//===- ConstantProp.cpp - Code to perform Constant Propogation ------------===// // // This file implements constant propogation and merging: // // Specifically, this: // * Folds multiple identical constants in the constant pool together // Note that if one is named and the other is not, that the result gets the // original name. // * Converts instructions like "add int %1, %2" into a direct def of %3 in // the constant pool // * Converts conditional branches on a constant boolean value into direct // branches. // * Converts phi nodes with one incoming def to the incoming def directly // . Converts switch statements with one entry into a test & conditional // branch // . Converts switches on constant values into an unconditional branch. // // Notice that: // * This pass has a habit of making definitions be dead. It is a good idea // to to run a DCE pass sometime after running this pass. // //===----------------------------------------------------------------------===// #include "llvm/Module.h" #include "llvm/Method.h" #include "llvm/BasicBlock.h" #include "llvm/iTerminators.h" #include "llvm/iOther.h" #include "llvm/ConstPoolVals.h" #include "llvm/ConstantPool.h" #include "llvm/Opt/AllOpts.h" #include "llvm/Opt/ConstantHandling.h" // Merge identical constant values in the constant pool. // // TODO: We can do better than this simplistic N^2 algorithm... // bool DoConstantPoolMerging(Method *M) { return DoConstantPoolMerging(M->getConstantPool()); } bool DoConstantPoolMerging(ConstantPool &CP) { bool Modified = false; for (ConstantPool::plane_iterator PI = CP.begin(); PI != CP.end(); ++PI) { for (ConstantPool::PlaneType::iterator I = (*PI)->begin(); I != (*PI)->end(); ++I) { ConstPoolVal *C = *I; ConstantPool::PlaneType::iterator J = I; for (++J; J != (*PI)->end(); ++J) { if (C->equals(*J)) { Modified = true; // Okay we know that *I == *J. So now we need to make all uses of *I // point to *J. // C->replaceAllUsesWith(*J); (*PI)->remove(I); // Remove C from constant pool... if (C->hasName() && !(*J)->hasName()) // The merged constant inherits (*J)->setName(C->getName()); // the old name... delete C; // Delete the constant itself. break; // Break out of inner for loop } } } } return Modified; } inline static bool ConstantFoldUnaryInst(Method *M, Method::inst_iterator &DI, UnaryOperator *Op, ConstPoolVal *D) { ConstPoolVal *ReplaceWith = ConstantFoldUnaryInstruction(Op->getInstType(), D); if (!ReplaceWith) return false; // Nothing new to change... // Add the new value to the constant pool... M->getConstantPool().insert(ReplaceWith); // Replaces all of the uses of a variable with uses of the constant. Op->replaceAllUsesWith(ReplaceWith); // Remove the operator from the list of definitions... Op->getParent()->getInstList().remove(DI.getInstructionIterator()); // The new constant inherits the old name of the operator... if (Op->hasName()) ReplaceWith->setName(Op->getName()); // Delete the operator now... delete Op; return true; } inline static bool ConstantFoldBinaryInst(Method *M, Method::inst_iterator &DI, BinaryOperator *Op, ConstPoolVal *D1, ConstPoolVal *D2) { ConstPoolVal *ReplaceWith = ConstantFoldBinaryInstruction(Op->getInstType(), D1, D2); if (!ReplaceWith) return false; // Nothing new to change... // Add the new value to the constant pool... M->getConstantPool().insert(ReplaceWith); // Replaces all of the uses of a variable with uses of the constant. Op->replaceAllUsesWith(ReplaceWith); // Remove the operator from the list of definitions... Op->getParent()->getInstList().remove(DI.getInstructionIterator()); // The new constant inherits the old name of the operator... if (Op->hasName()) ReplaceWith->setName(Op->getName()); // Delete the operator now... delete Op; return true; } // ConstantFoldTerminator - If a terminator instruction is predicated on a // constant value, convert it into an unconditional branch to the constant // destination. // bool ConstantFoldTerminator(TerminatorInst *T) { // Branch - See if we are conditional jumping on constant if (T->getInstType() == Instruction::Br) { BranchInst *BI = (BranchInst*)T; if (BI->isUnconditional()) return