//===-- DWARFExpression.cpp -------------------------------------*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// #include "lldb/Expression/DWARFExpression.h" #include #include "lldb/Core/DataEncoder.h" #include "lldb/Core/dwarf.h" #include "lldb/Core/Log.h" #include "lldb/Core/RegisterValue.h" #include "lldb/Core/StreamString.h" #include "lldb/Core/Scalar.h" #include "lldb/Core/Value.h" #include "lldb/Core/VMRange.h" #include "lldb/Expression/ClangExpressionDeclMap.h" #include "lldb/Expression/ClangExpressionVariable.h" #include "lldb/Host/Endian.h" #include "lldb/Host/Host.h" #include "lldb/lldb-private-log.h" #include "lldb/Symbol/ClangASTType.h" #include "lldb/Symbol/ClangASTContext.h" #include "lldb/Symbol/Type.h" #include "lldb/Target/ABI.h" #include "lldb/Target/ExecutionContext.h" #include "lldb/Target/Process.h" #include "lldb/Target/RegisterContext.h" #include "lldb/Target/StackFrame.h" using namespace lldb; using namespace lldb_private; const char * DW_OP_value_to_name (uint32_t val) { static char invalid[100]; switch (val) { case 0x03: return "DW_OP_addr"; case 0x06: return "DW_OP_deref"; case 0x08: return "DW_OP_const1u"; case 0x09: return "DW_OP_const1s"; case 0x0a: return "DW_OP_const2u"; case 0x0b: return "DW_OP_const2s"; case 0x0c: return "DW_OP_const4u"; case 0x0d: return "DW_OP_const4s"; case 0x0e: return "DW_OP_const8u"; case 0x0f: return "DW_OP_const8s"; case 0x10: return "DW_OP_constu"; case 0x11: return "DW_OP_consts"; case 0x12: return "DW_OP_dup"; case 0x13: return "DW_OP_drop"; case 0x14: return "DW_OP_over"; case 0x15: return "DW_OP_pick"; case 0x16: return "DW_OP_swap"; case 0x17: return "DW_OP_rot"; case 0x18: return "DW_OP_xderef"; case 0x19: return "DW_OP_abs"; case 0x1a: return "DW_OP_and"; case 0x1b: return "DW_OP_div"; case 0x1c: return "DW_OP_minus"; case 0x1d: return "DW_OP_mod"; case 0x1e: return "DW_OP_mul"; case 0x1f: return "DW_OP_neg"; case 0x20: return "DW_OP_not"; case 0x21: return "DW_OP_or"; case 0x22: return "DW_OP_plus"; case 0x23: return "DW_OP_plus_uconst"; case 0x24: return "DW_OP_shl"; case 0x25: return "DW_OP_shr"; case 0x26: return "DW_OP_shra"; case 0x27: return "DW_OP_xor"; case 0x2f: return "DW_OP_skip"; case 0x28: return "DW_OP_bra"; case 0x29: return "DW_OP_eq"; case 0x2a: return "DW_OP_ge"; case 0x2b: return "DW_OP_gt"; case 0x2c: return "DW_OP_le"; case 0x2d: return "DW_OP_lt"; case 0x2e: return "DW_OP_ne"; case 0x30: return "DW_OP_lit0"; case 0x31: return "DW_OP_lit1"; case 0x32: return "DW_OP_lit2"; case 0x33: return "DW_OP_lit3"; case 0x34: return "DW_OP_lit4"; case 0x35: return "DW_OP_lit5"; case 0x36: return "DW_OP_lit6"; case 0x37: return "DW_OP_lit7"; case 0x38: return "DW_OP_lit8"; case 0x39: return "DW_OP_lit9"; case 0x3a: return "DW_OP_lit10"; case 0x3b: return "DW_OP_lit11"; case 0x3c: return "DW_OP_lit12"; case 0x3d: return "DW_OP_lit13"; case 0x3e: return "DW_OP_lit14"; case 0x3f: return "DW_OP_lit15"; case 0x40: return "DW_OP_lit16"; case 0x41: return "DW_OP_lit17"; case 0x42: return "DW_OP_lit18"; case 0x43: return "DW_OP_lit19"; case 0x44: return "DW_OP_lit20"; case 0x45: return "DW_OP_lit21"; case 0x46: return "DW_OP_lit22"; case 0x47: return "DW_OP_lit23"; case 0x48: return "DW_OP_lit24"; case 0x49: return "DW_OP_lit25"; case 0x4a: return "DW_OP_lit26"; case 0x4b: return "DW_OP_lit27"; case 0x4c: return "DW_OP_lit28"; case 0x4d: return "DW_OP_lit29"; case 0x4e: return "DW_OP_lit30"; case 0x4f: return "DW_OP_lit31"; case 0x50: return "DW_OP_reg0"; case 0x51: return "DW_OP_reg1"; case 0x52: return "DW_OP_reg2"; case 0x53: return "DW_OP_reg3"; case 0x54: return "DW_OP_reg4"; case 0x55: return "DW_OP_reg5"; case 0x56: return "DW_OP_reg6"; case 0x57: return "DW_OP_reg7"; case 0x58: return "DW_OP_reg8"; case 0x59: return "DW_OP_reg9"; case 0x5a: return "DW_OP_reg10"; case 0x5b: return "DW_OP_reg11"; case 0x5c: return "DW_OP_reg12"; case 0x5d: return "DW_OP_reg13"; case 0x5e: return "DW_OP_reg14"; case 0x5f: return "DW_OP_reg15"; case 0x60: return "DW_OP_reg16"; case 0x61: return "DW_OP_reg17"; case 0x62: return "DW_OP_reg18"; case 0x63: return "DW_OP_reg19"; case 0x64: return "DW_OP_reg20"; case 0x65: return "DW_OP_reg21"; case 0x66: return "DW_OP_reg22"; case 0x67: return "DW_OP_reg23"; case 0x68: return "DW_OP_reg24"; case 0x69: return "DW_OP_reg25"; case 0x6a: return "DW_OP_reg26"; case 0x6b: return "DW_OP_reg27"; case 0x6c: return "DW_OP_reg28"; case 0x6d: return "DW_OP_reg29"; case 0x6e: return "DW_OP_reg30"; case 0x6f: return "DW_OP_reg31"; case 0x70: return "DW_OP_breg0"; case 0x71: return "DW_OP_breg1"; case 0x72: return "DW_OP_breg2"; case 0x73: return "DW_OP_breg3"; case 0x74: return "DW_OP_breg4"; case 0x75: return "DW_OP_breg5"; case 0x76: return "DW_OP_breg6"; case 0x77: return "DW_OP_breg7"; case 0x78: return "DW_OP_breg8"; case 0x79: return "DW_OP_breg9"; case 0x7a: return "DW_OP_breg10"; case 0x7b: return "DW_OP_breg11"; case 0x7c: return "DW_OP_breg12"; case 0x7d: return "DW_OP_breg13"; case 0x7e: return "DW_OP_breg14"; case 0x7f: return "DW_OP_breg15"; case 0x80: return "DW_OP_breg16"; case 0x81: return "DW_OP_breg17"; case 0x82: return "DW_OP_breg18"; case 0x83: return "DW_OP_breg19"; case 0x84: return "DW_OP_breg20"; case 0x85: return "DW_OP_breg21"; case 0x86: return "DW_OP_breg22"; case 0x87: return "DW_OP_breg23"; case 0x88: return "DW_OP_breg24"; case 0x89: return "DW_OP_breg25"; case 0x8a: return "DW_OP_breg26"; case 0x8b: return "DW_OP_breg27"; case 0x8c: return "DW_OP_breg28"; case 0x8d: return "DW_OP_breg29"; case 0x8e: return "DW_OP_breg30"; case 0x8f: return "DW_OP_breg31"; case 0x90: return "DW_OP_regx"; case 0x91: return "DW_OP_fbreg"; case 0x92: return "DW_OP_bregx"; case 0x93: return "DW_OP_piece"; case 0x94: return "DW_OP_deref_size"; case 0x95: return "DW_OP_xderef_size"; case 0x96: return "DW_OP_nop"; case 0x97: return "DW_OP_push_object_address"; case 0x98: return "DW_OP_call2"; case 0x99: return "DW_OP_call4"; case 0x9a: return "DW_OP_call_ref"; // case DW_OP_APPLE_array_ref: return "DW_OP_APPLE_array_ref"; // case DW_OP_APPLE_extern: return "DW_OP_APPLE_extern"; case DW_OP_APPLE_uninit: return "DW_OP_APPLE_uninit"; // case DW_OP_APPLE_assign: return "DW_OP_APPLE_assign"; // case DW_OP_APPLE_address_of: return "DW_OP_APPLE_address_of"; // case DW_OP_APPLE_value_of: return "DW_OP_APPLE_value_of"; // case DW_OP_APPLE_deref_type: return "DW_OP_APPLE_deref_type"; // case DW_OP_APPLE_expr_local: return "DW_OP_APPLE_expr_local"; // case DW_OP_APPLE_constf: return "DW_OP_APPLE_constf"; // case DW_OP_APPLE_scalar_cast: return "DW_OP_APPLE_scalar_cast"; // case DW_OP_APPLE_clang_cast: return "DW_OP_APPLE_clang_cast"; // case DW_OP_APPLE_clear: return "DW_OP_APPLE_clear"; // case DW_OP_APPLE_error: return "DW_OP_APPLE_error"; default: snprintf (invalid, sizeof(invalid), "Unknown DW_OP constant: 0x%x", val); return invalid; } } //---------------------------------------------------------------------- // DWARFExpression constructor //---------------------------------------------------------------------- DWARFExpression::DWARFExpression() : m_data(), m_reg_kind (eRegisterKindDWARF), m_loclist_slide (LLDB_INVALID_ADDRESS) { } DWARFExpression::DWARFExpression(const DWARFExpression& rhs) : m_data(rhs.m_data), m_reg_kind (rhs.m_reg_kind), m_loclist_slide(rhs.m_loclist_slide) { } DWARFExpression::DWARFExpression(const DataExtractor& data, uint32_t data_offset, uint32_t data_length) : m_data(data, data_offset, data_length), m_reg_kind (eRegisterKindDWARF), m_loclist_slide(LLDB_INVALID_ADDRESS) { } //---------------------------------------------------------------------- // Destructor //---------------------------------------------------------------------- DWARFExpression::~DWARFExpression() { } bool DWARFExpression::IsValid() const { return m_data.GetByteSize() > 0; } void DWARFExpression::SetOpcodeData (const DataExtractor& data) { m_data = data; } void DWARFExpression::SetOpcodeData (const DataExtractor& data, uint32_t data_offset, uint32_t data_length) { m_data.SetData(data, data_offset, data_length); } void DWARFExpression::DumpLocation (Stream *s, uint32_t offset, uint32_t length, lldb::DescriptionLevel level, ABI *abi) const { if (!m_data.ValidOffsetForDataOfSize(offset, length)) return; const uint32_t start_offset = offset; const uint32_t end_offset = offset + length; while (m_data.ValidOffset(offset) && offset < end_offset) { const uint32_t op_offset = offset; const uint8_t op = m_data.GetU8(&offset); switch (level) { default: break; case lldb::eDescriptionLevelBrief: if (offset > start_offset) s->PutChar(' '); break; case lldb::eDescriptionLevelFull: case lldb::eDescriptionLevelVerbose: if (offset > start_offset) s->EOL(); s->Indent(); if (level == lldb::eDescriptionLevelFull) break; // Fall through for verbose and print offset and DW_OP prefix.. s->Printf("0x%8.8x: %s", op_offset, op >= DW_OP_APPLE_uninit ? "DW_OP_APPLE_" : "DW_OP_"); break; } switch (op) { case DW_OP_addr: *s << "DW_OP_addr(" << m_data.GetAddress(&offset) << ") "; break; // 0x03 1 address case DW_OP_deref: *s << "DW_OP_deref"; break; // 0x06 case DW_OP_const1u: s->Printf("DW_OP_const1u(0x%2.2x) ", m_data.GetU8(&offset)); break; // 0x08 1 1-byte constant case DW_OP_const1s: s->Printf("DW_OP_const1s(0x%2.2x) ", m_data.GetU8(&offset)); break; // 0x09 1 1-byte constant case DW_OP_const2u: s->Printf("DW_OP_const2u(0x%4.4x) ", m_data.GetU16(&offset)); break; // 0x0a 1 2-byte constant case DW_OP_const2s: s->Printf("DW_OP_const2s(0x%4.4x) ", m_data.GetU16(&offset)); break; // 0x0b 1 2-byte constant case DW_OP_const4u: s->Printf("DW_OP_const4u(0x%8.8x) ", m_data.GetU32(&offset)); break; // 0x0c 1 4-byte constant case DW_OP_const4s: s->Printf("DW_OP_const4s(0x%8.8x) ", m_data.GetU32(&offset)); break; // 0x0d 1 4-byte constant case DW_OP_const8u: s->Printf("DW_OP_const8u(0x%16.16llx) ", m_data.GetU64(&offset)); break; // 0x0e 1 8-byte constant case DW_OP_const8s: s->Printf("DW_OP_const8s(0x%16.16llx) ", m_data.GetU64(&offset)); break; // 0x0f 1 8-byte constant case DW_OP_constu: s->Printf("DW_OP_constu(0x%llx) ", m_data.GetULEB128(&offset)); break; // 0x10 1 ULEB128 constant case DW_OP_consts: s->Printf("DW_OP_consts(0x%lld) ", m_data.GetSLEB128(&offset)); break; // 0x11 1 SLEB128 constant case DW_OP_dup: s->PutCString("DW_OP_dup"); break; // 0x12 case DW_OP_drop: s->PutCString("DW_OP_drop"); break; // 0x13 case DW_OP_over: s->PutCString("DW_OP_over"); break; // 0x14 case DW_OP_pick: s->Printf("DW_OP_pick(0x%2.2x) ", m_data.GetU8(&offset)); break; // 0x15 1 1-byte stack index case DW_OP_swap: s->PutCString("DW_OP_swap"); break; // 0x16 case DW_OP_rot: s->PutCString("DW_OP_rot"); break; // 0x17 case DW_OP_xderef: s->PutCString("DW_OP_xderef"); break; // 0x18 case DW_OP_abs: s->PutCString("DW_OP_abs"); break; // 0x19 case DW_OP_and: s->PutCString("DW_OP_and"); break; // 0x1a case DW_OP_div: s->PutCString("DW_OP_div"); break; // 0x1b case DW_OP_minus: s->PutCString("DW_OP_minus"); break; // 0x1c case DW_OP_mod: s->PutCString("DW_OP_mod"); break; // 0x1d case DW_OP_mul: s->PutCString("DW_OP_mul"); break; // 0x1e case DW_OP_neg: s->PutCString("DW_OP_neg"); break; // 0x1f case DW_OP_not: s->PutCString("DW_OP_not"); break; // 0x20 case DW_OP_or: s->PutCString("DW_OP_or"); break; // 0x21 case DW_OP_plus: s->PutCString("DW_OP_plus"); break; // 0x22 case DW_OP_plus_uconst: // 0x23 1 ULEB128 addend s->Printf("DW_OP_plus_uconst(0x%llx) ", m_data.GetULEB128(&offset)); break; case DW_OP_shl: s->PutCString("DW_OP_shl"); break; // 0x24 case DW_OP_shr: s->PutCString("DW_OP_shr"); break; // 0x25 case DW_OP_shra: s->PutCString("DW_OP_shra"); break; // 0x26 case DW_OP_xor: s->PutCString("DW_OP_xor"); break; // 0x27 case DW_OP_skip: s->Printf("DW_OP_skip(0x%4.4x)", m_data.GetU16(&offset)); break; // 0x2f 1 signed 2-byte constant case DW_OP_bra: s->Printf("DW_OP_bra(0x%4.4x)", m_data.GetU16(&offset)); break; // 0x28 1 signed 2-byte constant case DW_OP_eq: s->PutCString("DW_OP_eq"); break; // 0x29 case DW_OP_ge: s->PutCString("DW_OP_ge"); break; // 0x2a case DW_OP_gt: s->PutCString("DW_OP_gt"); break; // 0x2b case DW_OP_le: s->PutCString("DW_OP_le"); break; // 0x2c case DW_OP_lt: s->PutCString("DW_OP_lt"); break; // 0x2d case DW_OP_ne: s->PutCString("DW_OP_ne"); break; // 0x2e case DW_OP_lit0: // 0x30 case DW_OP_lit1: // 0x31 case DW_OP_lit2: // 0x32 case DW_OP_lit3: // 0x33 case DW_OP_lit4: // 0x34 case DW_OP_lit5: // 0x35 case DW_OP_lit6: // 0x36 case DW_OP_lit7: // 0x37 case DW_OP_lit8: // 0x38 case DW_OP_lit9: // 0x39 case DW_OP_lit10: // 0x3A case DW_OP_lit11: // 0x3B case DW_OP_lit12: // 0x3C case DW_OP_lit13: // 0x3D case DW_OP_lit14: // 0x3E case DW_OP_lit15: // 0x3F case DW_OP_lit16: // 0x40 case DW_OP_lit17: // 0x41 case DW_OP_lit18: // 0x42 case DW_OP_lit19: // 0x43 case DW_OP_lit20: // 0x44 case DW_OP_lit21: // 0x45 case DW_OP_lit22: // 0x46 case DW_OP_lit23: // 0x47 case DW_OP_lit24: // 0x48 case DW_OP_lit25: // 0x49 case DW_OP_lit26: // 0x4A case DW_OP_lit27: // 0x4B case DW_OP_lit28: // 0x4C case DW_OP_lit29: // 0x4D case DW_OP_lit30: // 0x4E case DW_OP_lit31: s->Printf("DW_OP_lit%i", op - DW_OP_lit0); break; // 0x4f case DW_OP_reg0: // 0x50 case DW_OP_reg1: // 0x51 case DW_OP_reg2: // 0x52 case DW_OP_reg3: // 0x53 case DW_OP_reg4: // 0x54 case DW_OP_reg5: // 0x55 case DW_OP_reg6: // 0x56 case DW_OP_reg7: // 0x57 case DW_OP_reg8: // 0x58 case DW_OP_reg9: // 0x59 case DW_OP_reg10: // 0x5A case DW_OP_reg11: // 0x5B case DW_OP_reg12: // 0x5C case DW_OP_reg13: // 0x5D case DW_OP_reg14: // 0x5E case DW_OP_reg15: // 0x5F case DW_OP_reg16: // 0x60 case DW_OP_reg17: // 0x61 case DW_OP_reg18: // 0x62 case DW_OP_reg19: // 0x63 case DW_OP_reg20: // 0x64 case DW_OP_reg21: // 0x65 case DW_OP_reg22: // 0x66 case DW_OP_reg23: // 0x67 case DW_OP_reg24: // 0x68 case DW_OP_reg25: // 0x69 case DW_OP_reg26: // 0x6A case DW_OP_reg27: // 0x6B case DW_OP_reg28: // 0x6C case DW_OP_reg29: // 0x6D case DW_OP_reg30: // 0x6E case DW_OP_reg31: // 0x6F { uint32_t reg_num = op - DW_OP_reg0; if (abi) { RegisterInfo reg_info; if (abi->GetRegisterInfoByKind(m_reg_kind, reg_num, reg_info)) { if (reg_info.name) { s->PutCString (reg_info.name); break; } else if (reg_info.alt_name) { s->PutCString (reg_info.alt_name); break; } } } s->Printf("DW_OP_reg%u", reg_num); break; } break; case DW_OP_breg0: case DW_OP_breg1: case DW_OP_breg2: case DW_OP_breg3: case DW_OP_breg4: case DW_OP_breg5: case DW_OP_breg6: case DW_OP_breg7: case DW_OP_breg8: case DW_OP_breg9: case DW_OP_breg10: case DW_OP_breg11: case DW_OP_breg12: case DW_OP_breg13: case DW_OP_breg14: case DW_OP_breg15: case DW_OP_breg16: case DW_OP_breg17: case DW_OP_breg18: case DW_OP_breg19: case DW_OP_breg20: case DW_OP_breg21: case DW_OP_breg22: case DW_OP_breg23: case DW_OP_breg24: case DW_OP_breg25: case DW_OP_breg26: case DW_OP_breg27: case DW_OP_breg28: case DW_OP_breg29: case DW_OP_breg30: case DW_OP_breg31: { uint32_t reg_num = op - DW_OP_breg0; int64_t reg_offset = m_data.GetSLEB128(&offset); if (abi) { RegisterInfo reg_info; if (abi->GetRegisterInfoByKind(m_reg_kind, reg_num, reg_info)) { if (reg_info.name) { s->Printf("[%s%+lli]", reg_info.name, reg_offset); break; } else if (reg_info.alt_name) { s->Printf("[%s%+lli]", reg_info.alt_name, reg_offset); break; } } } s->Printf("DW_OP_breg%i(0x%llx)", reg_num, reg_offset); } break; case DW_OP_regx: // 0x90 1 ULEB128 register { uint64_t reg_num = m_data.GetULEB128(&offset); if (abi) { RegisterInfo reg_info; if (abi->GetRegisterInfoByKind(m_reg_kind, reg_num, reg_info)) { if (reg_info.name) { s->PutCString (reg_info.name); break; } else if (reg_info.alt_name) { s->PutCString (reg_info.alt_name); break; } } } s->Printf("DW_OP_regx(%llu)", reg_num); break; } break; case DW_OP_fbreg: // 0x91 1 SLEB128 offset s->Printf("DW_OP_fbreg(%lli)",m_data.GetSLEB128(&offset)); break; case DW_OP_bregx: // 0x92 2 ULEB128 register followed by SLEB128 offset { uint32_t reg_num = m_data.GetULEB128(&offset); int64_t reg_offset = m_data.GetSLEB128(&offset); if (abi) { RegisterInfo reg_info; if (abi->GetRegisterInfoByKind(m_reg_kind, reg_num, reg_info)) { if (reg_info.name) { s->Printf("[%s%+lli]", reg_info.name, reg_offset); break; } else if (reg_info.alt_name) { s->Printf("[%s%+lli]", reg_info.alt_name, reg_offset); break; } } } s->Printf("DW_OP_bregx(reg=%u,offset=%lli)", reg_num, reg_offset); } break; case DW_OP_piece: // 0x93 1 ULEB128 size of piece addressed s->Printf("DW_OP_piece(0x%llx)", m_data.GetULEB128(&offset)); break; case DW_OP_deref_size: // 0x94 1 1-byte size of data retrieved s->Printf("DW_OP_deref_size(0x%2.2x)", m_data.GetU8(&offset)); break; case DW_OP_xderef_size: // 0x95 1 1-byte size of data retrieved s->Printf("DW_OP_xderef_size(0x%2.2x)", m_data.GetU8(&offset)); break; case DW_OP_nop: s->PutCString("DW_OP_nop"); break; // 0x96 case DW_OP_push_object_address: s->PutCString("DW_OP_push_object_address"); break; // 0x97 DWARF3 case DW_OP_call2: // 0x98 DWARF3 1 2-byte offset of DIE s->Printf("DW_OP_call2(0x%4.4x)", m_data.GetU16(&offset)); break; case DW_OP_call4: // 0x99 DWARF3 1 4-byte offset of DIE s->Printf("DW_OP_call4(0x%8.8x)", m_data.GetU32(&offset)); break; case DW_OP_call_ref: // 0x9a DWARF3 1 4- or 8-byte offset of DIE s->Printf("DW_OP_call_ref(0x%8.8llx)", m_data.GetAddress(&offset)); break; // case DW_OP_form_tls_address: s << "form_tls_address"; break; // 0x9b DWARF3 // case DW_OP_call_frame_cfa: s << "call_frame_cfa"; break; // 0x9c DWARF3 // case DW_OP_bit_piece: // 0x9d DWARF3 2 // s->Printf("DW_OP_bit_piece(0x%x, 0x%x)", m_data.GetULEB128(&offset), m_data.GetULEB128(&offset)); // break; // case DW_OP_lo_user: s->PutCString("DW_OP_lo_user"); break; // 0xe0 // case DW_OP_hi_user: s->PutCString("DW_OP_hi_user"); break; // 0xff // case DW_OP_APPLE_extern: // s->Printf("DW_OP_APPLE_extern(%llu)", m_data.GetULEB128(&offset)); // break; // case DW_OP_APPLE_array_ref: // s->PutCString("DW_OP_APPLE_array_ref"); // break; case DW_OP_APPLE_uninit: s->PutCString("DW_OP_APPLE_uninit"); // 0xF0 break; // case DW_OP_APPLE_assign: // 0xF1 - pops value off and assigns it to second item on stack (2nd item must have assignable context) // s->PutCString("DW_OP_APPLE_assign"); // break; // case DW_OP_APPLE_address_of: // 0xF2 - gets the address of the top stack item (top item must be a variable, or have value_type that is an address already) // s->PutCString("DW_OP_APPLE_address_of"); // break; // case DW_OP_APPLE_value_of: // 0xF3 - pops the value off the stack and pushes the value of that object (top item must be a variable, or expression local) // s->PutCString("DW_OP_APPLE_value_of"); // break; // case DW_OP_APPLE_deref_type: // 0xF4 - gets the address of the top stack item (top item must be a variable, or a clang type) // s->PutCString("DW_OP_APPLE_deref_type"); // break; // case DW_OP_APPLE_expr_local: // 0xF5 - ULEB128 expression local index // s->Printf("DW_OP_APPLE_expr_local(%llu)", m_data.GetULEB128(&offset)); // break; // case DW_OP_APPLE_constf: // 0xF6 - 1 byte float size, followed by constant float data // { // uint8_t float_length = m_data.GetU8(&offset); // s->Printf("DW_OP_APPLE_constf(<%u> ", float_length); // m_data.Dump(s, offset, eFormatHex, float_length, 1, UINT32_MAX, DW_INVALID_ADDRESS, 0, 0); // s->PutChar(')'); // // Consume the float data // m_data.GetData(&offset, float_length); // } // break; // case DW_OP_APPLE_scalar_cast: // s->Printf("DW_OP_APPLE_scalar_cast(%s)", Scalar::GetValueTypeAsCString ((Scalar::Type)m_data.GetU8(&offset))); // break; // case DW_OP_APPLE_clang_cast: // { // clang::Type *clang_type = (clang::Type *)m_data.GetMaxU64(&offset, sizeof(void*)); // s->Printf("DW_OP_APPLE_clang_cast(%p)", clang_type); // } // break; // case DW_OP_APPLE_clear: // s->PutCString("DW_OP_APPLE_clear"); // break; // case DW_OP_APPLE_error: // 0xFF - Stops expression evaluation and returns an error (no args) // s->PutCString("DW_OP_APPLE_error"); // break; } } } void DWARFExpression::SetLocationListSlide (addr_t slide) { m_loclist_slide = slide; } int DWARFExpression::GetRegisterKind () { return m_reg_kind; } void DWARFExpression::SetRegisterKind (RegisterKind reg_kind) { m_reg_kind = reg_kind; } bool DWARFExpression::IsLocationList() const { return m_loclist_slide != LLDB_INVALID_ADDRESS; } void DWARFExpression::GetDescription (Stream *s, lldb::DescriptionLevel level, addr_t location_list_base_addr, ABI *abi) const { if (IsLocationList()) { // We have a location list uint32_t offset = 0; uint32_t count = 0; addr_t curr_base_addr = location_list_base_addr; while (m_data.ValidOffset(offset)) { lldb::addr_t begin_addr_offset = m_data.GetAddress(&offset); lldb::addr_t end_addr_offset = m_data.GetAddress(&offset); if (begin_addr_offset < end_addr_offset) { if (count > 0) s->PutCString(", "); VMRange addr_range(curr_base_addr + begin_addr_offset, curr_base_addr + end_addr_offset); addr_range.Dump(s, 0, 8); s->PutChar('{'); uint32_t location_length = m_data.GetU16(&offset); DumpLocation (s, offset, location_length, level, abi); s->PutChar('}'); offset += location_length; } else if (begin_addr_offset == 0 && end_addr_offset == 0) { // The end of the location list is marked by both the start and end offset being zero break; } else { if ((m_data.GetAddressByteSize() == 4 && (begin_addr_offset == UINT32_MAX)) || (m_data.GetAddressByteSize() == 8 && (begin_addr_offset == UINT64_MAX))) { curr_base_addr = end_addr_offset + location_list_base_addr; // We have a new base address if (count > 0) s->PutCString(", "); *s << "base_addr = " << end_addr_offset; } } count++; } } else { // We have a normal location that contains DW_OP location opcodes DumpLocation (s, 0, m_data.GetByteSize(), level, abi); } } static bool ReadRegisterValueAsScalar ( RegisterContext *reg_ctx, uint32_t reg_kind, uint32_t reg_num, Error *error_ptr, Value &value ) { if (reg_ctx == NULL) { if (error_ptr) error_ptr->SetErrorStringWithFormat("No register context in frame.\n"); } else { uint32_t native_reg = reg_ctx->ConvertRegisterKindToRegisterNumber(reg_kind, reg_num); if (native_reg == LLDB_INVALID_REGNUM) { if (error_ptr) error_ptr->SetErrorStringWithFormat("Unable to convert register kind=%u reg_num=%u to a native register number.