//===--- SemaDecl.cpp - Semantic Analysis for Declarations ----------------===// // // The LLVM Compiler Infrastructure // // This file was developed by Chris Lattner and is distributed under // the University of Illinois Open Source License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file implements semantic analysis for declarations. // //===----------------------------------------------------------------------===// #include "Sema.h" #include "clang/AST/ASTContext.h" #include "clang/AST/Builtins.h" #include "clang/AST/Decl.h" #include "clang/AST/Expr.h" #include "clang/AST/Type.h" #include "clang/AST/Attr.h" #include "clang/Parse/DeclSpec.h" #include "clang/Parse/Scope.h" #include "clang/Lex/IdentifierTable.h" #include "clang/Basic/LangOptions.h" #include "clang/Basic/TargetInfo.h" #include "llvm/ADT/SmallSet.h" using namespace llvm; using namespace clang; // C99: 6.7.5p3: Used by ParseDeclarator/ParseField to make sure we have // a constant expression of type int with a value greater than zero. bool Sema::VerifyConstantArrayType(const ArrayType *Array, SourceLocation DeclLoc) { const Expr *Size = Array->getSize(); if (Size == 0) return false; // incomplete type. if (!Size->getType()->isIntegerType()) { Diag(Size->getLocStart(), diag::err_array_size_non_int, Size->getType().getAsString(), Size->getSourceRange()); return true; } // Verify that the size of the array is an integer constant expr. SourceLocation Loc; APSInt SizeVal(32); if (!Size->isIntegerConstantExpr(SizeVal, &Loc)) { // FIXME: This emits the diagnostic to enforce 6.7.2.1p8, but the message // is wrong. It is also wrong for static variables. // FIXME: This is also wrong for: // int sub1(int i, char *pi) { typedef int foo[i]; // struct bar {foo f1; int f2:3; int f3:4} *p; } Diag(DeclLoc, diag::err_typecheck_illegal_vla, Size->getSourceRange()); return true; } // We have a constant expression with an integer type, now make sure // value greater than zero (C99 6.7.5.2p1). // FIXME: This check isn't specific to static VLAs, this should be moved // elsewhere or replicated. 'int X[-1];' inside a function should emit an // error. if (SizeVal.isSigned()) { APSInt Zero(SizeVal.getBitWidth()); Zero.setIsUnsigned(false); if (SizeVal < Zero) { Diag(DeclLoc, diag::err_typecheck_negative_array_size, Size->getSourceRange()); return true; } else if (SizeVal == 0) { // GCC accepts zero sized static arrays. Diag(DeclLoc, diag::err_typecheck_zero_array_size, Size->getSourceRange()); } } return false; } Sema::DeclTy *Sema::isTypeName(const IdentifierInfo &II, Scope *S) const { return dyn_cast_or_null(II.getFETokenInfo()); } void Sema::PopScope(SourceLocation Loc, Scope *S) { for (Scope::decl_iterator I = S->decl_begin(), E = S->decl_end(); I != E; ++I) { Decl *D = static_cast(*I); assert(D && "This decl didn't get pushed??"); IdentifierInfo *II = D->getIdentifier(); if (!II) continue; // Unlink this decl from the identifier. Because the scope contains decls // in an unordered collection, and because we have multiple identifier // namespaces (e.g. tag, normal, label),the decl may not be the first entry. if (II->getFETokenInfo() == D) { // Normal case, no multiple decls in different namespaces. II->setFETokenInfo(D->getNext()); } else { // Scan ahead. There are only three namespaces in C, so this loop can // never execute more than 3 times. Decl *SomeDecl = II->getFETokenInfo(); while (SomeDecl->getNext() != D) { SomeDecl = SomeDecl->getNext(); assert(SomeDecl && "Didn't find this decl on its identifier's chain!"); } SomeDecl->setNext(D->getNext()); } // This will have to be revisited for C++: there we want to nest stuff in // namespace decls etc. Even for C, we might want a top-level translation // unit decl or something. if (!CurFunctionDecl) continue; // Chain this decl to the containing function, it now owns the memory for // the decl. D->setNext(CurFunctionDecl->getDeclChain()); CurFunctionDecl->setDeclChain(D); } } /// LookupScopedDecl - Look up the inner-most declaration in the specified /// namespace. Decl *Sema::LookupScopedDecl(IdentifierInfo *II, unsigned NSI, SourceLocation IdLoc, Scope *S) { if (II == 0) return 0; Decl::IdentifierNamespace NS = (Decl::IdentifierNamespace)NSI; // Scan up the scope chain looking for a decl that matches this identifier // that is in the appropriate namespace. This search should not take long, as // shadowing of names is uncommon, and deep shadowing is extremely uncommon. for (Decl *D = II->getFETokenInfo(); D; D = D->getNext()) if (D->getIdentifierNamespace() == NS) return D; // If we didn't find a use of this identifier, and if the identifier // corresponds to a compiler builtin, create the decl object for the builtin // now, injecting it into translation unit scope, and return it. if (NS == Decl::IDNS_Ordinary) { // If this is a builtin on some other target, or if this builtin varies // across targets (e.g. in type), emit a diagnostic and mark the translation // unit non-portable for using it. if (II->isNonPortableBuiltin()) { // Only emit this diagnostic once for this builtin. II->setNonPortableBuiltin(false); Context.Target.DiagnoseNonPortability(IdLoc, diag::port_target_builtin_use); } // If this is a builtin on this (or all) targets, create the decl. if (unsigned BuiltinID = II->getBuiltinID()) return LazilyCreateBuiltin(II, BuiltinID, S); } return 0; } /// LazilyCreateBuiltin - The specified Builtin-ID was first used at file scope. /// lazily create a decl for it. Decl *Sema::LazilyCreateBuiltin(IdentifierInfo *II, unsigned bid, Scope *S) { Builtin::ID BID = (Builtin::ID)bid; QualType R = Context.BuiltinInfo.GetBuiltinType(BID, Context); FunctionDecl *New = new FunctionDecl(SourceLocation(), II, R, FunctionDecl::Extern, 0); // Find translation-unit scope to insert this function into. while (S->getParent()) S = S->getParent(); S->AddDecl(New); // Add this decl to the end of the identifier info. if (Decl *LastDecl = II->getFETokenInfo()) { // Scan until we find the last (outermost) decl in the id chain. while (LastDecl->getNext()) LastDecl = LastDecl->getNext(); // Insert before (outside) it. LastDecl->setNext(New); } else { II->setFETokenInfo(New); } // Make sure clients iterating over decls see this. LastInGroupList.push_back(New); return New; } /// MergeTypeDefDecl - We just parsed a typedef 'New' which has the same name /// and scope as a previous declaration 'Old'. Figure out how to resolve this /// situation, merging decls or emitting diagnostics as appropriate. /// TypedefDecl *Sema::MergeTypeDefDecl(TypedefDecl *New, Decl *OldD) { // Verify the old decl was also a typedef. TypedefDecl *Old = dyn_cast(OldD); if (!Old) { Diag(New->getLocation(), diag::err_redefinition_different_kind, New->getName()); Diag(OldD->getLocation(), diag::err_previous_definition); return New; } // TODO: CHECK FOR CONFLICTS, multiple decls with same name in one scope. // TODO: This is totally simplistic. It should handle merging functions // together etc, merging extern int X; int X; ... Diag(New->getLocation(), diag::err_redefinition, New->getName()); Diag(Old->getLocation(), diag::err_previous_definition); return New; } /// MergeFunctionDecl - We just parsed a function 'New' which has the same name /// and scope as a previous declaration 'Old'. Figure out how to resolve this /// situation, merging decls or emitting diagnostics as appropriate. /// FunctionDecl *Sema::MergeFunctionDecl(FunctionDecl *New, Decl *OldD) { // Verify the old decl was also a function. FunctionDecl *Old = dyn_cast(OldD); if (!Old) { Diag(New->getLocation(), diag::err_redefinition_different_kind, New->getName()); Diag(OldD->getLocation(), diag::err_previous_definition); return New; } // This is not right, but it's a start. If 'Old' is a function prototype with // the same type as 'New', silently allow this. FIXME: We should link up decl // objects here. if (Old->getBody() == 0 && Old->getCanonicalType() == New->getCanonicalType()) { return New; } // TODO: CHECK FOR CONFLICTS, multiple decls with same name in one scope. // TODO: This is totally simplistic. It should handle merging functions // together etc, merging extern int X; int X; ... Diag(New->getLocation(), diag::err_redefinition, New->getName()); Diag(Old->getLocation(), diag::err_previous_definition); return New; } /// MergeVarDecl - We just parsed a variable 'New' which has the same name /// and scope as a previous declaration 'Old'. Figure out how to resolve this /// situation, merging decls or emitting diagnostics as appropriate. /// /// FIXME: Need to carefully consider tentative definition rules (C99 6.9.2p2). /// For example, we incorrectly complain about i1, i4 from C99 6.9.2p4. /// VarDecl *Sema::MergeVarDecl(VarDecl *New, Decl *OldD) { // Verify the old decl was also a variable. VarDecl *Old = dyn_cast(OldD); if (!Old) { Diag(New->getLocation(), diag::err_redefinition_different_kind, New->getName()); Diag(OldD->getLocation(), diag::err_previous_definition); return New; } // Verify the types match. if (Old->getCanonicalType() != New->getCanonicalType()) { Diag(New->getLocation(), diag::err_redefinition, New->getName()); Diag(Old->getLocation(), diag::err_previous_definition); return New; } // We've verified the types match, now check if Old is "extern". if (Old->getStorageClass() != VarDecl::Extern) { Diag(New->getLocation(), diag::err_redefinition, New->getName()); Diag(Old->getLocation(), diag::err_previous_definition); } return New; } /// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with /// no declarator (e.g. "struct foo;") is parsed. Sema::DeclTy *Sema::ParsedFreeStandingDeclSpec(Scope *S, DeclSpec &DS) { // TODO: emit error on 'int;' or 'const enum foo;'. // TODO: emit error on 'typedef int;' // if (!DS.isMissingDeclaratorOk()) Diag(...); return 0; } Sema::DeclTy * Sema::ParseDeclarator(Scope *S, Declarator &D, ExprTy *Init, DeclTy *lastDeclarator) { Decl *LastDeclarator = (Decl*)lastDeclarator; IdentifierInfo *II = D.getIdentifier(); // See if this is a redefinition of a variable in the same scope. Decl *PrevDecl = LookupScopedDecl(II, Decl::IDNS_Ordinary, D.getIdentifierLoc(), S); if (PrevDecl && !S->isDeclScope(PrevDecl)) PrevDecl = 0; // If in outer scope, it isn't the same thing. Decl *New; if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) { TypedefDecl *NewTD = ParseTypedefDecl(S, D, LastDeclarator); if (!NewTD) return 0; // Merge the decl with the existing one if appropriate. if (PrevDecl) { NewTD = MergeTypeDefDecl(NewTD, PrevDecl); if (NewTD == 0) return 0; } New = NewTD; if (S->getParent() == 0) { // C99 6.7.7p2: If a typedef name specifies a variably modified type // then it shall have block scope. if (ArrayType *ary = dyn_cast(NewTD->getUnderlyingType())) { if (VerifyConstantArrayType(ary, D.getIdentifierLoc())) return 0; } } } else if (D.isFunctionDeclarator()) { QualType R = GetTypeForDeclarator(D, S); if (R.isNull()) return 0; // FIXME: "auto func();" passes through... FunctionDecl::StorageClass SC; switch (D.getDeclSpec().getStorageClassSpec()) { default: assert(0 && "Unknown storage class!"); case DeclSpec::SCS_auto: case DeclSpec::SCS_register: Diag(D.getIdentifierLoc(), diag::err_typecheck_sclass_func, R.getAsString()); return 0; case DeclSpec::SCS_unspecified: SC = FunctionDecl::None; break; case DeclSpec::SCS_extern: SC = FunctionDecl::Extern; break; case DeclSpec::SCS_static: SC = FunctionDecl::Static; break; } FunctionDecl *NewFD = new FunctionDecl(D.getIdentifierLoc(), II, R, SC, LastDeclarator); // Merge the decl with the existing one if appropriate. if (PrevDecl) { NewFD = MergeFunctionDecl(NewFD, PrevDecl); if (NewFD == 0) return 0; } New = NewFD; } else { QualType R = GetTypeForDeclarator(D, S); if (R.isNull()) return 0; VarDecl *NewVD; VarDecl::StorageClass SC; switch (D.getDeclSpec().getStorageClassSpec()) { default: assert(0 && "Unknown storage class!"); case DeclSpec::SCS_unspecified: SC = VarDecl::None; break; case DeclSpec::SCS_extern: SC = VarDecl::Extern; break; case DeclSpec::SCS_static: SC = VarDecl::Static; break; case DeclSpec::SCS_auto: SC = VarDecl::Auto; break; case DeclSpec::SCS_register: SC = VarDecl::Register; break; } if (S->getParent() == 0) { // File scope. C99 6.9.2p2: A declaration of an identifier for and // object that has file scope without an initializer, and without a // storage-class specifier or with the storage-class specifier "static", // constitutes a tentative definition. Note: A tentative definition with // external linkage is valid (C99 6.2.2p5). if (!Init && SC == VarDecl::Static) { // C99 6.9.2p3: If the declaration of an identifier for an object is // a tentative definition and has internal linkage (C99 6.2.2p3), the // declared type shall not be an incomplete type. if (R->isIncompleteType()) { Diag(D.getIdentifierLoc(), diag::err_typecheck_decl_incomplete_type, R.getAsString()); return 0; } } // C99 6.9p2: The storage-class specifiers auto and register shall not // appear in the declaration specifiers in an external declaration. if (SC == VarDecl::Auto || SC == VarDecl::Register) { Diag(D.getIdentifierLoc(), diag::err_typecheck_sclass_fscope, R.getAsString()); return 0; } // C99 6.7.5.2p2: If an identifier is declared to be an object with // static storage duration, it shall not have a variable length array. if (ArrayType *ary = dyn_cast(R.getCanonicalType())) { if (VerifyConstantArrayType(ary, D.getIdentifierLoc())) return 0; } NewVD = new FileVarDecl(D.getIdentifierLoc(), II, R, SC, LastDeclarator); } else { // Block scope. C99 6.7p7: If an identifier for an object is declared with // no linkage (C99 6.2.2p6), the type for the object shall be complete... if (SC != VarDecl::Extern) { if (R->isIncompleteType()) { Diag(D.getIdentifierLoc(), diag::err_typecheck_decl_incomplete_type, R.getAsString()); return 0; } } if (SC == VarDecl::Static) { // C99 6.7.5.2p2: If an identifier is declared to be an object with // static storage duration, it shall not have a variable length array. if (ArrayType *ary = dyn_cast(R.getCanonicalType())) { if (VerifyConstantArrayType(ary, D.getIdentifierLoc())) return 0; } } NewVD = new BlockVarDecl(D.getIdentifierLoc(), II, R, SC, LastDeclarator); } // Merge the decl with the existing one if appropriate. if (PrevDecl) { NewVD = MergeVarDecl(NewVD, PrevDecl); if (NewVD == 0) return 0; } New = NewVD; } // If this has an identifier, add it to the scope stack. if (II) { New->setNext(II->getFETokenInfo()); II->setFETokenInfo(New); S->AddDecl(New); } if (S->getParent() == 0) AddTopLevelDecl(New, LastDeclarator); return New; } /// The declarators are chained together backwards, reverse the list. Sema::DeclTy *Sema::FinalizeDeclaratorGroup(Scope *S, DeclTy *group) { // Often we have single declarators, handle them quickly. Decl *Group = static_cast(group); if (Group == 0 || Group->getNextDeclarator() == 0) return Group; Decl *NewGroup = 