V1); NonLValue R1 = cast(GetValue(N1->getState(), L1)); NonLValue Result = R1.Sub(ValMgr, cast(V2)); Nodify(Dst, B, N2, SetValue(SetValue(St, B, Result), L1, Result)); break; } case BinaryOperator::MulAssign: { const LValue& L1 = cast(V1); NonLValue R1 = cast(GetValue(N1->getState(), L1)); NonLValue Result = R1.Mul(ValMgr, cast(V2)); Nodify(Dst, B, N2, SetValue(SetValue(St, B, Result), L1, Result)); break; } case BinaryOperator::DivAssign: { const LValue& L1 = cast(V1); NonLValue R1 = cast(GetValue(N1->getState(), L1)); NonLValue Result = R1.Div(ValMgr, cast(V2)); Nodify(Dst, B, N2, SetValue(SetValue(St, B, Result), L1, Result)); break; } case BinaryOperator::RemAssign: { const LValue& L1 = cast(V1); NonLValue R1 = cast(GetValue(N1->getState(), L1)); NonLValue Result = R1.Rem(ValMgr, cast(V2)); Nodify(Dst, B, N2, SetValue(SetValue(St, B, Result), L1, Result)); break; } // Equality operators. case BinaryOperator::EQ: // FIXME: should we allow XX.EQ() to return a set of values, // allowing state bifurcation? In such cases, they will also // modify the state (meaning that a new state will be returned // as well). assert (B->getType() == getContext().IntTy); if (isa(V1)) { const LValue& L1 = cast(V1); const LValue& L2 = cast(V2); St = SetValue(St, B, L1.EQ(ValMgr, L2)); } else { const NonLValue& R1 = cast(V1); const NonLValue& R2 = cast(V2); St = SetValue(St, B, R1.EQ(ValMgr, R2)); } Nodify(Dst, B, N2, St); break; } } } } void GRConstants::Visit(Stmt* S, GRConstants::NodeTy* Pred, GRConstants::NodeSet& Dst) { // FIXME: add metadata to the CFG so that we can disable // this check when we KNOW that there is no block-level subexpression. // The motivation is that this check requires a hashtable lookup. if (S != CurrentStmt && getCFG().isBlkExpr(S)) { Dst.Add(Pred); return; } switch (S->getStmtClass()) { case Stmt::BinaryOperatorClass: case Stmt::CompoundAssignOperatorClass: VisitBinaryOperator(cast(S), Pred, Dst); break; case Stmt::UnaryOperatorClass: VisitUnaryOperator(cast(S), Pred, Dst); break; case Stmt::ParenExprClass: Visit(cast(S)->getSubExpr(), Pred, Dst); break; case Stmt::ImplicitCastExprClass: { ImplicitCastExpr* C = cast(S); VisitCast(C, C->getSubExpr(), Pred, Dst); break; } case Stmt::CastExprClass: { CastExpr* C = cast(S); VisitCast(C, C->getSubExpr(), Pred, Dst); break; } case Stmt::DeclStmtClass: VisitDeclStmt(cast(S), Pred, Dst); break; default: Dst.Add(Pred); // No-op. Simply propagate the current state unchanged. break; } } //===----------------------------------------------------------------------===// // "Assume" logic. //===----------------------------------------------------------------------===// GRConstants::StateTy GRConstants::Assume(StateTy St, LValue Cond, bool Assumption, bool& isFeasible) { switch (Cond.getSubKind()) { default: assert (false && "'Assume' not implemented for this NonLValue."); return St; case LValueDeclKind: isFeasible = Assumption; return St; case ConcreteIntLValueKind: { bool b = cast(Cond).getValue() != 0; isFeasible = b ? Assumption : !Assumption; return St; } } } GRConstants::StateTy GRConstants::Assume(StateTy St, NonLValue Cond, bool Assumption, bool& isFeasible) { switch (Cond.getSubKind()) { default: assert (false && "'Assume' not implemented for this NonLValue."); return St; case ConcreteIntKind: { bool b = cast(Cond).getValue() != 0; isFeasible = b ? Assumption : !Assumption; return St; } } } //===----------------------------------------------------------------------===// // Driver. //===----------------------------------------------------------------------===// #ifndef NDEBUG static GRConstants* GraphPrintCheckerState; namespace llvm { template<> struct VISIBILITY_HIDDEN DOTGraphTraits : public DefaultDOTGraphTraits { static void PrintKindLabel(std::ostream& Out, ValueKey::Kind kind) { switch (kind) { case ValueKey::IsSubExpr: Out << "Sub-Expressions:\\l"; break; case ValueKey::IsDecl: Out << "Variables:\\l"; break; case ValueKey::IsBlkExpr: Out << "Block-level Expressions:\\l"; break; default: assert (false && "Unknown ValueKey type."); } } static void PrintKind(std::ostream& Out, GRConstants::StateTy M, ValueKey::Kind kind, bool isFirstGroup = false) { bool isFirst = true; for (GRConstants::StateTy::iterator I=M.begin(), E=M.end();I!=E;++I) { if (I.getKey().getKind() != kind) continue; if (isFirst) { if (!isFirstGroup) Out << "\\l\\l"; PrintKindLabel(Out, kind); isFirst = false; } else Out << "\\l"; Out << ' '; if (ValueDecl* V = dyn_cast(I.getKey())) Out << V->getName(); else { Stmt* E = cast(I.getKey()); Out << " (" << (void*) E << ") "; E->printPretty(Out); } Out << " : "; I.getData().print(Out); } } static std::string getNodeLabel(const GRConstants::NodeTy* N, void*) { std::ostringstream Out; // Program Location. ProgramPoint Loc = N->getLocation(); switch (Loc.getKind()) { case ProgramPoint::BlockEntranceKind: Out << "Block Entrance: B" << cast(Loc).getBlock()->getBlockID(); break; case ProgramPoint::BlockExitKind: assert (false); break; case ProgramPoint::PostStmtKind: { const PostStmt& L = cast(Loc); Out << L.getStmt()->getStmtClassName() << ':' << (void*) L.getStmt() << ' '; L.getStmt()->printPretty(Out); break; } default: { const BlockEdge& E = cast(Loc); Out << "Edge: (B" << E.getSrc()->getBlockID() << ", B" << E.getDst()->getBlockID() << ')'; if (Stmt* T = E.getSrc()->getTerminator()) { Out << "\\|Terminator: "; E.getSrc()->printTerminator(Out); if (isa(T)) { // FIXME } else { Out << "\\lCondition: "; if (*E.getSrc()->succ_begin() == E.getDst()) Out << "true"; else Out << "false"; } Out << "\\l"; } if (GraphPrintCheckerState->isUninitControlFlow(N)) { Out << "\\|Control-flow based on\\lUninitialized value.\\l"; } } } Out << "\\|StateID: " << (void*) N->getState().getRoot() << "\\|"; PrintKind(Out, N->getState(), ValueKey::IsDecl, true); PrintKind(Out, N->getState(), ValueKey::IsBlkExpr); PrintKind(Out, N->getState(), ValueKey::IsSubExpr); Out << "\\l"; return Out.str(); } }; } // end llvm namespace #endif namespace clang { void RunGRConstants(CFG& cfg, FunctionDecl& FD, ASTContext& Ctx) { GREngine Engine(cfg, FD, Ctx); Engine.ExecuteWorkList(); #ifndef NDEBUG GraphPrintCheckerState = &Engine.getCheckerState(); llvm::ViewGraph(*Engine.getGraph().roots_begin(),"GRConstants"); GraphPrintCheckerState = NULL; #endif } } // end clang namespace