false; // Can't optimize uncond branch BasicBlock *Dest1 = BI->getOperand(0)->castBasicBlockAsserting(); BasicBlock *Dest2 = BI->getOperand(1)->castBasicBlockAsserting(); if (BI->getOperand(2)->isConstant()) { // Are we branching on constant? // YES. Change to unconditional branch... ConstPoolBool *Cond = (ConstPoolBool*)BI->getOperand(2); BasicBlock *Destination = Cond->getValue() ? Dest1 : Dest2; BasicBlock *OldDest = Cond->getValue() ? Dest2 : Dest1; //cerr << "Method: " << T->getParent()->getParent() // << "\nRemoving branch from " << T->getParent() // << "\n\nTo: " << OldDest << endl; // Let the basic block know that we are letting go of it. Based on this, // it will adjust it's PHI nodes. assert(BI->getParent() && "Terminator not inserted in block!"); OldDest->removePredecessor(BI->getParent()); BI->setOperand(0, Destination); // Set the unconditional destination BI->setOperand(1, 0); // Clear the conditional destination BI->setOperand(2, 0); // Clear the condition... return true; } else if (Dest2 == Dest1) { // Conditional branch to same location? // This branch matches something like this: // br bool %cond, label %Dest, label %Dest // and changes it into: br label %Dest // Let the basic block know that we are letting go of one copy of it. assert(BI->getParent() && "Terminator not inserted in block!"); Dest1->removePredecessor(BI->getParent()); // Nuke the second destination, and the use of the condition variable BI->setOperand(1, 0); // Clear the conditional destination BI->setOperand(2, 0); // Clear the condition... return true; } } return false; } // ConstantFoldInstruction - If an instruction references constants, try to fold // them together... // inline static bool ConstantFoldInstruction(Method *M, Method::inst_iterator &II) { Instruction *Inst = *II; if (Inst->isBinaryOp()) { ConstPoolVal *D1 = Inst->getOperand(0)->castConstant(); ConstPoolVal *D2 = Inst->getOperand(1)->castConstant(); if (D1 && D2) return ConstantFoldBinaryInst(M, II, (BinaryOperator*)Inst, D1, D2); } else if (Inst->isUnaryOp()) { ConstPoolVal *D = Inst->getOperand(0)->castConstant(); if (D) return ConstantFoldUnaryInst(M, II, (UnaryOperator*)Inst, D); } else if (Inst->isTerminator()) { return ConstantFoldTerminator((TerminatorInst*)Inst); } else if (Inst->isPHINode()) { PHINode *PN = (PHINode*)Inst; // If it's a PHI node and only has one operand // Then replace it directly with that operand. assert(PN->getOperand(0) && "PHI Node must have at least one operand!"); if (PN->getOperand(1) == 0) { // If the PHI Node has exactly 1 operand Value *V = PN->getOperand(0); PN->replaceAllUsesWith(V); // Replace all uses of this PHI // Unlink from basic block PN->getParent()->getInstList().remove(II.getInstructionIterator()); if (PN->hasName()) V->setName(PN->getName()); // Inherit PHINode name delete PN; // Finally, delete the node... return true; } } return false; } // DoConstPropPass - Propogate constants and do constant folding on instructions // this returns true if something was changed, false if nothing was changed. // static bool DoConstPropPass(Method *M) { bool SomethingChanged = false; #if 1 Method::inst_iterator It = M->inst_begin(); while (It != M->inst_end()) if (ConstantFoldInstruction(M, It)) { SomethingChanged = true; // If returned true, iter is already incremented // Incrementing the iterator in an unchecked manner could mess up the // internals of 'It'. To make sure everything is happy, tell it we might // have broken it. It.resyncInstructionIterator(); } else { ++It; } #else for (Method::iterator BBIt = M->begin(); BBIt != M->end(); ++BBIt) { BasicBlock *BB = *BBIt; reduce_apply_bool(BB->begin(), BB->end(), bind1st(ConstantFoldInstruction, M)); } #endif return SomethingChanged; } // returns true on failure, false on success... // bool DoConstantPropogation(Method *M) { bool Modified = false; // Fold constants until we make no progress... while (DoConstPropPass(M)) Modified = true; // Merge identical constants last: this is important because we may have just // introduced constants that already exist! // Modified |= DoConstantPoolMerging(M->getConstantPool()); return Modified; }