0; while (Group) { Decl *Next = Group->getNextDeclarator(); Group->setNextDeclarator(NewGroup); NewGroup = Group; Group = Next; } return NewGroup; } VarDecl * Sema::ParseParamDeclarator(DeclaratorChunk &FTI, unsigned ArgNo, Scope *FnScope) { const DeclaratorChunk::ParamInfo &PI = FTI.Fun.ArgInfo[ArgNo]; IdentifierInfo *II = PI.Ident; // TODO: CHECK FOR CONFLICTS, multiple decls with same name in one scope. // Can this happen for params? We already checked that they don't conflict // among each other. Here they can only shadow globals, which is ok. if (Decl *PrevDecl = LookupScopedDecl(II, Decl::IDNS_Ordinary, PI.IdentLoc, FnScope)) { } // FIXME: Handle storage class (auto, register). No declarator? // TODO: Chain to previous parameter with the prevdeclarator chain? VarDecl *New = new ParmVarDecl(PI.IdentLoc, II, QualType::getFromOpaquePtr(PI.TypeInfo), VarDecl::None, 0); // If this has an identifier, add it to the scope stack. if (II) { New->setNext(II->getFETokenInfo()); II->setFETokenInfo(New); FnScope->AddDecl(New); } return New; } Sema::DeclTy *Sema::ParseStartOfFunctionDef(Scope *FnBodyScope, Declarator &D) { assert(CurFunctionDecl == 0 && "Function parsing confused"); assert(D.getTypeObject(0).Kind == DeclaratorChunk::Function && "Not a function declarator!"); DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun; // Verify 6.9.1p6: 'every identifier in the identifier list shall be declared' // for a K&R function. if (!FTI.hasPrototype) { for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i) { if (FTI.ArgInfo[i].TypeInfo == 0) { Diag(FTI.ArgInfo[i].IdentLoc, diag::err_param_not_declared, FTI.ArgInfo[i].Ident->getName()); // Implicitly declare the argument as type 'int' for lack of a better // type. FTI.ArgInfo[i].TypeInfo = Context.IntTy.getAsOpaquePtr(); } } // Since this is a function definition, act as though we have information // about the arguments. FTI.hasPrototype = true; } else { // FIXME: Diagnose arguments without names in C. } Scope *GlobalScope = FnBodyScope->getParent(); FunctionDecl *FD = static_cast(ParseDeclarator(GlobalScope, D, 0, 0)); CurFunctionDecl = FD; // Create Decl objects for each parameter, adding them to the FunctionDecl. SmallVector Params; // Check for C99 6.7.5.3p10 - foo(void) is a non-varargs function that takes // no arguments, not a function that takes a single void argument. if (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 && FTI.ArgInfo[0].TypeInfo == Context.VoidTy.getAsOpaquePtr()) { // empty arg list, don't push any params. } else { for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i) Params.push_back(ParseParamDeclarator(D.getTypeObject(0), i,FnBodyScope)); } FD->setParams(&Params[0], Params.size()); return FD; } Sema::DeclTy *Sema::ParseFunctionDefBody(DeclTy *D, StmtTy *Body) { FunctionDecl *FD = static_cast(D); FD->setBody((Stmt*)Body); assert(FD == CurFunctionDecl && "Function parsing confused"); CurFunctionDecl = 0; // Verify and clean out per-function state. // Check goto/label use. for (DenseMap::iterator I = LabelMap.begin(), E = LabelMap.end(); I != E; ++I) { // Verify that we have no forward references left. If so, there was a goto // or address of a label taken, but no definition of it. Label fwd // definitions are indicated with a null substmt. if (I->second->getSubStmt() == 0) { LabelStmt *L = I->second; // Emit error. Diag(L->getIdentLoc(), diag::err_undeclared_label_use, L->getName()); // At this point, we have gotos that use the bogus label. Stitch it into // the function body so that they aren't leaked and that the AST is well // formed. L->setSubStmt(new NullStmt(L->getIdentLoc())); cast((Stmt*)Body)->push_back(L); } } LabelMap.clear(); return