\n", reg_kind, reg_num); } else { const RegisterInfo *reg_info = reg_ctx->GetRegisterInfoAtIndex(native_reg); RegisterValue reg_value; if (reg_ctx->ReadRegister (reg_info, reg_value)) { if (reg_value.GetScalarValue(value.GetScalar())) { value.SetValueType (Value::eValueTypeScalar); value.SetContext (Value::eContextTypeRegisterInfo, const_cast(reg_info)); if (error_ptr) error_ptr->Clear(); return true; } else { // If we get this error, then we need to implement a value // buffer in the dwarf expression evaluation function... if (error_ptr) error_ptr->SetErrorStringWithFormat ("register %s can't be converted to a scalar value", reg_info->name); } } else { if (error_ptr) error_ptr->SetErrorStringWithFormat("register %s is not available", reg_info->name); } } } return false; } //bool //DWARFExpression::LocationListContainsLoadAddress (Process* process, const Address &addr) const //{ // return LocationListContainsLoadAddress(process, addr.GetLoadAddress(process)); //} // //bool //DWARFExpression::LocationListContainsLoadAddress (Process* process, addr_t load_addr) const //{ // if (load_addr == LLDB_INVALID_ADDRESS) // return false; // // if (IsLocationList()) // { // uint32_t offset = 0; // // addr_t loc_list_base_addr = m_loclist_slide.GetLoadAddress(process); // // if (loc_list_base_addr == LLDB_INVALID_ADDRESS) // return false; // // while (m_data.ValidOffset(offset)) // { // // We need to figure out what the value is for the location. // addr_t lo_pc = m_data.GetAddress(&offset); // addr_t hi_pc = m_data.GetAddress(&offset); // if (lo_pc == 0 && hi_pc == 0) // break; // else // { // lo_pc += loc_list_base_addr; // hi_pc += loc_list_base_addr; // // if (lo_pc <= load_addr && load_addr < hi_pc) // return true; // // offset += m_data.GetU16(&offset); // } // } // } // return false; //} static uint32_t GetOpcodeDataSize (const DataExtractor &data, const uint32_t data_offset, const uint8_t op) { uint32_t offset = data_offset; switch (op) { case DW_OP_addr: case DW_OP_call_ref: // 0x9a 1 address sized offset of DIE (DWARF3) return data.GetAddressByteSize(); // Opcodes with no arguments case DW_OP_deref: // 0x06 case DW_OP_dup: // 0x12 case DW_OP_drop: // 0x13 case DW_OP_over: // 0x14 case DW_OP_swap: // 0x16 case DW_OP_rot: // 0x17 case DW_OP_xderef: // 0x18 case DW_OP_abs: // 0x19 case DW_OP_and: // 0x1a case DW_OP_div: // 0x1b case DW_OP_minus: // 0x1c case DW_OP_mod: // 0x1d case DW_OP_mul: // 0x1e case DW_OP_neg: // 0x1f case DW_OP_not: // 0x20 case DW_OP_or: // 0x21 case DW_OP_plus: // 0x22 case DW_OP_shl: // 0x24 case DW_OP_shr: // 0x25 case DW_OP_shra: // 0x26 case DW_OP_xor: // 0x27 case DW_OP_eq: // 0x29 case DW_OP_ge: // 0x2a case DW_OP_gt: // 0x2b case DW_OP_le: // 0x2c case DW_OP_lt: // 0x2d case DW_OP_ne: // 0x2e case DW_OP_lit0: // 0x30 case DW_OP_lit1: // 0x31 case DW_OP_lit2: // 0x32 case DW_OP_lit3: // 0x33 case DW_OP_lit4: // 0x34 case DW_OP_lit5: // 0x35 case DW_OP_lit6: // 0x36 case DW_OP_lit7: // 0x37 case DW_OP_lit8: // 0x38 case DW_OP_lit9: // 0x39 case DW_OP_lit10: // 0x3A case DW_OP_lit11: // 0x3B case DW_OP_lit12: // 0x3C case DW_OP_lit13: // 0x3D case DW_OP_lit14: // 0x3E case DW_OP_lit15: // 0x3F case DW_OP_lit16: // 0x40 case DW_OP_lit17: // 0x41 case DW_OP_lit18: // 0x42 case DW_OP_lit19: // 0x43 case DW_OP_lit20: // 0x44 case DW_OP_lit21: // 0x45 case DW_OP_lit22: // 0x46 case DW_OP_lit23: // 0x47 case DW_OP_lit24: // 0x48 case DW_OP_lit25: // 0x49 case DW_OP_lit26: // 0x4A case DW_OP_lit27: // 0x4B case DW_OP_lit28: // 0x4C case DW_OP_lit29: // 0x4D case DW_OP_lit30: // 0x4E case DW_OP_lit31: // 0x4f case DW_OP_reg0: // 0x50 case DW_OP_reg1: // 0x51 case DW_OP_reg2: // 0x52 case DW_OP_reg3: // 0x53 case DW_OP_reg4: // 0x54 case DW_OP_reg5: // 0x55 case DW_OP_reg6: // 0x56 case DW_OP_reg7: // 0x57 case DW_OP_reg8: // 0x58 case DW_OP_reg9: // 0x59 case DW_OP_reg10: // 0x5A case DW_OP_reg11: // 0x5B case DW_OP_reg12: // 0x5C case DW_OP_reg13: // 0x5D case DW_OP_reg14: // 0x5E case DW_OP_reg15: // 0x5F case DW_OP_reg16: // 0x60 case DW_OP_reg17: // 0x61 case DW_OP_reg18: // 0x62 case DW_OP_reg19: // 0x63 case DW_OP_reg20: // 0x64 case DW_OP_reg21: // 0x65 case DW_OP_reg22: // 0x66 case DW_OP_reg23: // 0x67 case DW_OP_reg24: // 0x68 case DW_OP_reg25: // 0x69 case DW_OP_reg26: // 0x6A case DW_OP_reg27: // 0x6B case DW_OP_reg28: // 0x6C case DW_OP_reg29: // 0x6D case DW_OP_reg30: // 0x6E case DW_OP_reg31: // 0x6F case DW_OP_nop: // 0x96 case DW_OP_push_object_address: // 0x97 DWARF3 case DW_OP_form_tls_address: // 0x9b DWARF3 case DW_OP_call_frame_cfa: // 0x9c DWARF3 case DW_OP_stack_value: // 0x9f DWARF4 return 0; // Opcodes with a single 1 byte arguments case DW_OP_const1u: // 0x08 1 1-byte constant case DW_OP_const1s: // 0x09 1 1-byte constant case DW_OP_pick: // 0x15 1 1-byte stack index case DW_OP_deref_size: // 0x94 1 1-byte size of data retrieved case DW_OP_xderef_size: // 0x95 1 1-byte size of data retrieved return 1; // Opcodes with a single 2 byte arguments case DW_OP_const2u: // 0x0a 1 2-byte constant case DW_OP_const2s: // 0x0b 1 2-byte constant case DW_OP_skip: // 0x2f 1 signed 2-byte constant case DW_OP_bra: // 0x28 1 signed 2-byte constant case DW_OP_call2: // 0x98 1 2-byte offset of DIE (DWARF3) return 2; // Opcodes with a single 4 byte arguments case DW_OP_const4u: // 0x0c 1 4-byte constant case DW_OP_const4s: // 0x0d 1 4-byte constant case DW_OP_call4: // 0x99 1 4-byte offset of DIE (DWARF3) return 4; // Opcodes with a single 8 byte arguments case DW_OP_const8u: // 0x0e 1 8-byte constant case DW_OP_const8s: // 0x0f 1 8-byte constant return 8; // All opcodes that have a single ULEB (signed or unsigned) argument case DW_OP_constu: // 0x10 1 ULEB128 constant case DW_OP_consts: // 0x11 1 SLEB128 constant case DW_OP_plus_uconst: // 0x23 1 ULEB128 addend case DW_OP_breg0: // 0x70 1 ULEB128 register case DW_OP_breg1: // 0x71 1 ULEB128 register case DW_OP_breg2: // 0x72 1 ULEB128 register case DW_OP_breg3: // 0x73 1 ULEB128 register case DW_OP_breg4: // 0x74 1 ULEB128 register case DW_OP_breg5: // 0x75 1 ULEB128 register case DW_OP_breg6: // 0x76 1 ULEB128 register case DW_OP_breg7: // 0x77 1 ULEB128 register case DW_OP_breg8: // 0x78 1 ULEB128 register case DW_OP_breg9: // 0x79 1 ULEB128 register case DW_OP_breg10: // 0x7a 1 ULEB128 register case DW_OP_breg11: // 0x7b 1 ULEB128 register case DW_OP_breg12: // 0x7c 1 ULEB128 register case DW_OP_breg13: // 0x7d 1 ULEB128 register case DW_OP_breg14: // 0x7e 1 ULEB128 register case DW_OP_breg15: // 0x7f 1 ULEB128 register case DW_OP_breg16: // 0x80 1 ULEB128 register case DW_OP_breg17: // 0x81 1 ULEB128 register case DW_OP_breg18: // 0x82 1 ULEB128 register case DW_OP_breg19: // 0x83 1 ULEB128 register case DW_OP_breg20: // 0x84 1 ULEB128 register case DW_OP_breg21: // 0x85 1 ULEB128 register case DW_OP_breg22: // 0x86 1 ULEB128 register case DW_OP_breg23: // 0x87 1 ULEB128 register case DW_OP_breg24: // 0x88 1 ULEB128 register case DW_OP_breg25: // 0x89 1 ULEB128 register case DW_OP_breg26: // 0x8a 1 ULEB128 register case DW_OP_breg27: // 0x8b 1 ULEB128 register case DW_OP_breg28: // 0x8c 1 ULEB128 register case DW_OP_breg29: // 0x8d 1 ULEB128 register case DW_OP_breg30: // 0x8e 1 ULEB128 register case DW_OP_breg31: // 0x8f 1 ULEB128 register case DW_OP_regx: // 0x90 1 ULEB128 register case DW_OP_fbreg: // 0x91 1 SLEB128 offset case DW_OP_piece: // 0x93 1 ULEB128 size of piece addressed data.Skip_LEB128(&offset); return offset - data_offset; // All opcodes that have a 2 ULEB (signed or unsigned) arguments case DW_OP_bregx: // 0x92 2 ULEB128 register followed by SLEB128 offset case DW_OP_bit_piece: // 0x9d ULEB128 bit size, ULEB128 bit offset (DWARF3); data.Skip_LEB128(&offset); data.Skip_LEB128(&offset); return offset - data_offset; case DW_OP_implicit_value: // 0x9e ULEB128 size followed by block of that size (DWARF4) { uint64_t block_len = data.Skip_LEB128(&offset); offset += block_len; return offset - data_offset; } default: break; } return UINT32_MAX; } bool DWARFExpression::LocationContains_DW_OP_addr (lldb::addr_t file_addr, bool &error) const { error = false; if (IsLocationList()) return false; uint32_t offset = 0; while (m_data.ValidOffset(offset)) { const uint8_t op = m_data.GetU8(&offset); if (op == DW_OP_addr) { if (file_addr == LLDB_INVALID_ADDRESS) return true; addr_t op_file_addr = m_data.GetAddress(&offset); if (op_file_addr == file_addr) return true; } else { const uint32_t op_arg_size = GetOpcodeDataSize (m_data, offset, op); if (op_arg_size == UINT32_MAX) { error = true; break; } offset += op_arg_size; } } return false; } bool DWARFExpression::Update_DW_OP_addr (lldb::addr_t file_addr) { if (IsLocationList()) return false; uint32_t offset = 0; while (m_data.ValidOffset(offset)) { const uint8_t op = m_data.GetU8(&offset); if (op == DW_OP_addr) { const uint8_t addr_byte_size = m_data.GetAddressByteSize(); // We have to make a copy of the data as we don't know if this // data is from a read only memory mapped buffer, so we duplicate // all of the data first, then modify it, and if all goes well, // we then replace the data for this expression // So first we copy the data into a heap buffer std::auto_ptr head_data_ap (new DataBufferHeap (m_data.GetDataStart(), m_data.GetByteSize())); // Make en encoder so we can write the address into the buffer using // the correct byte order (endianness) DataEncoder encoder (head_data_ap->GetBytes(), head_data_ap->GetByteSize(), m_data.GetByteOrder(), addr_byte_size); // Replace the address in the new buffer if (encoder.PutMaxU64 (offset, addr_byte_size, file_addr) == UINT32_MAX) return false; // All went well, so now we can reset the data using a shared // pointer to the heap data so "m_data" will now correctly // manage the heap data. m_data.SetData (DataBufferSP (head_data_ap.release())); return true; } else { const uint32_t op_arg_size = GetOpcodeDataSize (m_data, offset, op); if (op_arg_size == UINT32_MAX) break; offset += op_arg_size; } } return false; } bool DWARFExpression::LocationListContainsAddress (lldb::addr_t loclist_base_addr, lldb::addr_t addr) const { if (addr == LLDB_INVALID_ADDRESS) return false; if (IsLocationList()) { uint32_t offset = 0; if (loclist_base_addr == LLDB_INVALID_ADDRESS) return false; while (m_data.ValidOffset(offset)) { // We need to figure out what the value is for the location. addr_t lo_pc = m_data.GetAddress(&offset); addr_t hi_pc = m_data.GetAddress(&offset); if (lo_pc == 0 && hi_pc == 0) break; else { lo_pc += loclist_base_addr - m_loclist_slide; hi_pc += loclist_base_addr - m_loclist_slide; if (lo_pc <= addr && addr < hi_pc) return true; offset += m_data.GetU16(&offset); } } } return false; } bool DWARFExpression::GetLocation (addr_t base_addr, addr_t pc, uint32_t &offset, uint32_t &length) { offset = 0; if (!IsLocationList()) { length = m_data.GetByteSize(); return true; } if (base_addr != LLDB_INVALID_ADDRESS && pc != LLDB_INVALID_ADDRESS) { addr_t curr_base_addr = base_addr; while (m_data.ValidOffset(offset)) { // We need to figure out what the value is for the location. addr_t lo_pc = m_data.GetAddress(&offset); addr_t hi_pc = m_data.GetAddress(&offset); if (lo_pc == 0 && hi_pc == 0) { break; } else { lo_pc += curr_base_addr - m_loclist_slide; hi_pc += curr_base_addr - m_loclist_slide; length = m_data.GetU16(&offset); if (length > 0 && lo_pc <= pc && pc < hi_pc) return true; offset += length; } } } offset = UINT32_MAX; length = 0; return false; } bool DWARFExpression::DumpLocationForAddress (Stream *s, lldb::DescriptionLevel level, addr_t base_addr, addr_t address, ABI *abi) { uint32_t offset = 0; uint32_t length = 0; if (GetLocation (base_addr, address, offset, length)) { if (length > 0) { DumpLocation(s, offset, length, level, abi); return true; } } return false; } bool DWARFExpression::Evaluate ( ExecutionContextScope *exe_scope, clang::ASTContext *ast_context, ClangExpressionVariableList *expr_locals, ClangExpressionDeclMap *decl_map, lldb::addr_t loclist_base_load_addr, const Value* initial_value_ptr, Value& result, Error *error_ptr ) const { ExecutionContext exe_ctx (exe_scope); return Evaluate(&exe_ctx, ast_context, expr_locals, decl_map, NULL, loclist_base_load_addr, initial_value_ptr, result, error_ptr); } bool DWARFExpression::Evaluate ( ExecutionContext *exe_ctx, clang::ASTContext *ast_context, ClangExpressionVariableList *expr_locals, ClangExpressionDeclMap *decl_map, RegisterContext *reg_ctx, lldb::addr_t loclist_base_load_addr, const Value* initial_value_ptr, Value& result, Error *error_ptr ) const { if (IsLocationList()) { uint32_t offset = 0; addr_t pc; StackFrame *frame = NULL; if (reg_ctx) pc = reg_ctx->GetPC(); else { frame = exe_ctx->GetFramePtr(); pc = frame->GetRegisterContext()->GetPC(); } if (loclist_base_load_addr != LLDB_INVALID_ADDRESS) { if (pc == LLDB_INVALID_ADDRESS) { if (error_ptr) error_ptr->SetErrorString("Invalid PC in frame."); return false; } addr_t curr_loclist_base_load_addr = loclist_base_load_addr; while (m_data.ValidOffset(offset)) { // We need to figure out what the value is for the location. addr_t lo_pc = m_data.GetAddress(&offset); addr_t hi_pc = m_data.GetAddress(&offset); if (lo_pc == 0 && hi_pc == 0) { break; } else { lo_pc += curr_loclist_base_load_addr - m_loclist_slide; hi_pc += curr_loclist_base_load_addr - m_loclist_slide; uint16_t length = m_data.GetU16(&offset); if (length > 0 && lo_pc <= pc && pc < hi_pc) { return DWARFExpression::Evaluate (exe_ctx, ast_context, expr_locals, decl_map, reg_ctx, m_data, offset, length, m_reg_kind, initial_value_ptr, result, error_ptr); } offset += length; } } } if (error_ptr) error_ptr->SetErrorString ("variable not available"); return false; } // Not a location list, just a single expression. return DWARFExpression::Evaluate (exe_ctx, ast_context, expr_locals, decl_map, reg_ctx, m_data, 0, m_data.GetByteSize(), m_reg_kind, initial_value_ptr, result, error_ptr); } bool DWARFExpression::Evaluate ( ExecutionContext *exe_ctx, clang::ASTContext *ast_context, ClangExpressionVariableList *expr_locals, ClangExpressionDeclMap *decl_map, RegisterContext *reg_ctx, const DataExtractor& opcodes, const uint32_t opcodes_offset, const uint32_t opcodes_length, const uint32_t reg_kind, const Value* initial_value_ptr, Value& result, Error *error_ptr ) { std::vector stack; Process *process = NULL; StackFrame *frame = NULL; if (exe_ctx) { process = exe_ctx->GetProcessPtr(); frame = exe_ctx->GetFramePtr(); } if (reg_ctx == NULL && frame) reg_ctx = frame->GetRegisterContext().get(); if (initial_value_ptr) stack.push_back(*initial_value_ptr); uint32_t offset = opcodes_offset; const uint32_t end_offset = opcodes_offset + opcodes_length; Value tmp; uint32_t reg_num; // Make sure all of the data is available in opcodes. if (!opcodes.ValidOffsetForDataOfSize(opcodes_offset, opcodes_length)) { if (error_ptr) error_ptr->SetErrorString ("Invalid offset and/or length for opcodes buffer."); return false; } LogSP log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_EXPRESSIONS)); while (opcodes.ValidOffset(offset) && offset < end_offset) { const uint32_t op_offset = offset; const uint8_t op = opcodes.GetU8(&offset); if (log && log->GetVerbose()) { size_t count = stack.size(); log->Printf("Stack before operation has %lu values:", count); for (size_t i=0; iPrintf(" %s", new_value.GetData()); } log->Printf("0x%8.8x: %s", op_offset, DW_OP_value_to_name(op)); } switch (op) { //---------------------------------------------------------------------- // The DW_OP_addr operation has a single operand that encodes a machine // address and whose size is the size of an address on the target machine. //---------------------------------------------------------------------- case DW_OP_addr: stack.push_back(Scalar(opcodes.GetAddress(&offset))); stack.back().SetValueType (Value::eValueTypeFileAddress); break; //---------------------------------------------------------------------- // The DW_OP_addr_sect_offset4 is used for any location expressions in // shared libraries that have a location like: // DW_OP_addr(0x1000) // If this address resides in a shared library, then this virtual // address won't make sense when it is evaluated in the context of a // running process where shared libraries have been slid. To account for // this, this new address type where we can store the section pointer // and a 4 byte offset. //---------------------------------------------------------------------- // case DW_OP_addr_sect_offset4: // { // result_type = eResultTypeFileAddress; // lldb::Section *sect = (lldb::Section *)opcodes.GetMaxU64(&offset, sizeof(void *)); // lldb::addr_t sect_offset = opcodes.GetU32(&offset); // // Address so_addr (sect, sect_offset); // lldb::addr_t load_addr = so_addr.GetLoadAddress(); // if (load_addr != LLDB_INVALID_ADDRESS) // { // // We successfully resolve a file address to a load // // address. // stack.push_back(load_addr); // break; // } // else // { // // We were able // if (error_ptr) // error_ptr->SetErrorStringWithFormat ("Section %s in %s is not currently loaded.\n", sect->GetName().AsCString(), sect->GetModule()->GetFileSpec().GetFilename().AsCString()); // return false; // } // } // break; //---------------------------------------------------------------------- // OPCODE: DW_OP_deref // OPERANDS: none // DESCRIPTION: Pops the top stack entry and treats it as an address. // The value retrieved from that address is pushed. The size of the // data retrieved from the dereferenced address is the size of an // address on the target machine. //---------------------------------------------------------------------- case DW_OP_deref: { Value::ValueType value_type = stack.back().GetValueType(); switch (value_type) { case Value::eValueTypeHostAddress: { void *src = (void *)stack.back().GetScalar().ULongLong(); intptr_t ptr; ::memcpy (&ptr, src, sizeof(void *)); stack.back().GetScalar() = ptr; stack.back().ClearContext(); } break; case Value::eValueTypeLoadAddress: if (exe_ctx) { if (process) { lldb::addr_t pointer_addr = stack.back().GetScalar().ULongLong(LLDB_INVALID_ADDRESS); uint8_t addr_bytes[sizeof(lldb::addr_t)]; uint32_t addr_size = process->GetAddressByteSize(); Error error; if (process->ReadMemory(pointer_addr, &addr_bytes, addr_size, error) == addr_size) { DataExtractor addr_data(addr_bytes, sizeof(addr_bytes), process->GetByteOrder(), addr_size); uint32_t addr_data_offset = 0; stack.back().GetScalar() = addr_data.GetPointer(&addr_data_offset); stack.back().ClearContext(); } else { if (error_ptr) error_ptr->SetErrorStringWithFormat ("Failed to dereference pointer from 0x%llx for DW_OP_deref: %s\n", pointer_addr, error.AsCString()); return false; } } else { if (error_ptr) error_ptr->SetErrorStringWithFormat ("NULL process for DW_OP_deref.\n"); return false; } } else { if (error_ptr) error_ptr->SetErrorStringWithFormat ("NULL execution context for DW_OP_deref.\n"); return false; } break; default: break; } } break; //---------------------------------------------------------------------- // OPCODE: DW_OP_deref_size // OPERANDS: 1 // 1 - uint8_t that specifies the size of the data to dereference. // DESCRIPTION: Behaves like the DW_OP_deref operation: it pops the top // stack entry and treats it as an address. The value retrieved from that // address is pushed. In the DW_OP_deref_size operation, however, the // size in bytes of the data retrieved from the dereferenced address is // specified by the single operand. This operand is a 1-byte unsigned // integral constant whose value may not be larger than the size of an // address on the target machine. The data retrieved is zero extended // to the size of an address on the target machine before being pushed // on the expression stack. //---------------------------------------------------------------------- case DW_OP_deref_size: { uint8_t size = opcodes.GetU8(&offset); Value::ValueType value_type = stack.back().GetValueType(); switch (value_type) { case Value::eValueTypeHostAddress: { void *src = (void *)stack.back().GetScalar().ULongLong(); intptr_t ptr; ::memcpy (&ptr, src, sizeof(void *)); // I can't decide whether the size operand should apply to the bytes in their // lldb-host endianness or the target endianness.. I doubt this'll ever come up // but I'll opt for assuming big endian regardless. switch (size) { case 1: ptr = ptr & 0xff; break; case 2: ptr = ptr & 0xffff; break; case 3: ptr = ptr & 0xffffff; break; case 4: ptr = ptr & 0xffffffff; break; // the casts are added to work around the case where intptr_t is a 32 bit quantity; // presumably we won't hit the 5..7 cases if (void*) is 32-bits in this program. case 5: ptr = (intptr_t) ptr & 0xffffffffffULL; break; case 6: ptr = (intptr_t) ptr & 0xffffffffffffULL; break; case 7: ptr = (intptr_t) ptr & 0xffffffffffffffULL; break; default: break; } stack.back().GetScalar() = ptr; stack.back().ClearContext(); } break; case Value::eValueTypeLoadAddress: if (exe_ctx) { if (process) { lldb::addr_t pointer_addr = stack.back().GetScalar().ULongLong(LLDB_INVALID_ADDRESS); uint8_t addr_bytes[sizeof(lldb::addr_t)]; Error error; if (process->ReadMemory(pointer_addr, &addr_bytes, size, error) == size) { DataExtractor addr_data(addr_bytes, sizeof(addr_bytes), process->GetByteOrder(), size); uint32_t addr_data_offset = 0; switch (size) { case 1: stack.back().GetScalar() = addr_data.GetU8(&addr_data_offset); break; case 2: stack.back().GetScalar() = addr_data.GetU16(&addr_data_offset); break; case 4: stack.back().GetScalar() = addr_data.GetU32(&addr_data_offset); break; case 8: stack.back().GetScalar() = addr_data.GetU64(&addr_data_offset); break; default: stack.back().GetScalar() = addr_data.GetPointer(&addr_data_offset); } stack.back().ClearContext(); } else { if (error_ptr) error_ptr->SetErrorStringWithFormat ("Failed to dereference pointer from 0x%llx for DW_OP_deref: %s\n", pointer_addr, error.AsCString()); return false; } } else { if (error_ptr) error_ptr->SetErrorStringWithFormat ("NULL process for DW_OP_deref.\n"); return false; } } else { if (error_ptr) error_ptr->SetErrorStringWithFormat ("NULL execution context for DW_OP_deref.\n"); return false; } break; default: break; } } break; //---------------------------------------------------------------------- // OPCODE: DW_OP_xderef_size // OPERANDS: 1 // 1 - uint8_t that specifies the size of the data to dereference. // DESCRIPTION: Behaves like the DW_OP_xderef operation: the entry at // the top of the stack is treated as an address. The second stack // entry is treated as an "address space identifier" for those // architectures that support multiple address spaces. The top two // stack elements are popped, a data item is retrieved through an // implementation-defined address calculation and pushed as the new // stack top. In the DW_OP_xderef_size operation, however, the size in // bytes of the data retrieved from the dereferenced address is // specified by the single operand. This operand is a 1-byte unsigned // integral constant whose value may not be larger than the size of an // address on the target machine. The data retrieved is zero extended // to the size of an address on the target machine before being pushed // on the expression stack. //---------------------------------------------------------------------- case DW_OP_xderef_size: if (error_ptr) error_ptr->SetErrorString("Unimplemented opcode: DW_OP_xderef_size."); return false; //---------------------------------------------------------------------- // OPCODE: DW_OP_xderef // OPERANDS: none // DESCRIPTION: Provides an extended dereference mechanism. The entry at // the top of the stack is treated as an address. The second stack entry // is treated as an "address space identifier" for those architectures // that support multiple address spaces. The top two stack elements are // popped, a data item is retrieved through an implementation-defined // address calculation and pushed as the new stack top. The size of the // data retrieved from the dereferenced address is the size of an address // on the target machine. //---------------------------------------------------------------------- case DW_OP_xderef: if (error_ptr) error_ptr->SetErrorString("Unimplemented opcode: DW_OP_xderef."); return false; //---------------------------------------------------------------------- // All DW_OP_constXXX opcodes have a single operand as noted below: // // Opcode Operand 1 // --------------- ---------------------------------------------------- // DW_OP_const1u 1-byte unsigned integer constant // DW_OP_const1s 1-byte signed integer constant // DW_OP_const2u 2-byte unsigned integer constant // DW_OP_const2s 2-byte signed integer constant // DW_OP_const4u 4-byte unsigned integer constant // DW_OP_const4s 4-byte signed integer constant // DW_OP_const8u 8-byte unsigned integer constant // DW_OP_const8s 8-byte signed integer constant // DW_OP_constu unsigned LEB128 integer constant // DW_OP_consts signed LEB128 integer constant //---------------------------------------------------------------------- case DW_OP_const1u : stack.push_back(Scalar(( uint8_t)opcodes.GetU8 (&offset))); break; case DW_OP_const1s : stack.push_back(Scalar(( int8_t)opcodes.GetU8 (&offset))); break; case DW_OP_const2u : stack.push_back(Scalar((uint16_t)opcodes.GetU16 (&offset))); break; case DW_OP_const2s : stack.push_back(Scalar(( int16_t)opcodes.GetU16 (&offset))); break; case DW_OP_const4u : stack.push_back(Scalar((uint32_t)opcodes.GetU32 (&offset))); break; case DW_OP_const4s : stack.push_back(Scalar(( int32_t)opcodes.GetU32 (&offset))); break; case