FD; } /// ImplicitlyDefineFunction - An undeclared identifier was used in a function /// call, forming a call to an implicitly defined function (per C99 6.5.1p2). Decl *Sema::ImplicitlyDefineFunction(SourceLocation Loc, IdentifierInfo &II, Scope *S) { if (getLangOptions().C99) // Extension in C99. Diag(Loc, diag::ext_implicit_function_decl, II.getName()); else // Legal in C90, but warn about it. Diag(Loc, diag::warn_implicit_function_decl, II.getName()); // FIXME: handle stuff like: // void foo() { extern float X(); } // void bar() { X(); } <-- implicit decl for X in another scope. // Set a Declarator for the implicit definition: int foo(); const char *Dummy; DeclSpec DS; bool Error = DS.SetTypeSpecType(DeclSpec::TST_int, Loc, Dummy); Error = Error; // Silence warning. assert(!Error && "Error setting up implicit decl!"); Declarator D(DS, Declarator::BlockContext); D.AddTypeInfo(DeclaratorChunk::getFunction(false, false, 0, 0, Loc)); D.SetIdentifier(&II, Loc); // Find translation-unit scope to insert this function into. while (S->getParent()) S = S->getParent(); return static_cast(ParseDeclarator(S, D, 0, 0)); } TypedefDecl *Sema::ParseTypedefDecl(Scope *S, Declarator &D, Decl *LastDeclarator) { assert(D.getIdentifier() && "Wrong callback for declspec without declarator"); QualType T = GetTypeForDeclarator(D, S); if (T.isNull()) return 0; // Scope manipulation handled by caller. return new TypedefDecl(D.getIdentifierLoc(), D.getIdentifier(), T, LastDeclarator); } /// ParseTag - This is invoked when we see 'struct foo' or 'struct {'. In the /// former case, Name will be non-null. In the later case, Name will be null. /// TagType indicates what kind of tag this is. TK indicates whether this is a /// reference/declaration/definition of a tag. Sema::DeclTy *Sema::ParseTag(Scope *S, unsigned TagType, TagKind TK, SourceLocation KWLoc, IdentifierInfo *Name, SourceLocation NameLoc, AttributeList *Attr) { // If this is a use of an existing tag, it must have a name. assert((Name != 0 || TK == TK_Definition) && "Nameless record must be a definition!"); Decl::Kind Kind; switch (TagType) { default: assert(0 && "Unknown tag type!"); case DeclSpec::TST_struct: Kind = Decl::Struct; break; case DeclSpec::TST_union: Kind = Decl::Union; break; //case DeclSpec::TST_class: Kind = Decl::Class; break; case DeclSpec::TST_enum: Kind = Decl::Enum; break; } // If this is a named struct, check to see if there was a previous forward // declaration or definition. if (TagDecl *PrevDecl = dyn_cast_or_null(LookupScopedDecl(Name, Decl::IDNS_Tag, NameLoc, S))) { // If this is a use of a previous tag, or if the tag is already declared in // the same scope (so that the definition/declaration completes or // rementions the tag), reuse the decl. if (TK == TK_Reference || S->isDeclScope(PrevDecl)) { // Make sure that this wasn't declared as an enum and now used as a struct // or something similar. if (PrevDecl->getKind() != Kind) { Diag(KWLoc, diag::err_use_with_wrong_tag, Name->getName()); Diag(PrevDecl->getLocation(), diag::err_previous_use); } // If this is a use or a forward declaration, we're good. if (TK != TK_Definition) return PrevDecl; // Diagnose attempts to redefine a tag. if (PrevDecl->isDefinition()) { Diag(NameLoc, diag::err_redefinition, Name->getName()); Diag(PrevDecl->getLocation(), diag::err_previous_definition); // If this is a redefinition, recover by making this struct be // anonymous, which will make any later references get the previous // definition. Name = 0; } else { // Okay, this is definition of a previously declared or referenced tag. // Move the location of the decl to be the definition site. PrevDecl->setLocation(NameLoc); return PrevDecl; } } // If we get here, this is a definition of a new struct type in a nested // scope, e.g. "struct foo; void bar() { struct foo; }", just create a new // type. } // If there is an identifier, use the location of the identifier as the // location of the decl, otherwise use the location of the struct/union // keyword. SourceLocation Loc = NameLoc.isValid() ? NameLoc : KWLoc; // Otherwise, if this is the first time we've seen this tag, create the decl. TagDecl *New; switch (Kind) { default: assert(0 && "Unknown tag kind!"); case Decl::Enum: // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.: // enum X { A, B, C } D; D should chain to X. New = new EnumDecl(Loc, Name, 0); // If this is an undefined enum, warn. if (TK != TK_Definition) Diag(Loc, diag::ext_forward_ref_enum); break; case Decl::Union: case Decl::Struct: case Decl::Class: // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.: // struct X { int A; } D; D should chain to X. New = new RecordDecl(Kind, Loc, Name, 0); break; } // If this has an identifier, add it to the scope stack. if (Name) { New->setNext(Name->getFETokenInfo()); Name->setFETokenInfo(New); S->AddDecl(New); } return New; } /// ParseField - Each field of a struct/union/class is passed into this in order /// to create a FieldDecl object for it. Sema::DeclTy *Sema::ParseField(Scope *S, DeclTy *TagDecl, SourceLocation DeclStart, Declarator &D, ExprTy *BitfieldWidth) { IdentifierInfo *II = D.getIdentifier(); Expr *BitWidth = (Expr*)BitfieldWidth; SourceLocation Loc = DeclStart; if (II) Loc = D.getIdentifierLoc(); // FIXME: Unnamed fields can be handled in various different ways, for // example, unnamed unions inject all members into the struct namespace! if (BitWidth) { // TODO: Validate. //printf("WARNING: BITFIELDS IGNORED!\n"); // 6.7.2.1p3 // 6.7.2.1p4 } else { // Not a bitfield. // validate II. } QualType T = GetTypeForDeclarator(D, S); if (T.isNull()) return 0; // C99 6.7.2.1p8: A member of a structure or union may have any type other // than a variably modified type. if (ArrayType *ary = dyn_cast(T.getCanonicalType())) { if (VerifyConstantArrayType(ary, Loc)) return 0; } // FIXME: Chain fielddecls together. return new FieldDecl(Loc, II, T, 0); } void Sema::ParseRecordBody(SourceLocation RecLoc, DeclTy *RecDecl, DeclTy **Fields, unsigned NumFields) { RecordDecl *Record = cast(static_cast(RecDecl)); if (Record->isDefinition()) { // Diagnose code like: // struct S { struct S {} X; }; // We discover this when we complete the outer S. Reject and ignore the // outer S. Diag(Record->getLocation(), diag::err_nested_redefinition, Record->getKindName()); Diag(RecLoc, diag::err_previous_definition); return; } // Verify that all the fields are okay. unsigned NumNamedMembers = 0; SmallVector RecFields; SmallSet FieldIDs; for (unsigned i = 0; i != NumFields; ++i) { FieldDecl *FD = cast_or_null(static_cast(Fields[i])); if (!FD) continue; // Already issued a diagnostic. // Get the type for the field. Type *FDTy = FD->getType().getCanonicalType().getTypePtr(); // C99 6.7.2.1p2 - A field may not be a function type. if (isa(FDTy)) { Diag(FD->getLocation(), diag::err_field_declared_as_function, FD->getName()); delete FD; continue; } // C99 6.7.2.1p2 - A field may not be an incomplete type except... if (FDTy->isIncompleteType()) { if (i != NumFields-1 || // ... that the last member ... Record->getKind() != Decl::Struct || // ... of a structure ... !isa(FDTy)) { //... may have incomplete array type. Diag(FD->getLocation(), diag::err_field_incomplete, FD->getName()); delete FD; continue; } if (NumNamedMembers < 1) { //... must have more than named member ... Diag(FD->getLocation(), diag::err_flexible_array_empty_struct, FD->getName()); delete FD; continue; } // Okay, we