DW_OP_const8u : stack.push_back(Scalar((uint64_t)opcodes.GetU64 (&offset))); break; case DW_OP_const8s : stack.push_back(Scalar(( int64_t)opcodes.GetU64 (&offset))); break; case DW_OP_constu : stack.push_back(Scalar(opcodes.GetULEB128 (&offset))); break; case DW_OP_consts : stack.push_back(Scalar(opcodes.GetSLEB128 (&offset))); break; //---------------------------------------------------------------------- // OPCODE: DW_OP_dup // OPERANDS: none // DESCRIPTION: duplicates the value at the top of the stack //---------------------------------------------------------------------- case DW_OP_dup: if (stack.empty()) { if (error_ptr) error_ptr->SetErrorString("Expression stack empty for DW_OP_dup."); return false; } else stack.push_back(stack.back()); break; //---------------------------------------------------------------------- // OPCODE: DW_OP_drop // OPERANDS: none // DESCRIPTION: pops the value at the top of the stack //---------------------------------------------------------------------- case DW_OP_drop: if (stack.empty()) { if (error_ptr) error_ptr->SetErrorString("Expression stack empty for DW_OP_drop."); return false; } else stack.pop_back(); break; //---------------------------------------------------------------------- // OPCODE: DW_OP_over // OPERANDS: none // DESCRIPTION: Duplicates the entry currently second in the stack at // the top of the stack. //---------------------------------------------------------------------- case DW_OP_over: if (stack.size() < 2) { if (error_ptr) error_ptr->SetErrorString("Expression stack needs at least 2 items for DW_OP_over."); return false; } else stack.push_back(stack[stack.size() - 2]); break; //---------------------------------------------------------------------- // OPCODE: DW_OP_pick // OPERANDS: uint8_t index into the current stack // DESCRIPTION: The stack entry with the specified index (0 through 255, // inclusive) is pushed on the stack //---------------------------------------------------------------------- case DW_OP_pick: { uint8_t pick_idx = opcodes.GetU8(&offset); if (pick_idx < stack.size()) stack.push_back(stack[pick_idx]); else { if (error_ptr) error_ptr->SetErrorStringWithFormat("Index %u out of range for DW_OP_pick.\n", pick_idx); return false; } } break; //---------------------------------------------------------------------- // OPCODE: DW_OP_swap // OPERANDS: none // DESCRIPTION: swaps the top two stack entries. The entry at the top // of the stack becomes the second stack entry, and the second entry // becomes the top of the stack //---------------------------------------------------------------------- case DW_OP_swap: if (stack.size() < 2) { if (error_ptr) error_ptr->SetErrorString("Expression stack needs at least 2 items for DW_OP_swap."); return false; } else { tmp = stack.back(); stack.back() = stack[stack.size() - 2]; stack[stack.size() - 2] = tmp; } break; //---------------------------------------------------------------------- // OPCODE: DW_OP_rot // OPERANDS: none // DESCRIPTION: Rotates the first three stack entries. The entry at // the top of the stack becomes the third stack entry, the second // entry becomes the top of the stack, and the third entry becomes // the second entry. //---------------------------------------------------------------------- case DW_OP_rot: if (stack.size() < 3) { if (error_ptr) error_ptr->SetErrorString("Expression stack needs at least 3 items for DW_OP_rot."); return false; } else { size_t last_idx = stack.size() - 1; Value old_top = stack[last_idx]; stack[last_idx] = stack[last_idx - 1]; stack[last_idx - 1] = stack[last_idx - 2]; stack[last_idx - 2] = old_top; } break; //---------------------------------------------------------------------- // OPCODE: DW_OP_abs // OPERANDS: none // DESCRIPTION: pops the top stack entry, interprets it as a signed // value and pushes its absolute value. If the absolute value can not be // represented, the result is undefined. //---------------------------------------------------------------------- case DW_OP_abs: if (stack.empty()) { if (error_ptr) error_ptr->SetErrorString("Expression stack needs at least 1 item for DW_OP_abs."); return false; } else if (stack.back().ResolveValue(exe_ctx, ast_context).AbsoluteValue() == false) { if (error_ptr) error_ptr->SetErrorString("Failed to take the absolute value of the first stack item."); return false; } break; //---------------------------------------------------------------------- // OPCODE: DW_OP_and // OPERANDS: none // DESCRIPTION: pops the top two stack values, performs a bitwise and // operation on the two, and pushes the result. //---------------------------------------------------------------------- case DW_OP_and: if (stack.size() < 2) { if (error_ptr) error_ptr->SetErrorString("Expression stack needs at least 2 items for DW_OP_and."); return false; } else { tmp = stack.back(); stack.pop_back(); stack.back().ResolveValue(exe_ctx, ast_context) = stack.back().ResolveValue(exe_ctx, ast_context) & tmp.ResolveValue(exe_ctx, ast_context); } break; //---------------------------------------------------------------------- // OPCODE: DW_OP_div // OPERANDS: none // DESCRIPTION: pops the top two stack values, divides the former second // entry by the former top of the stack using signed division, and // pushes the result. //---------------------------------------------------------------------- case DW_OP_div: if (stack.size() < 2) { if (error_ptr) error_ptr->SetErrorString("Expression stack needs at least 2 items for DW_OP_div."); return false; } else { tmp = stack.back(); if (tmp.ResolveValue(exe_ctx, ast_context).IsZero()) { if (error_ptr) error_ptr->SetErrorString("Divide by zero."); return false; } else { stack.pop_back(); stack.back() = stack.back().ResolveValue(exe_ctx, ast_context) / tmp.ResolveValue(exe_ctx, ast_context); if (!stack.back().ResolveValue(exe_ctx, ast_context).IsValid()) { if (error_ptr) error_ptr->SetErrorString("Divide failed."); return false; } } } break; //---------------------------------------------------------------------- // OPCODE: DW_OP_minus // OPERANDS: none // DESCRIPTION: pops the top two stack values, subtracts the former top // of the stack from the former second entry, and pushes the result. //---------------------------------------------------------------------- case DW_OP_minus: if (stack.size() < 2) { if (error_ptr) error_ptr->SetErrorString("Expression stack needs at least 2 items for DW_OP_minus."); return false; } else { tmp = stack.back(); stack.pop_back(); stack.back().ResolveValue(exe_ctx, ast_context) = stack.back().ResolveValue(exe_ctx, ast_context) - tmp.ResolveValue(exe_ctx, ast_context); } break; //---------------------------------------------------------------------- // OPCODE: DW_OP_mod // OPERANDS: none // DESCRIPTION: pops the top two stack values and pushes the result of // the calculation: former second stack entry modulo the former top of // the stack. //---------------------------------------------------------------------- case DW_OP_mod: if (stack.size() < 2) { if (error_ptr) error_ptr->SetErrorString("Expression stack needs at least 2 items for DW_OP_mod."); return false; } else { tmp = stack.back(); stack.pop_back(); stack.back().ResolveValue(exe_ctx, ast_context) = stack.back().ResolveValue(exe_ctx, ast_context) % tmp.ResolveValue(exe_ctx, ast_context); } break; //---------------------------------------------------------------------- // OPCODE: DW_OP_mul // OPERANDS: none // DESCRIPTION: pops the top two stack entries, multiplies them // together, and pushes the result. //---------------------------------------------------------------------- case DW_OP_mul: if (stack.size() < 2) { if (error_ptr) error_ptr->SetErrorString("Expression stack needs at least 2 items for DW_OP_mul."); return false; } else { tmp = stack.back(); stack.pop_back(); stack.back().ResolveValue(exe_ctx, ast_context) = stack.back().ResolveValue(exe_ctx, ast_context) * tmp.ResolveValue(exe_ctx, ast_context); } break; //---------------------------------------------------------------------- // OPCODE: DW_OP_neg // OPERANDS: none // DESCRIPTION: pops the top stack entry, and pushes its negation. //---------------------------------------------------------------------- case DW_OP_neg: if (stack.empty()) { if (error_ptr) error_ptr->SetErrorString("Expression stack needs at least 1 item for DW_OP_neg."); return false; } else { if (stack.back().ResolveValue(exe_ctx, ast_context).UnaryNegate() == false) { if (error_ptr) error_ptr->SetErrorString("Unary negate failed."); return false; } } break; //---------------------------------------------------------------------- // OPCODE: DW_OP_not // OPERANDS: none // DESCRIPTION: pops the top stack entry, and pushes its bitwise // complement //---------------------------------------------------------------------- case DW_OP_not: if (stack.empty()) { if (error_ptr) error_ptr->SetErrorString("Expression stack needs at least 1 item for DW_OP_not."); return false; } else { if (stack.back().ResolveValue(exe_ctx, ast_context).OnesComplement() == false) { if (error_ptr) error_ptr->SetErrorString("Logical NOT failed."); return false; } } break; //---------------------------------------------------------------------- // OPCODE: DW_OP_or // OPERANDS: none // DESCRIPTION: pops the top two stack entries, performs a bitwise or // operation on the two, and pushes the result. //---------------------------------------------------------------------- case DW_OP_or: if (stack.size() < 2) { if (error_ptr) error_ptr->SetErrorString("Expression stack needs at least 2 items for DW_OP_or."); return false; } else { tmp = stack.back(); stack.pop_back(); stack.back().ResolveValue(exe_ctx, ast_context) = stack.back().ResolveValue(exe_ctx, ast_context) | tmp.ResolveValue(exe_ctx, ast_context); } break; //---------------------------------------------------------------------- // OPCODE: DW_OP_plus // OPERANDS: none // DESCRIPTION: pops the top two stack entries, adds them together, and // pushes the result. //---------------------------------------------------------------------- case DW_OP_plus: if (stack.size() < 2) { if (error_ptr) error_ptr->SetErrorString("Expression stack needs at least 2 items for DW_OP_plus."); return false; } else { tmp = stack.back(); stack.pop_back(); stack.back().ResolveValue(exe_ctx, ast_context) = stack.back().ResolveValue(exe_ctx, ast_context) + tmp.ResolveValue(exe_ctx, ast_context); } break; //---------------------------------------------------------------------- // OPCODE: DW_OP_plus_uconst // OPERANDS: none // DESCRIPTION: pops the top stack entry, adds it to the unsigned LEB128 // constant operand and pushes the result. //---------------------------------------------------------------------- case DW_OP_plus_uconst: if (stack.empty()) { if (error_ptr) error_ptr->SetErrorString("Expression stack needs at least 1 item for DW_OP_plus_uconst."); return false; } else { uint32_t uconst_value = opcodes.GetULEB128(&offset); // Implicit conversion from a UINT to a Scalar... stack.back().ResolveValue(exe_ctx, ast_context) += uconst_value; if (!stack.back().ResolveValue(exe_ctx, ast_context).IsValid()) { if (error_ptr) error_ptr->SetErrorString("DW_OP_plus_uconst failed."); return false; } } break; //---------------------------------------------------------------------- // OPCODE: DW_OP_shl // OPERANDS: none // DESCRIPTION: pops the top two stack entries, shifts the former // second entry left by the number of bits specified by the former top // of the stack, and pushes the result. //---------------------------------------------------------------------- case DW_OP_shl: if (stack.size() < 2) { if (error_ptr) error_ptr->SetErrorString("Expression stack needs at least 2 items for DW_OP_shl."); return false; } else { tmp = stack.back(); stack.pop_back(); stack.back().ResolveValue(exe_ctx, ast_context) <<= tmp.ResolveValue(exe_ctx, ast_context); } break; //---------------------------------------------------------------------- // OPCODE: DW_OP_shr // OPERANDS: none // DESCRIPTION: pops the top two stack entries, shifts the former second // entry right logically (filling with zero bits) by the number of bits // specified by the former top of the stack, and pushes the result. //---------------------------------------------------------------------- case DW_OP_shr: if (stack.size() < 2) { if (error_ptr) error_ptr->SetErrorString("Expression stack needs at least 2 items for DW_OP_shr."); return false; } else { tmp = stack.back(); stack.pop_back(); if (stack.back().ResolveValue(exe_ctx, ast_context).ShiftRightLogical(tmp.ResolveValue(exe_ctx, ast_context)) == false) { if (error_ptr) error_ptr->SetErrorString("DW_OP_shr failed."); return false; } } break; //---------------------------------------------------------------------- // OPCODE: DW_OP_shra // OPERANDS: none // DESCRIPTION: pops the top two stack entries, shifts the former second // entry right arithmetically (divide the magnitude by 2, keep the same // sign for the result) by the number of bits specified by the former // top of the stack, and pushes the result. //---------------------------------------------------------------------- case DW_OP_shra: if (stack.size() < 2) { if (error_ptr) error_ptr->SetErrorString("Expression stack needs at least 2 items for DW_OP_shra."); return false; } else { tmp = stack.back(); stack.pop_back(); stack.back().ResolveValue(exe_ctx, ast_context) >>= tmp.ResolveValue(exe_ctx, ast_context); } break; //---------------------------------------------------------------------- // OPCODE: DW_OP_xor // OPERANDS: none // DESCRIPTION: pops the top two stack entries, performs the bitwise // exclusive-or operation on the two, and pushes the result. //---------------------------------------------------------------------- case DW_OP_xor: if (stack.size() < 2) { if (error_ptr) error_ptr->SetErrorString("Expression stack needs at least 2 items for DW_OP_xor."); return false; } else { tmp = stack.back(); stack.pop_back(); stack.back().ResolveValue(exe_ctx, ast_context) = stack.back().ResolveValue(exe_ctx, ast_context) ^ tmp.ResolveValue(exe_ctx, ast_context); } break; //---------------------------------------------------------------------- // OPCODE: DW_OP_skip // OPERANDS: int16_t // DESCRIPTION: An unconditional branch. Its single operand is a 2-byte // signed integer constant. The 2-byte constant is the number of bytes // of the DWARF expression to skip forward or backward from the current // operation, beginning after the 2-byte constant. //---------------------------------------------------------------------- case DW_OP_skip: { int16_t skip_offset = (int16_t)opcodes.GetU16(&offset); uint32_t new_offset = offset + skip_offset; if (new_offset >= opcodes_offset && new_offset < end_offset) offset = new_offset; else { if (error_ptr) error_ptr->SetErrorString("Invalid opcode offset in DW_OP_skip."); return false; } } break; //---------------------------------------------------------------------- // OPCODE: DW_OP_bra // OPERANDS: int16_t // DESCRIPTION: A conditional branch. Its single operand is a 2-byte // signed integer constant. This operation pops the top of stack. If // the value popped is not the constant 0, the 2-byte constant operand // is the number of bytes of the DWARF expression to skip forward or // backward from the current operation, beginning after the 2-byte // constant. //---------------------------------------------------------------------- case DW_OP_bra: { tmp = stack.back(); stack.pop_back(); int16_t bra_offset = (int16_t)opcodes.GetU16(&offset); Scalar zero(0); if (tmp.ResolveValue(exe_ctx, ast_context) != zero) { uint32_t new_offset = offset + bra_offset; if (new_offset >= opcodes_offset && new_offset < end_offset) offset = new_offset; else { if (error_ptr) error_ptr->SetErrorString("Invalid opcode offset in DW_OP_bra."); return false; } } } break; //---------------------------------------------------------------------- // OPCODE: DW_OP_eq // OPERANDS: none // DESCRIPTION: pops the top two stack values, compares using the // equals (==) operator. // STACK RESULT: push the constant value 1 onto the stack if the result // of the operation is true or the constant value 0 if the result of the // operation is false. //---------------------------------------------------------------------- case DW_OP_eq: if (stack.size() < 2) { if (error_ptr) error_ptr->SetErrorString("Expression stack needs at least 2 items for DW_OP_eq."); return false; } else { tmp = stack.back(); stack.pop_back(); stack.back().ResolveValue(exe_ctx, ast_context) = stack.back().ResolveValue(exe_ctx, ast_context) == tmp.ResolveValue(exe_ctx, ast_context); } break; //---------------------------------------------------------------------- // OPCODE: DW_OP_ge // OPERANDS: none // DESCRIPTION: pops the top two stack values, compares using the // greater than or equal to (>=) operator. // STACK RESULT: push the constant value 1 onto the stack if the result // of the operation is true or the constant value 0 if the result of the // operation is false. //---------------------------------------------------------------------- case DW_OP_ge: if (stack.size() < 2) { if (error_ptr) error_ptr->SetErrorString("Expression stack needs at least 2 items for DW_OP_ge."); return false; } else { tmp = stack.back(); stack.pop_back(); stack.back().ResolveValue(exe_ctx, ast_context) = stack.back().ResolveValue(exe_ctx, ast_context) >= tmp.ResolveValue(exe_ctx, ast_context); } break; //---------------------------------------------------------------------- // OPCODE: DW_OP_gt // OPERANDS: none // DESCRIPTION: pops the top two stack values, compares using the // greater than (>) operator. // STACK RESULT: push the constant value 1 onto the stack if the result // of the operation is true or the constant value 0 if the result of the // operation is false. //---------------------------------------------------------------------- case DW_OP_gt: if (stack.size() < 2) { if (error_ptr) error_ptr->SetErrorString("Expression stack needs at least 2 items for DW_OP_gt."); return false; } else { tmp = stack.back(); stack.pop_back(); stack.back().ResolveValue(exe_ctx, ast_context) = stack.back().ResolveValue(exe_ctx, ast_context) > tmp.ResolveValue(exe_ctx, ast_context); } break; //---------------------------------------------------------------------- // OPCODE: DW_OP_le // OPERANDS: none // DESCRIPTION: pops the top two stack values, compares using the // less than or equal to (<=) operator. // STACK RESULT: push the constant value 1 onto the stack if the result // of the operation is true or the constant value 0 if the result of the // operation is false. //---------------------------------------------------------------------- case DW_OP_le: if (stack.size() < 2) { if (error_ptr) error_ptr->SetErrorString("Expression stack needs at least 2 items for DW_OP_le."); return false; } else { tmp = stack.back(); stack.pop_back(); stack.back().ResolveValue(exe_ctx, ast_context) = stack.back().ResolveValue(exe_ctx, ast_context) <= tmp.ResolveValue(exe_ctx, ast_context); } break; //---------------------------------------------------------------------- // OPCODE: DW_OP_lt // OPERANDS: none // DESCRIPTION: pops the top two stack values, compares using the // less than (<) operator. // STACK RESULT: push the constant value 1 onto the stack if the result // of the operation is true or the constant value 0 if the result of the // operation is false. //---------------------------------------------------------------------- case DW_OP_lt: if (stack.size() < 2) { if (error_ptr) error_ptr->SetErrorString("Expression stack needs at least 2 items for DW_OP_lt."); return false; } else { tmp = stack.back(); stack.pop_back(); stack.back().ResolveValue(exe_ctx, ast_context) = stack.back().ResolveValue(exe_ctx, ast_context) < tmp.ResolveValue(exe_ctx, ast_context); } break; //---------------------------------------------------------------------- // OPCODE: DW_OP_ne // OPERANDS: none // DESCRIPTION: pops the top two stack values, compares using the // not equal (!=) operator. // STACK RESULT: push the constant value 1 onto the stack if the result // of the operation is true or the constant value 0 if the result of the // operation is false. //---------------------------------------------------------------------- case DW_OP_ne: if (stack.size() < 2) { if (error_ptr) error_ptr->SetErrorString("Expression stack needs at least 2 items for DW_OP_ne."); return false; } else { tmp = stack.back(); stack.pop_back(); stack.back().ResolveValue(exe_ctx, ast_context) = stack.back().ResolveValue(exe_ctx, ast_context) != tmp.ResolveValue(exe_ctx, ast_context); } break; //---------------------------------------------------------------------- // OPCODE: DW_OP_litn // OPERANDS: none // DESCRIPTION: encode the unsigned literal values from 0 through 31. // STACK RESULT: push the unsigned literal constant value onto the top // of the stack. //---------------------------------------------------------------------- case DW_OP_lit0: case DW_OP_lit1: case DW_OP_lit2: case DW_OP_lit3: case DW_OP_lit4: case DW_OP_lit5: case DW_OP_lit6: case DW_OP_lit7: case DW_OP_lit8: case DW_OP_lit9: case DW_OP_lit10: case DW_OP_lit11: case DW_OP_lit12: case DW_OP_lit13: case DW_OP_lit14: case DW_OP_lit15: case DW_OP_lit16: case DW_OP_lit17: case DW_OP_lit18: case DW_OP_lit19: case DW_OP_lit20: case DW_OP_lit21: case DW_OP_lit22: case DW_OP_lit23: case DW_OP_lit24: case DW_OP_lit25: case DW_OP_lit26: case DW_OP_lit27: case DW_OP_lit28: case DW_OP_lit29: case DW_OP_lit30: case DW_OP_lit31: stack.push_back(Scalar(op - DW_OP_lit0)); break; //---------------------------------------------------------------------- // OPCODE: DW_OP_regN // OPERANDS: none // DESCRIPTION: Push the value in register n on the top of the stack. //---------------------------------------------------------------------- case DW_OP_reg0: case DW_OP_reg1: case DW_OP_reg2: case DW_OP_reg3: case DW_OP_reg4: case DW_OP_reg5: case DW_OP_reg6: case DW_OP_reg7: case DW_OP_reg8: case DW_OP_reg9: case DW_OP_reg10: case DW_OP_reg11: case DW_OP_reg12: case DW_OP_reg13: case DW_OP_reg14: case DW_OP_reg15: case DW_OP_reg16: case DW_OP_reg17: case DW_OP_reg18: case DW_OP_reg19: case DW_OP_reg20: case DW_OP_reg21: case DW_OP_reg22: case DW_OP_reg23: case DW_OP_reg24: case DW_OP_reg25: case DW_OP_reg26: case DW_OP_reg27: case DW_OP_reg28: case DW_OP_reg29: case DW_OP_reg30: case DW_OP_reg31: { reg_num = op - DW_OP_reg0; if (ReadRegisterValueAsScalar (reg_ctx, reg_kind, reg_num, error_ptr, tmp)) stack.push_back(tmp); else return false; } break; //---------------------------------------------------------------------- // OPCODE: DW_OP_regx // OPERANDS: // ULEB128 literal operand that encodes the register. // DESCRIPTION: Push the value in register on the top of the stack. //---------------------------------------------------------------------- case DW_OP_regx: { reg_num = opcodes.GetULEB128(&offset); if (ReadRegisterValueAsScalar (reg_ctx, reg_kind, reg_num, error_ptr, tmp)) stack.push_back(tmp); else return false; } break; //---------------------------------------------------------------------- // OPCODE: DW_OP_bregN // OPERANDS: // SLEB128 offset from register N // DESCRIPTION: Value is in memory at the address specified by register // N plus an offset. //---------------------------------------------------------------------- case DW_OP_breg0: case DW_OP_breg1: case DW_OP_breg2: case DW_OP_breg3: case DW_OP_breg4: case DW_OP_breg5: case DW_OP_breg6: case DW_OP_breg7: case DW_OP_breg8: case DW_OP_breg9: case DW_OP_breg10: case DW_OP_breg11: case DW_OP_breg12: case DW_OP_breg13: case DW_OP_breg14: case DW_OP_breg15: case DW_OP_breg16: case DW_OP_breg17: case DW_OP_breg18: case DW_OP_breg19: case DW_OP_breg20: case DW_OP_breg21: case DW_OP_breg22: case DW_OP_breg23: case DW_OP_breg24: case DW_OP_breg25: case DW_OP_breg26: case DW_OP_breg27: case DW_OP_breg28: case DW_OP_breg29: case DW_OP_breg30: case DW_OP_breg31: { reg_num = op - DW_OP_breg0; if (ReadRegisterValueAsScalar (reg_ctx, reg_kind, reg_num, error_ptr, tmp)) { int64_t breg_offset = opcodes.GetSLEB128(&offset); tmp.ResolveValue(exe_ctx, ast_context) += (uint64_t)breg_offset; tmp.ClearContext(); stack.push_back(tmp); stack.back().SetValueType (Value::eValueTypeLoadAddress); } else return false; } break; //---------------------------------------------------------------------- // OPCODE: DW_OP_bregx // OPERANDS: 2 // ULEB128 literal operand that encodes the register. // SLEB128 offset from register N // DESCRIPTION: Value is in memory at the address specified by register // N plus an offset. //---------------------------------------------------------------------- case DW_OP_bregx: { reg_num = opcodes.GetULEB128(&offset); if (ReadRegisterValueAsScalar (reg_ctx, reg_kind, reg_num, error_ptr, tmp)) { int64_t breg_offset = opcodes.GetSLEB128(&offset); tmp.ResolveValue(exe_ctx, ast_context) += (uint64_t)breg_offset; tmp.ClearContext(); stack.push_back(tmp); stack.back().SetValueType (Value::eValueTypeLoadAddress); } else return false; } break; case DW_OP_fbreg: if (exe_ctx) { if (frame) { Scalar value; if (frame->GetFrameBaseValue(value, error_ptr)) { int64_t fbreg_offset = opcodes.GetSLEB128(&offset); value += fbreg_offset; stack.push_back(value); stack.back().SetValueType (Value::eValueTypeLoadAddress); } else return false; } else { if (error_ptr) error_ptr->SetErrorString ("Invalid stack frame in context for DW_OP_fbreg opcode."); return false; } } else { if (error_ptr) error_ptr->SetErrorStringWithFormat ("NULL execution context for DW_OP_fbreg.\n"); return false; } break; //---------------------------------------------------------------------- // OPCODE: DW_OP_nop // OPERANDS: none // DESCRIPTION: A place holder. It has no effect on the location stack // or any of its values. //---------------------------------------------------------------------- case DW_OP_nop: break; //---------------------------------------------------------------------- // OPCODE: DW_OP_piece // OPERANDS: 1 // ULEB128: byte size of the piece // DESCRIPTION: The operand describes the size in bytes of the piece of // the object referenced by the DWARF expression whose result is at the // top of the stack. If the piece is located in a register, but does not // occupy the entire register, the placement of the piece within that // register is defined by the ABI. // // Many compilers store a single variable in sets of registers, or store // a variable partially in memory and partially in registers. // DW_OP_piece provides a way of describing how large a part of a // variable a particular DWARF expression refers to. //---------------------------------------------------------------------- case DW_OP_piece: if (error_ptr) error_ptr->SetErrorString ("Unimplemented opcode DW_OP_piece."); return false; //---------------------------------------------------------------------- // OPCODE: DW_OP_push_object_address // OPERANDS: none // DESCRIPTION: Pushes the address of the object currently being // evaluated as part of evaluation of a user presented expression. // This object may correspond to an independent variable described by // its own DIE or it may be a component of an array, structure, or class // whose address has been dynamically determined by an earlier step // during user expression evaluation. //---------------------------------------------------------------------- case DW_OP_push_object_address: if (error_ptr) error_ptr->SetErrorString ("Unimplemented opcode DW_OP_push_object_address."); return false; //---------------------------------------------------------------------- // OPCODE: DW_OP_call2 // OPERANDS: // uint16_t compile unit relative offset of a DIE // DESCRIPTION: Performs subroutine calls during evaluation // of a DWARF expression. The operand is the 2-byte unsigned offset // of a debugging information entry in the current compilation unit. // // Operand interpretation is exactly like that for DW_FORM_ref2. // // This operation transfers control of DWARF expression evaluation // to the DW_AT_location attribute of the referenced DIE. If there is // no such attribute, then there is no effect. Execution of the DWARF // expression of a DW_AT_location attribute may add to and/or remove from // values on the stack. Execution returns to the point following the call // when the end of the attribute is reached. Values on the stack at the // time of the call may be used as parameters by the called expression // and values left on the stack by the called expression may be used as // return values by prior agreement between the calling and called // expressions. //---------------------------------------------------------------------- case DW_OP_call2: if (error_ptr) error_ptr->SetErrorString ("Unimplemented opcode DW_OP_call2."); return false; //---------------------------------------------------------------------- // OPCODE: DW_OP_call4 // OPERANDS: 1 // uint32_t compile unit relative offset of a DIE // DESCRIPTION: Performs a subroutine call during evaluation of a DWARF // expression. For DW_OP_call4, the operand is a 4-byte unsigned offset // of a debugging information entry in the current compilation unit. // // Operand interpretation DW_OP_call4 is exactly like that for // DW_FORM_ref4. // // This operation transfers control of DWARF expression evaluation // to the DW_AT_location attribute of the referenced DIE. If there is // no such attribute, then there is no effect. Execution of the DWARF // expression of a DW_AT_location attribute may add to and/or remove from // values on the stack. Execution returns to the point following the call // when the end of the attribute is reached. Values on the stack at the // time of the call may be used as parameters by the called expression // and values left on the stack by the called expression may be used as // return values by prior agreement between the calling and called // expressions. //---------------------------------------------------------------------- case DW_OP_call4: if (error_ptr) error_ptr->SetErrorString ("Unimplemented opcode DW_OP_call4."); return false; #if 0 //---------------------------------------------------------------------- // OPCODE: DW_OP_call_ref // OPERANDS: // uint32_t absolute DIE offset for 32-bit DWARF or a uint64_t // absolute DIE offset for 64 bit DWARF. // DESCRIPTION: Performs a subroutine call during evaluation of a DWARF // expression. Takes a single operand. In the 32-bit DWARF format, the // operand is a 4-byte unsigned value; in the 64-bit DWARF format, it // is an 8-byte unsigned value. The operand is used as the offset of a // debugging information entry in a .debug_info section which may be // contained in a shared object for executable other than that // containing the operator. For references from one shared object or // executable to another, the relocation must be performed by the // consumer. // // Operand interpretation of DW_OP_call_ref is exactly like that for // DW_FORM_ref_addr. // // This operation transfers control of DWARF expression evaluation // to the DW_AT_location attribute of the referenced DIE. If there is // no such attribute, then there is no effect. Execution of the DWARF // expression of a DW_AT_location attribute may add to and/or remove from // values on the stack. Execution returns to the point following the call // when the end of the attribute is reached. Values on the stack at the // time of the call may be used as parameters by the called expression // and values left on the stack by the called expression may be used as // return values by prior agreement between the calling and called // expressions. //---------------------------------------------------------------------- case DW_OP_call_ref: if (error_ptr) error_ptr->SetErrorString ("Unimplemented opcode DW_OP_call_ref."); return false; //---------------------------------------------------------------------- // OPCODE: DW_OP_APPLE_array_ref // OPERANDS: none // DESCRIPTION: Pops a value off the stack and uses it as the array // index. Pops a second value off the stack and uses it as the array // itself. Pushes a value onto the stack representing the element of // the array specified by the index. //---------------------------------------------------------------------- case DW_OP_APPLE_array_ref: { if (stack.size() < 2) { if (error_ptr) error_ptr->SetErrorString("Expression stack needs at least 2 items for DW_OP_APPLE_array_ref."); return false; } Value index_val = stack.back(); stack.pop_back(); Value array_val = stack.back(); stack.pop_back(); Scalar &index_scalar = index_val.ResolveValue(exe_ctx, ast_context); int64_t index = index_scalar.SLongLong(LLONG_MAX); if (index == LLONG_MAX) { if (error_ptr) error_ptr->SetErrorString("Invalid array index."); return false; } if (array_val.GetContextType() != Value::eContextTypeClangType) { if (error_ptr) error_ptr->SetErrorString("Arrays without Clang types are unhandled at this time."); return false; } if (array_val.GetValueType() != Value::eValueTypeLoadAddress && array_val.GetValueType() != Value::eValueTypeHostAddress) { if (error_ptr) error_ptr->SetErrorString("Array must be stored in memory."); return false; } void *array_type = array_val.GetClangType(); void *member_type; uint64_t size = 0; if ((!ClangASTContext::IsPointerType(array_type, &member_type)) && (!ClangASTContext::IsArrayType(array_type, &member_type, &size))) { if (error_ptr) error_ptr->SetErrorString("Array reference from something that is neither a pointer nor an array."); return false; } if (size && (index >= size || index < 0)) { if (error_ptr) error_ptr->SetErrorStringWithFormat("Out of bounds array access. %lld is not in [0, %llu]", index, size); return false; } uint64_t member_bit_size = ClangASTType::GetClangTypeBitWidth(ast_context, member_type); uint64_t member_bit_align = ClangASTType::GetTypeBitAlign(ast_context, member_type); uint64_t member_bit_incr = ((member_bit_size + member_bit_align - 1) / member_bit_align) * member_bit_align; if (member_bit_incr % 8) { if (error_ptr) error_ptr->SetErrorStringWithFormat("Array increment is not byte aligned"); return false; } int64_t member_offset = (int64_t)(member_bit_incr / 8) * index; Value member; member.SetContext(Value::eContextTypeClangType, member_type); member.SetValueType(array_val.GetValueType()); addr_t array_base = (addr_t)array_val.GetScalar().ULongLong(LLDB_INVALID_ADDRESS); addr_t member_loc = array_base + member_offset; member.GetScalar() = (uint64_t)member_loc; stack.push_back(member); } break; //---------------------------------------------------------------------- // OPCODE: DW_OP_APPLE_uninit // OPERANDS: none // DESCRIPTION: Lets us know that the value is currently not initialized //---------------------------------------------------------------------- case DW_OP_APPLE_uninit: //return eResultTypeErrorUninitialized; break; // Ignore this as we have seen cases where this value is incorrectly added //---------------------------------------------------------------------- // OPCODE: DW_OP_APPLE_assign // OPERANDS: none // DESCRIPTION: Pops a value off of the stack and assigns it to the next // item on the stack which must be something assignable (inferior // Variable, inferior Type with address, inferior register, or // expression local variable. //---------------------------------------------------------------------- case DW_OP_APPLE_assign: if (stack.size() < 2) { if (error_ptr) error_ptr->SetErrorString("Expression stack needs at least 2 items for DW_OP_APPLE_assign."); return false; } else { tmp = stack.back(); stack.pop_back(); Value::ContextType context_type = stack.back().GetContextType(); StreamString new_value(Stream::eBinary, 4, lldb::endian::InlHostByteOrder()); switch (context_type) { case