have a legal flexible array member at the end of the struct. Record->setHasFlexibleArrayMember(true); } /// C99 6.7.2.1p2 - a struct ending in a flexible array member cannot be the /// field of another structure or the element of an array. if (RecordType *FDTTy = dyn_cast(FDTy)) { if (FDTTy->getDecl()->hasFlexibleArrayMember()) { // If this is a member of a union, then entire union becomes "flexible". if (Record->getKind() == Decl::Union) { Record->setHasFlexibleArrayMember(true); } else { // If this is a struct/class and this is not the last element, reject // it. Note that GCC supports variable sized arrays in the middle of // structures. if (i != NumFields-1) { Diag(FD->getLocation(), diag::err_variable_sized_type_in_struct, FD->getName()); delete FD; continue; } // We support flexible arrays at the end of structs in other structs // as an extension. Diag(FD->getLocation(), diag::ext_flexible_array_in_struct, FD->getName()); Record->setHasFlexibleArrayMember(true); } } } // Keep track of the number of named members. if (IdentifierInfo *II = FD->getIdentifier()) { // Detect duplicate member names. if (!FieldIDs.insert(II)) { Diag(FD->getLocation(), diag::err_duplicate_member, II->getName()); // Find the previous decl. SourceLocation PrevLoc; for (unsigned i = 0, e = RecFields.size(); ; ++i) { assert(i != e && "Didn't find previous def!"); if (RecFields[i]->getIdentifier() == II) { PrevLoc = RecFields[i]->getLocation(); break; } } Diag(PrevLoc, diag::err_previous_definition); delete FD; continue; } ++NumNamedMembers; } // Remember good fields. RecFields.push_back(FD); } // Okay, we successfully defined 'Record'. Record->defineBody(&RecFields[0], RecFields.size()); } Sema::DeclTy *Sema::ParseEnumConstant(Scope *S, DeclTy *EnumDeclX, SourceLocation IdLoc, IdentifierInfo *Id, SourceLocation EqualLoc, ExprTy *Val) { EnumDecl *TheEnumDecl = cast(static_cast(EnumDeclX)); // Verify that there isn't already something declared with this name in this // scope. if (Decl *PrevDecl = LookupScopedDecl(Id, Decl::IDNS_Ordinary, IdLoc, S)) { if (S->isDeclScope(PrevDecl)) { if (isa(PrevDecl)) Diag(IdLoc, diag::err_redefinition_of_enumerator, Id->getName()); else Diag(IdLoc, diag::err_redefinition, Id->getName()); Diag(PrevDecl->getLocation(), diag::err_previous_definition); return 0; } } SourceLocation expLoc; // C99 6.7.2.2p2: Make sure we have an integer constant expression. // FIXME: Capture this value in the enumconstantdecl. if (Val && !((Expr *)Val)->isIntegerConstantExpr(&expLoc)) { Diag(expLoc, diag::err_enum_value_not_integer_constant_expr, Id->getName()); return 0; } QualType Ty = Context.getTagDeclType(TheEnumDecl); // FIXME: Chain EnumConstantDecl's together. EnumConstantDecl *New = new EnumConstantDecl(IdLoc, Id, Ty, (Expr *)Val, 0); // Register this decl in the current scope stack. New->setNext(Id->getFETokenInfo()); Id->setFETokenInfo(New); S->AddDecl(New); return New; } void Sema::ParseEnumBody(SourceLocation EnumLoc, DeclTy *EnumDeclX, DeclTy **Elements, unsigned NumElements) { EnumDecl *Enum = cast(static_cast(EnumDeclX)); assert(!Enum->isDefinition() && "Enum redefinitions can't reach here"); // Verify that all the values are okay. SmallVector Values; for (unsigned i = 0; i != NumElements; ++i) { EnumConstantDecl *ECD = cast_or_null(static_cast(Elements[i])); if (!ECD) continue; // Already issued a diagnostic. Values.push_back(ECD); } Enum->defineElements(&Values[0], Values.size()); } void Sema::AddTopLevelDecl(Decl *current, Decl *last) { if (!current) return; // If this is a top-level decl that is chained to some other (e.g. int A,B,C;) // remember this in the LastInGroupList list. if (last) LastInGroupList.push_back((Decl*)last); }