Value::eContextTypeClangType: { void *clang_type = stack.back().GetClangType(); if (ClangASTContext::IsAggregateType (clang_type)) { Value::ValueType source_value_type = tmp.GetValueType(); Value::ValueType target_value_type = stack.back().GetValueType(); addr_t source_addr = (addr_t)tmp.GetScalar().ULongLong(); addr_t target_addr = (addr_t)stack.back().GetScalar().ULongLong(); size_t byte_size = (ClangASTType::GetClangTypeBitWidth(ast_context, clang_type) + 7) / 8; switch (source_value_type) { case Value::eValueTypeScalar: case Value::eValueTypeFileAddress: break; case Value::eValueTypeLoadAddress: switch (target_value_type) { case Value::eValueTypeLoadAddress: { DataBufferHeap data; data.SetByteSize(byte_size); Error error; if (process->ReadMemory (source_addr, data.GetBytes(), byte_size, error) != byte_size) { if (error_ptr) error_ptr->SetErrorStringWithFormat ("Couldn't read a composite type from the target: %s", error.AsCString()); return false; } if (process->WriteMemory (target_addr, data.GetBytes(), byte_size, error) != byte_size) { if (error_ptr) error_ptr->SetErrorStringWithFormat ("Couldn't write a composite type to the target: %s", error.AsCString()); return false; } } break; case Value::eValueTypeHostAddress: if (process->GetByteOrder() != lldb::endian::InlHostByteOrder()) { if (error_ptr) error_ptr->SetErrorStringWithFormat ("Copy of composite types between incompatible byte orders is unimplemented"); return false; } else { Error error; if (process->ReadMemory (source_addr, (uint8_t*)target_addr, byte_size, error) != byte_size) { if (error_ptr) error_ptr->SetErrorStringWithFormat ("Couldn't read a composite type from the target: %s", error.AsCString()); return false; } } break; default: return false; } break; case Value::eValueTypeHostAddress: switch (target_value_type) { case Value::eValueTypeLoadAddress: if (process->GetByteOrder() != lldb::endian::InlHostByteOrder()) { if (error_ptr) error_ptr->SetErrorStringWithFormat ("Copy of composite types between incompatible byte orders is unimplemented"); return false; } else { Error error; if (process->WriteMemory (target_addr, (uint8_t*)source_addr, byte_size, error) != byte_size) { if (error_ptr) error_ptr->SetErrorStringWithFormat ("Couldn't write a composite type to the target: %s", error.AsCString()); return false; } } case Value::eValueTypeHostAddress: memcpy ((uint8_t*)target_addr, (uint8_t*)source_addr, byte_size); break; default: return false; } } } else { if (!ClangASTType::SetValueFromScalar (ast_context, clang_type, tmp.ResolveValue(exe_ctx, ast_context), new_value)) { if (error_ptr) error_ptr->SetErrorStringWithFormat ("Couldn't extract a value from an integral type.\n"); return false; } Value::ValueType value_type = stack.back().GetValueType(); switch (value_type) { case Value::eValueTypeLoadAddress: case Value::eValueTypeHostAddress: { AddressType address_type = (value_type == Value::eValueTypeLoadAddress ? eAddressTypeLoad : eAddressTypeHost); lldb::addr_t addr = stack.back().GetScalar().ULongLong(LLDB_INVALID_ADDRESS); if (!ClangASTType::WriteToMemory (ast_context, clang_type, exe_ctx, addr, address_type, new_value)) { if (error_ptr) error_ptr->SetErrorStringWithFormat ("Failed to write value to memory at 0x%llx.\n", addr); return false; } } break; default: break; } } } break; default: if (error_ptr) error_ptr->SetErrorString ("Assign failed."); return false; } } break; //---------------------------------------------------------------------- // OPCODE: DW_OP_APPLE_address_of // OPERANDS: none // DESCRIPTION: Pops a value off of the stack and pushed its address. // The top item on the stack must be a variable, or already be a memory // location. //---------------------------------------------------------------------- case DW_OP_APPLE_address_of: if (stack.empty()) { if (error_ptr) error_ptr->SetErrorString("Expression stack needs at least 1 item for DW_OP_APPLE_address_of."); return false; } else { Value::ValueType value_type = stack.back().GetValueType(); switch (value_type) { default: case Value::eValueTypeScalar: // raw scalar value if (error_ptr) error_ptr->SetErrorString("Top stack item isn't a memory based object."); return false; case Value::eValueTypeLoadAddress: // load address value case Value::eValueTypeFileAddress: // file address value case Value::eValueTypeHostAddress: // host address value (for memory in the process that is using liblldb) // Taking the address of an object reduces it to the address // of the value and removes any extra context it had. //stack.back().SetValueType(Value::eValueTypeScalar); stack.back().ClearContext(); break; } } break; //---------------------------------------------------------------------- // OPCODE: DW_OP_APPLE_value_of // OPERANDS: none // DESCRIPTION: Pops a value off of the stack and pushed its value. // The top item on the stack must be a variable, expression variable. //---------------------------------------------------------------------- case DW_OP_APPLE_value_of: if (stack.empty()) { if (error_ptr) error_ptr->SetErrorString("Expression stack needs at least 1 items for DW_OP_APPLE_value_of."); return false; } else if (!stack.back().ValueOf(exe_ctx, ast_context)) { if (error_ptr) error_ptr->SetErrorString ("Top stack item isn't a valid candidate for DW_OP_APPLE_value_of."); return false; } break; //---------------------------------------------------------------------- // OPCODE: DW_OP_APPLE_deref_type // OPERANDS: none // DESCRIPTION: gets the value pointed to by the top stack item //---------------------------------------------------------------------- case DW_OP_APPLE_deref_type: { if (stack.empty()) { if (error_ptr) error_ptr->SetErrorString("Expression stack needs at least 1 items for DW_OP_APPLE_deref_type."); return false; } tmp = stack.back(); stack.pop_back(); if (tmp.GetContextType() != Value::eContextTypeClangType) { if (error_ptr) error_ptr->SetErrorString("Item at top of expression stack must have a Clang type"); return false; } void *ptr_type = tmp.GetClangType(); void *target_type; if (!ClangASTContext::IsPointerType(ptr_type, &target_type)) { if (error_ptr) error_ptr->SetErrorString("Dereferencing a non-pointer type"); return false; } // TODO do we want all pointers to be dereferenced as load addresses? Value::ValueType value_type = tmp.GetValueType(); tmp.ResolveValue(exe_ctx, ast_context); tmp.SetValueType(value_type); tmp.SetContext(Value::eContextTypeClangType, target_type); stack.push_back(tmp); } break; //---------------------------------------------------------------------- // OPCODE: DW_OP_APPLE_expr_local // OPERANDS: ULEB128 // DESCRIPTION: pushes the expression local variable index onto the // stack and set the appropriate context so we know the stack item is // an expression local variable index. //---------------------------------------------------------------------- case DW_OP_APPLE_expr_local: { /* uint32_t idx = opcodes.GetULEB128(&offset); if (expr_locals == NULL) { if (error_ptr) error_ptr->SetErrorStringWithFormat ("DW_OP_APPLE_expr_local(%u) opcode encountered with no local variable list.\n", idx); return false; } Value *expr_local_variable = expr_locals->GetVariableAtIndex(idx); if (expr_local_variable == NULL) { if (error_ptr) error_ptr->SetErrorStringWithFormat ("DW_OP_APPLE_expr_local(%u) with invalid index %u.\n", idx, idx); return false; } // The proxy code has been removed. If it is ever re-added, please // use shared pointers or return by value to avoid possible memory // leak (there is no leak here, but in general, no returning pointers // that must be manually freed please. Value *proxy = expr_local_variable->CreateProxy(); stack.push_back(*proxy); delete proxy; //stack.back().SetContext (Value::eContextTypeClangType, expr_local_variable->GetClangType()); */ } break; //---------------------------------------------------------------------- // OPCODE: DW_OP_APPLE_extern // OPERANDS: ULEB128 // DESCRIPTION: pushes a proxy for the extern object index onto the // stack. //---------------------------------------------------------------------- case DW_OP_APPLE_extern: { /* uint32_t idx = opcodes.GetULEB128(&offset); if (!decl_map) { if (error_ptr) error_ptr->SetErrorStringWithFormat ("DW_OP_APPLE_extern(%u) opcode encountered with no decl map.\n", idx); return false; } Value *extern_var = decl_map->GetValueForIndex(idx); if (!extern_var) { if (error_ptr) error_ptr->SetErrorStringWithFormat ("DW_OP_APPLE_extern(%u) with invalid index %u.\n", idx, idx); return false; } // The proxy code has been removed. If it is ever re-added, please // use shared pointers or return by value to avoid possible memory // leak (there is no leak here, but in general, no returning pointers // that must be manually freed please. Value *proxy = extern_var->CreateProxy(); stack.push_back(*proxy); delete proxy; */ } break; case DW_OP_APPLE_scalar_cast: if (stack.empty()) { if (error_ptr) error_ptr->SetErrorString("Expression stack needs at least 1 item for DW_OP_APPLE_scalar_cast."); return false; } else { // Simple scalar cast if (!stack.back().ResolveValue(exe_ctx, ast_context).Cast((Scalar::Type)opcodes.GetU8(&offset))) { if (error_ptr) error_ptr->SetErrorString("Cast failed."); return false; } } break; case DW_OP_APPLE_clang_cast: if (stack.empty()) { if (error_ptr) error_ptr->SetErrorString("Expression stack needs at least 1 item for DW_OP_APPLE_clang_cast."); return false; } else { void *clang_type = (void *)opcodes.GetMaxU64(&offset, sizeof(void*)); stack.back().SetContext (Value::eContextTypeClangType, clang_type); } break; //---------------------------------------------------------------------- // OPCODE: DW_OP_APPLE_constf // OPERANDS: 1 byte float length, followed by that many bytes containing // the constant float data. // DESCRIPTION: Push a float value onto the expression stack. //---------------------------------------------------------------------- case DW_OP_APPLE_constf: // 0xF6 - 1 byte float size, followed by constant float data { uint8_t float_length = opcodes.GetU8(&offset); if (sizeof(float) == float_length) tmp.ResolveValue(exe_ctx, ast_context) = opcodes.GetFloat (&offset); else if (sizeof(double) == float_length) tmp.ResolveValue(exe_ctx, ast_context) = opcodes.GetDouble (&offset); else if (sizeof(long double) == float_length) tmp.ResolveValue(exe_ctx, ast_context) = opcodes.GetLongDouble (&offset); else { StreamString new_value; opcodes.Dump(&new_value, offset, eFormatBytes, 1, float_length, UINT32_MAX, DW_INVALID_ADDRESS, 0, 0); if (error_ptr) error_ptr->SetErrorStringWithFormat ("DW_OP_APPLE_constf(<%u> %s) unsupported float size.\n", float_length, new_value.GetData()); return false; } tmp.SetValueType(Value::eValueTypeScalar); tmp.ClearContext(); stack.push_back(tmp); } break; //---------------------------------------------------------------------- // OPCODE: DW_OP_APPLE_clear // OPERANDS: none // DESCRIPTION: Clears the expression stack. //---------------------------------------------------------------------- case DW_OP_APPLE_clear: stack.clear(); break; //---------------------------------------------------------------------- // OPCODE: DW_OP_APPLE_error // OPERANDS: none // DESCRIPTION: Pops a value off of the stack and pushed its value. // The top item on the stack must be a variable, expression variable. //---------------------------------------------------------------------- case DW_OP_APPLE_error: // 0xFF - Stops expression evaluation and returns an error (no args) if (error_ptr) error_ptr->SetErrorString ("Generic error."); return false; #endif // #if 0 } } if (stack.empty()) { if (error_ptr) error_ptr->SetErrorString ("Stack empty after evaluation."); return false; } else if (log && log->GetVerbose()) { size_t count = stack.size(); log->Printf("Stack after operation has %lu values:", count); for (size_t i=0; iPrintf(" %s", new_value.GetData()); } } result = stack.back(); return true; // Return true on success }